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Abstract—Nowadays, different kinds of modelling settled down
in most areas of human activities. Often, it is not easy to design
and create a model of an existing systems, because equations
linking its components are not known. This article describes
an approach allowing to identify system components interaction
based on run-time monitoring and analysis of system behavior.
Described method is shown on a simple system that will be turned
in to a system dynamics mode by automated equations definition
and results will compared to initial analytic model for the same
system.

I. INTRODUCTION

We are living in a complex world and with new techno-

logical and scientific achievements our world became even

more complex, almost, on a daily basis. That is why modelling

taking leading positions when it comes to question of systems

analysis and design.

There are many different classes of systems and, consequen-

tially, number of ways to design, define, build and compute

related models. One of the most frequent kinds of systems we

are seeing around are dynamic systems, or systems, behaving

or evolving over time. Approach to work with kind of systems

is called System Dynamics. Appeared initially in mid 60s and

designed for describing economics processes, later, in terms

of growth of its methodological maturity, became applicable

to work with almost any dynamic system.

System dynamics models consist of two key elements:

stocks and flows. Where stocks are representing accumulation

of anything accounts receivable, capital, delays, inventories,

and so on and flows are representing movement of anything

consumption, deliveries, expenses, production, etc.[1]

Today, computer modelling, like many other services, is

following a trend of moving to the cloud. There are many

benefits of using cloud services, comparing to maintenance

own deployments of required systems and services, but in a

light of discussed topic, key of them are computation capacity

and simplified data access. In most cases, cloud services,

especially designed for computation and modelling needs, are

hosted on a specialized and well configured equipment, which

is fine-tuned for solving particular types of tasks. Because of

various kinds of optimization’s, such hosted solution will be

more efficient even comparing with the same hardware hosted

locally, but without specific fine-tuning. That is why cloud

services can do more and do this cheaper. Second aspect is

data access. When dealing with cloud services there are no

issues with bubbling data up to the client or with getting them

back or sharing with colleagues and your research fellows.

When it comes to systems modelling these two benefits

starting to play even more valuable role together. Having effi-

cient model execution engine, taken in parallel with monitor-

ing data of the real systems allows to design and build unique

services that can change systems analysis and management

approaches, by shifted these process to a kind of augmented

reality, where real systems are extended by their models and

their models, like digital shadows, became their integral part.

One of such solutions, called continuous modelling, described

in [10], allows to perform monitoring of Internet of Things

aware systems in parallel with their running models with

constant comparison of expected state of the system with its

actual state, what allows to quickly identify anomalies and

deviations in system behavior.

Another joint processing of a model and real system data

benefit can be achieved during creation of the model for an

existing system that can be monitored in IoT-like way. When

researcher is working on a new system or trying to define a

new process, he can define both model structure (stocks, flows

and their configuration) and equations he is going to put into

his model as flows definitions. But not all works are starting

from scratch. System Dynamics is frequently used to optimize

and improve already existing systems which evolved over time

without having their own models of any kind. In such cases,

first action item which rises in the beginning of the work is

analysis of the system with identification of its structure and

understanding its behavior.

For example, frequent case is when we are having a running

system and we need to understand how it behaves and what

are the options we have to perform its optimization. When

we start dealing with such situation, in majority of cases

we do not have equations which will describe interactions

between system components. In this case, to create a model

we will need to reconstruct required dependencies via system

monitoring and analysis.

II. MODELIZATION DEFINITION

Today more and more system became a part of a paradigm

called Internet of Things. In general, it means that compo-

nents of such systems became connected to the Internet and

can be managed and monitored using centralized services.

New services, manufacturing, production and other systems

became designed now to be IoT-enabled from scratch and in

the same time many systems which are working for years

already are enhanced to be IoT-aware with wide range sensors

and different feedback processing devices allowing influence
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Fig. 1 Basic structure of a demo model with two flows and three stocks

systems remotely. An easy example is equipping production

lines with monitoring sensors, and remote power management

units allowing to start, stop and monitor production lines using

a centralized service.

Since new technologies are coming to scene, questions

about new ways of system optimization are bubbling up. Now

with all new monitoring possibilities, it is reasonable to try

leveraging them to achieve better productivity and reduce

various kinds of waste.

Another aspect to take into account is growing computation

power and computation accessibility. Today we can perform

much more computations than even few years back and

this leads to growing application of all kinds of computer

modelling to support almost any human activity.

Joining together these two features, gathering of IoT data

and application of models for system understanding, monitor-

ing and improvements, can bring lost of benefits for most of

industries. In terms of this article, we will focus on working

with dynamic systems and under selected modelling approach

we will assume System Dynamics toolkit.

To illustrate future discussion we will use a simple model

that consists of three stocks and two flows. For example,

such model may represents a supply chain pipeline where

we have production warehouse, consumer one, that process

items from this warehouse and consumer two that perform a

final processing over results of first-line processing made by

consumer one. Fig.1 schema depicts described model.

In terms of this articles, under system modelization, we

will understand a process of automated definition of equations

representing system dynamics model flows by analyzing stocks

monitoring. The basic idea of this approach can be explained

in the following way:

1) Model structure definition. During this step should be

defined key stocks (nodes of the model) and flows.

Here we are interested only in the structure of the

model without its functional aspects, and it will be

enough to define source and destination stocks for each

flow without specifying any equations explaining flow

behavior.

2) Data acquisition. At this stage, we will perform mon-

itoring of the target and will retrieve the state of each

system node. As a result of this stage, we will get a

list of aligned time series data sets describing a state of

each model flow over time. It is important to have this

time series aligned in time with the precision that makes

sense for the concrete use case. For example, if we are

talking about supply chain model, several minutes drift

between time series will not be critical, but if we deal

with the model of a short running process like cooling

down a teacup - several minutes will be the time of the

whole experiment.

3) Monitoring data analysis. After all time series are re-

ceived and aligned in time, they should pass through a

chain of statistical processing methods like an approxi-

mation. The goal of this step is to find an equation that

will describe changes of stock (node) state over time or

of flow intensive.

4) Restoration of non-measured data. In practice, during

the experiment, we can’t get all data of a system, for all

stacks and flows because technical or economic reasons

can’t measure some of them. The goal of this step is to

find an equation the will describe changes of stock state

and flow intensive which we can not measure directly.

5) Flows equations reconstruction. This step is a key ele-

ment of the proposed schema. Taking into account the

behavior of each model stock as functions from the

time, we will try to reconstruct flows, which are linking

stocks which behavior we just investigated and described

analytically with equations we extracted from system

monitoring results.

It is important to understand, that in most cases, it is not

possible to achieve the goal of complete and fully automatic

reconstruction of system dynamics data from real system mon-

itoring, especially for complicated systems with big numbers

of flows going back and forth between stocks. Goal of the

proposed approach is to design and develop an instrument that

will help to reconstruct a model of the system specialist needs

to work with, buy providing him advanced and enhanced view

of the monitored system with the number of recommendations

that will help him to solve this problem.

Whole system modelization algorithm can be split on two

phases: defining model structure, setting up monitoring, re-

trieving monitoring data and processing them to get analytic

function definitions instead of pure time series. Second phase

will be an attempt to reconstruct a model from obtained and

processed data.

First part of this algorithm is sown on fig. 2

III. MODEL STRUCTURE DEFINITION

This is a first step, in building a model of existing system.

When passing this step, it is important to understand that

model complexity, will affect complexity of the rest of the

process and higher will it be - more complicated computations

will be required and more assumptions will be needed to be

made on further process stages.

While working with model structure it is better to follow in-

cremental processes like ones described for software develop-

ment in Agile methodologies. Process of model reconstruction

can be treated as an incremental detalization and improvement
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Fig. 2: First phase of modelization algorithm

Fig. 3. Simplified structure of a demo model with two stocks and only one 
flow

of the model we are working on with step-by-step diving into

the system under analysis.

Getting back to our example with a production pipeline with

two sections, in a very first version of the model we may define

it at a glance like a two step model, like shown on fig. 3.

In this case, whole processing will be treated as a one

single operation without dividing it into processing stages.

Such simple model will allow to understand overall system

behavior. When on such level all required model components

will be reconstructed, this model can made more complicated

and intermediate processing stage can be revealed, like it was

shown on initial fig. 1. Whereat can be revealed sub-steps of

each processing step and so on, until model will not reach

required detalization level to address issues it is designed for.

Each define d stock will require performing monitoring and

analysis of monitoring results. For each defined flow we will

need to pass all steps to reconstruct flow equations from the

monitoring data retrieved from related to it monitoring flow.

IV. DATA ACQUISITION

After defining model structure, next important step is proper

acquisition of model data. Since we are dealing with real

systems, it is not always possible to properly measure states of

all system components we are going to include in the model.

There are two key measuring cases, how system component

can be monitored: state monitoring and flows monitoring.

In case of system dynamics model, model nodes, repre-

sented by stocks are not functional and they can be treated

just like a storage accumulating some entities. In the same

time flows are processes which are changing values of the

stocks. In other words, everything what performs actions on

stocks values is a flow. For example, a truck which is moving

a cargo from one storage to another is a flow connecting two

warehouses (stocks). Another example is furniture factory, it

Stock
InFlow OutFlow

consumes wood from one place, produces furniture and puts it 
in another. In this case, factory is a flow and on different sides 
of this flow i t c onnects t wo s tocks w ith c ompletely different 
entities.

When we are performing system monitoring, in most cases

we can monitor only state of the stocks, but not flows directly.

On fig. 4 shown two options for stock monitoring.

If architecture of the system allows to measure stock input 
and output flow, i t m eans, t hat w e f aced a  r elatively easy 
case, because during system monitoring we knows, direction 
(increasing or decreasing) and pace at which stock value is 
changed. This is already vary close to the solution we are 
trying to achieve - definition o f t he fl ows in  th e running 
system.

In most cases, it is not possible to properly measure input

and output flows and the only metric that can be monitored is

stock actual value. In other words, lets say, that we have scales

with sugar and there are two flows: one adding sugar to the

scales and other is taking it from there. These two processes

are performing simultaneously and the only thing we know at

any given moment is amount of sugar on scales. In this case

we will not be able to directly define properties of each flow.

To this topic we will get back later in chapter ??

V. MONITORING DATA ANALYSIS

Next important step is data analysis. In the current context,

under data analysis, we will assume processing of monitoring

data we got from the system under analysis.

As a result of monitoring, we will receive a time series

describing required system components which are represented

by stocks in the model. From processing perspective it is not

always easy to work with time series directly, also, taking into

account that our goal is to fill gaps in the model definition with

filling in, it required to convert this data series into analytic

representation. There are several different approaches allowing

to find a function that will approximate experimental data.

Approximation of experimental data is a topic that is well

described in many sources like [4] or [5]. The goal of

approximation is to define an analytic function that will go

as close as possible to the set of experimental data. When

approximation is performed we need to do key things: first,

define a function that will be used for approximation, for

example linear, polynomial, exponential, trigonometric and so

on, and second - define proper configuration and coefficients

of this function.

Often, when a researcher or analytic receives experimental

data, he can try guessing the best approximation function by

looking at experimental data charts. In other words, based on

   Stock Value
Fig. 4 Stock state monitoring options
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his own unique experience, concrete case and a set of available

data, he is making a decision about the shape of the function,

that will give him closest approximation results.

When designing cloud service solution, it is not possible

to address approximation aspect this way, because system

under development should be tolerant to different sequences

of input data received for analysis and these data sets should

be processed with some defined precision and quality level. To

address this problem in an automated way, there is a couple

solution.

The first approach that can be used is a multivariate parallel

approximation. For that purpose, on a platform level, we

will define a set of most popular functions that can be

used for approximation purpose. For example, we may have

linear, polynomial, exponential, logarithmic and trigonometric

approximation bases in the library. When new data set received

for analysis, the system will do a parallel approximation using

each of bases available in the library. Quality of approximation

can be measured, for example, by using standard deviation

between experimental data and found approximation function.

When all parallel approximations are completed, we can make

a decision about best-found approximation using selected

approximation quality metric. The key benefit of such solution

will be the ability to easily extend library of approximation

bases with new entities and with the ability to update existing

ones with better computation methods, because, the polyno-

mial approximation can be performed with the number of

was, for example using a method of Least Squares or using

Tailor series. The principal disadvantage of such an approach

will be high consumption of computation resources. When

designing a cloud solution, we have to assume, that there

can be a significant number of researches, pushing data to the

service for analysis and all of them are expecting responses

in a reasonable time. The approximation is an expensive job

from resources consumption perspective and performing it in

parallel with a big library of approximation bases can give

very good results, but will take much time. This method can

be made cheaper, if we will allow specifying the number

of patterns researcher expects in his data, this will lead to

decreasing number of required computation, but will require

knowledge about time series passed to for analysis.

The second approach that might help to address the issue

with defining closest approximation function shape is an

application of machine learning algorithms. Machine learning

works well for different classification jobs. Definition of time

series shapes is a typical classification problem where we need

to identify the ranked set of most suitable shapes for the given

time series.
Deep learning has been used successfully for time series

prediction. In particular, recurrent neural networks (RNNs),

especially those utilizing long short-term memory (LSTM)

nodes, are useful for sequential tasks like this. Lipton, Kale,

and others [6], have used LSTM RNNs for time series of

medical data. They demonstrated that an RNN can ingest a

sequence of clinical medical observations and then accurately

classify many diseases based upon these time series of raw

sensor readings and lab tests. Having a library of expected time

series shapes and trained neural networks will allow reducing

the number of parallel approximations we need to attempt to

get the result, closest to the sensor data processed.

Let describe what we have after this step from the mathe-

matical point of view:

• Functions (F, G, H...) of all measurement stocks from the

time (F : time → value).

• Function of stock value change for a specific time interval

(F ′ : time → valuechange). Also, in non-strict means,

we can call it a derivative of a stock function.

• Functions of all measurement flow influence to source

and destination stocks (f : time → valuechange and

f−1 : time → valuechange). It should also be noted

that this function is not a flow equation, because the flow

is a function of stock value, not from the model time.

VI. FLOWS EQUATIONS RECONSTRUCTION

This is a key step of the described approach. Goal of this

step is to attempt to recreate equations, describing each flow

of the model which structure was defined in the beginning of

modelization process.

Let formalize a problem that should be solved on this

step. We already have an influence function of most flow

in the model, but as noted above, it’s not a flow defini-

tion, because flow is a function from stocks values f ′ :
(stockvalue1, stockvalue2...) → valuechange. At this step

we should replace all flow influence function to it’s flow

equivalent in regarding to the follow term:

f(t) ≡ f ′(F (t), G(t)...)

There are number of options to use for flows functions

reconstruction and approach selection will depends on what

kind of monitoring was possible to perform on a system under

analysis.

1)
Input and output flows monitoring. Let’s say that for a

pair of stocks (or system components) we were able to

perform monitoring of output flow for the source stock

and input flow of destination stock. It means that for

this particular flow we have its input and output values.

Since flow, in terms of model, is a pipeline that transport

entities from one stock to another at a certain speed,

without changing quantity, it will be enough to know

values at any end of the pipeline, because on the other

side, flow value will be the same, but with opposite sign.

Keeping in mind that flow is representing a rate at which

stock value is changing and the thing that following the

described approach for turning monitoring results into

analytic representation gives us an equation describing

stock changes over time, we can get a flow value by

getting derivative of a stock function.

2) Stocks monitoring. This case is much more complicated

comparing to processing results of monitoring for input

and output flows. Key issue is that from monitoring

result we got is a state of the stock in each moment in
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time during monitoring, but this doesn’t give us informa-

tion about influence of input and output made by flows

connected to the stock. The only thing which is known

for us is a result of a function which is a superposition

of input and output flows of the stock. In other words,

at any moment t1 value of the stock can be represented

as F ′(t1) =
∑InputF lows

f f(t)−∑OutputF lows
f f−1(t).

Order of functions superposition is depending on model

structure, because, according to System Dynamics mod-

els specification, flows execution order depends on their

order definition in the model. Situation with stocks mon-

itoring can became even worse, if a stock has multiple

input and output flows, what is common in some cases,

when model components are tightly couple to each

other. Such situations are often seen in economical and

environment-related models. But, there are also cases,

when stocks monitoring works well. This is the case

when we are dealing with leaf-nodes of the model and

these nodes have only one input or output flow. In this

case stock monitoring can be treated as a input or output

flow monitoring and we will come to the first case.

3) Hybrid mode. Hybrid mode means that some of the

stocks are monitored directly and others are monitor-

ing on a level of their input and output flows. This

approach inherits all advantages and disadvantages of

both described approaches, but, it can bring benefits

upon identification of system monitoring strategy. For

example, we have a system, which consists of three jars

of some liquid. These three containers are connected

in chain via two filters cleaning liquid on the way

from then first jar to the third one. Dealing with liquid

flow measurement is non-trivial thing, comparing to

measurement of its volume. That is why, for the first

and third jars we can use simple volume (or weight

measurement liquid density is known) monitoring for

the first and third jars and perform flows monitoring only

for the second one which is affected by superposition of

input and output flows.

VII. RESTORATION OF NON-MEASURED STOCKS AND

FLOWS

In some cases, modelization process can be enhanced via

model simplification process. Interms of this section, under

simplification we assumes not optimization of the model

itself, but incremental cut-off process on a way of model

flows incremental definition, where we are dropping already

reconstructed flows and continuing processing only the rest of

the model, until we face a tightly couple model piece that can

be processed any further.

Basically, flows are describing a rate at which this particular

flow changes connected stock value. So if a stock has multiple

input and output flows, its value at every moment can be

calculated as a sum of all itput flows minus sum of all output

flows, like this:

F ′(t) =
InputF lows∑

f

f(t)−
OutputF lows∑

f

f−1(t)

In a corner case, if a stock has only one input or output flow,

we can easily reconstruct its flow by getting a derivative of a

function that represent stock value change over time. In this

case such stock and easy reconstruct-able flows can be solved

and removed from the model, to leave smaller structure for

further processing.

This recurrent and incremental process ends when there will

be no single-flow stock left int he system. This procedure can

be described with the following algoritmh:

1) Find all unambiguously defined flows by leaf stocks.

If we know the stock function and only one flow will

be connected to it, we also know that this flow has an

identical influence on it, and it is possible to define that

F ′(t) ≡ f ′(t).
2) Find all unambiguously defined leaf stocks by flows and

processed as in the previous step.

3) Simplification. Analysis all known data and remove

influence of all known flows by a function subtraction.

For example: we have three stocks F , G, H , and two

flows f (from F to G) and g (from F to H). We have

measured data of F and G stocks. By the first step of

this algorithm we can define f flow influence function.

We know, that F ′(t) = −f(t) − g(t) and we can find

the g function by substitution of f from F ′.
4) Repeat algorithm while we have any unambiguously

defined stocks and flows.

At the algorithm stop’s we have a simplified version of an

initial system dynamic model, in which we can see only am-

biguously flows and socks. Fig. 5 depicts described algorithm.

If it is a not complicated model, we can go forward to the

next modelization method step. But in the different case, the

computation complexity may be too high to get modelization

done in an acceptable time, and researcher should be to return

to experiments and extends sensors environment.

VIII. MODELIZATION EXAMPLE

To show how this method works on practice let’s get back

to the initial example shown on fig. 1.

Let’s assume, that we have a simple production line which

takes some item from an input storage, performs its initial

processing, than, from initial processing results it is taken for

final processing and after that it goes to the final production

store.

When we started monitoring we know that at the beginning

of production cycle we have 8 blank pieces that will be

turned into products. In terms of this example blank pieces

are converted into product 1:1.

When we started production monitoring we got stocks states

distribution over time shown in table I. In this table S1 a stock

representing starting warehouse, S2 is a box with initially

processed pieces and S3 is a stock with production pieces.
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 TABLE I. SAMPLE PRODUCTION PIPELINE MONITORING RESULTS

Time S1 value S2 value S3 value

0 8 0 0
1 6 2 0
2 4 3 1
3 2 4 2
4 0 5 3
5 0 4 4
6 0 5 5
7 0 2 6
8 0 1 7
9 0 0 8

From our model definition we see that stocks S1 and S3

are affected by only one stock. It means that we can calculate

flow value for them directly based on monitoring results.

Obviously for this simple case, both approximations will be

linear functions yS1 = −2x and yS3 = x after first item

passes though the model. According to the definition of flow

in system dynamics, it is the rate at which the stock is changing

at any given instant, they either flow into a stock (causing it

to increase) or flow out of a stock (causing it to decrease).

From them math we know that change rate for the function

is function derivative. In our case, flows will turn into -2

for S1 out flow and +1 for S3 in flow. Other sides of the

flows connected to S2 will have the same values, but with

opposite sign, because nothing is disappearing from the flow

and nothing new appears.

To see some corner cases, let’s use a bit more advances

example. Assuming that we have one more processing step

between stocks S2 and S3 and monitoring results appeared

like they are shown in the table II

Here we can see, that we have two flows which are affected

stocks S2 and Snew. Monitoring data shows, that everything

what get’s into the new stock - immediately sent to the S3.

Input flow which comes from S1 to S2 is known, it is +2.

TABLE II. EXTENDED SAMPLE PRODUCTION PIPELINE MONITORING RESULTS

Time S1 value S2 value Snew value S3 value

0 8 0 0 0
1 6 2 0 0
2 4 3 0 1
3 2 4 0 2
4 0 5 0 3
5 0 4 0 4
6 0 5 0 5
7 0 2 0 6
8 0 1 0 7
9 0 0 0 8

Based on this and values of S2 that was measured, we can

figure out, that output flow from S2 is −1. But the same

technique will not work for the Snew. We expect, that input

flow is +1, but, we can estimate an output one. at minimum,

it is equal to the input flow, but we are not able to estimate its

maximum. This example gives us two important outcomes:

1) Modelization process do not describe system properties

and actual characteristics. It allows to formalize actual

current system behaviour. Complete modelization pro-

cess may require execution of system under different

workload to see performance and boundaries of all

flows.

2) During the modelization it is easy to identify flows

where overflow (situations when input flows of a stock

exceeds output flows) or underflow (situations when

output flows of a stock exceeds input flows, like on the

second example). In many cases, detection and address-

ing of such situations in one of the most important cases

during system tuning and optimization.

IX. METHOD EVALUATION APPROACH

Described method was tested on synthetic data sets and

shows its efficiency in achieving stated goals. As a baseline

for the experiments was taken a library of test system dy-

namics test models which is used for evaluation and testing

of various computation engines developed and maintained by

tools community of System Dynamics society [7]. As a models

execution engine was selected engine called PySD [8], because

it is developed on a Python language and it appears faster

and easier to make code modifications for method evaluation

purposes than in other available execution engines. Evaluation

and testing of proposed approach was performed on facilities

on sdCloud project [9].

Experiment was performed on 50 different models and was

designed in a following way.

1) Basic model execution with advanced logging. on this

step we executed 50 different test models using modified

execution engine. Goal of the modification was to log

values of all flows before entering or right after leaving

model stocks. This gives us extended model execution

results which contains not only time series describing

stocks history, but also input and output flows value for

each stock.
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2) After execution is completed, from the model definition

excluded all equations representing flows. This turns a

model into pure structure model that contains only frame

of the model.

3) All time series describing stocks values from modelling

results are converted into closes analytic representation.

According to the approach definition both approaches

were tested: with simple parallel approximation us-

ing different functional patterns and selection of best

option by estimating approximation quality and with

application of trained neural network for time series

shape detection for future approximation using top three

detected shapes.

4) Since we had all input and output flows (from extended

model execution logs), for each model we were able

to reconstruct its flows via definition of approximation

function based on logged input and output flow values

X. METHOD EVALUATION RESULTS

As a result of our experiment was found that for majority of

models, 89% of flows across all test models, were recovered

correctly. Correctness of the reconstruction of each flow was

identify by comparing flows equations in original and newly

created model. Flow reconstruction was count as successful

if correct flow shape was used without taking into account

contestant term and allowing slight deviation of coefficients

for lower power terms.

Parallel approximation shows a bit better results in selection

of approximation function comparing to application of neural

network-based classifier, 89% against 75%. But second option

shows much better results in performance and resources con-

sumption. Most probably, this gap can be reduced in case of

better training of neural network.

Draft implementation of proposed feature was implemented

within sdCloud platform application and integrated with the

service for continuous modelling, to leverage its mechanisms

for accepting input data streams for further processing within

the platform.

This work was supported by grant 18-57-45004 IND a

from RFBR.

XI. CONCLUSION

In this article was described an approach aimed to help

building System Dynamics models out of existing system

by integrating system monitoring, data analysis and model

execution practices. Proposed approach significantly depends

on abilities for monitoring of target system and has number

of limitation, but for many system dynamics application areas

it can significantly improve modelization process and make it

easier and faster than manual system investigation.

Proposed method is trying to leverage both classical statis-

tics methodology and modern machine learning mechanisms

allowing to solve some issues with the higher run-time perfor-

mance and less resources consumption, but, in the same time

requiring special efforts on a preparation step, like training of

neural networks.
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