
Using Alternating Decision Trees in Multi-Leveled
Hierarchical Cloud Based System

Dmitrii A. Zubok, Aleksandr V. Maiatin, Maksim V. Khegai, Tatiana V. Kharchenko
ITMO University

St. Petersburg, Russia

Zubok, Kharchenko, Maiatin@mail.ifmo.ru, MaksimKhegai@gmail.com

Abstract—Cloud platforms are an essential part of modern
world. Used in all kind of fields, from education to science, they
became inseparable from information technologies and computing
sphere. However the problem of performance optimization still
exists and is not entirely solved even today. With introduction
of machine learning and artificial intelligence this task became
easier to solve. This paper presents a way to utilize decision trees
to control performance of a computational system and to balance
load on different nodes in attempt to increase quality of service.

I. INTRODUCTION

Since its appearance cloud computing has been a very
perspective direction of information technologies studies. Most
often they are being used for service-oriented platforms due to
easy deployment and control. However the architecture of such
systems becomes more complex and a problem of performance
control still exists. Evaluation of values necessary to solve
this problem is difficult and can’t be solved analytically. A
multi-leveled hierarchical system is an attempt to separate
system’s entities into different levels and optimize them one-
by-one. In [10] a prototype of such a system was presented,
however the decision making algorithm was still not clearly
determined. Recent researches show that machine learning
gives good results when making a decision based on many
different parameters.

Machine learning has been around for a very long time.
The idea of a system that can change its behavior based on
implicitly gathered external data is an attractive one. Having
a system that can learn by itself is really convenient.

Such systems found their use in data processing and pre-
dictive analysis. Proposed and implemented algorithms largely
evolved since their first appearance. Lately they are being
used to solve optimization problems, making existence of
autonomous high-performance computing systems possible.

As of today there are two popular approaches to machine
learning commonly used:

• Genetic algorithm

• Neural network

The main idea of the genetic algorithm is survival of
the fittest. In the algorithm we first decide which criteria
for ”fitness” will be used in selection step. Then random
genomes, sets of data, are being created and then tested
for fitness. The fitting one ”survives” and creates so-called
”offsprings” that later replace this genome. ”Offsprings” may
have ”mutations”, changed chunks of data in genome so they

wouldnt be completely the same. Then the process repeats.
”Mutation” rate is not fixed and may be adjusted in attempts
to boost the algorithm performance as shown in [6].

This algorithm may be seen as an optimization algorithm
in a way that it searches for the most optimal choice among
all others. This has been proven by works that used the genetic
algorithm. For example in [1] it was used to find the optimal
placing of nodes for wireless sensor network.

Neural networks are loosely based on a real biological
neural network and as such are extremely flexible. They dont
have any prior knowledge about objects they research but
gather data and develop their own set of parameters during
work. Nowadays they are mainly used in image recognizing but
there are other fields they are applied to. For example in 1996
a neural network was used to predict academic performance
[2]. A more recent example is [3] where a network was used
to forecast electricity demands.

Machine learning usage in performance optimization, how-
ever, demands a specifically designed architecture. In [8] we
presented a basic architecture of our testing system, con-
sisting of several virtual machines connected by a single
virtual switch. In [11] an efficient monitoring system was
presented. Based on intellectual agents this system instead of
a classical real-time polling approach used simple background
applications that were gathering data about virtual machines
performance and sending it only when performance exceeded
a threshold value. The architecture was upgraded to make use
of this system and as a result, a knowledge base and ontologies
were introduced.

With all that in mind an architecture was designed to make
use of each and every system made by us and to take scalability
and flexibility into consideration.

II. ARCHITECTURE

The architecture itself is composed of several different
layers; each having its own optimization technique. In total
there are three main distinct levels with two additional nominal
levels. The main levels are:

• Physical level

• Virtual level

• Applications level

The additional levels are:

• Jobs queuing level

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



• Supplementary level

A. Physical level

This level includes any physical server added to the system.
Each of them contains virtual machines hypervisor, virtual
machines, data storages and applications. This is the top of
the system hierarchy and is represented by physical servers.

B. Virtual level

Virtual level is the next one in the hierarchy. Every virtual
machine is added to this level, as soon as it is deployed. These
machines may have any set of software packages whether
preinstalled or clean. There is also application storage for au-
tomated deployment of applications. This level is represented
by virtual machines and storages.

C. Applications level

This level contains applications that were deployed in a
virtual machine. This level is essentially a sub-level, since
every virtual machine has one. This level is represented by
applications.

D. Jobs queuing level

This level is used in jobs distribution and is not really
determined as a different layer. It contains job queues and a
set of rules for distribution.

E. Supplementary level

This level is not determined as well and only holds mon-
itoring agents, controllers and a knowledge base. The level
itself is crucial only for the optimization algorithm and not for
functionality of the system as a whole.

The current architecture is presented on Fig. 1.

The load distribution algorithm, as presented in [10] is
depending on parameters gathered by monitoring agents. The
main problem here is number of those parameters: due to
scalability we cant predict how many parameters each type of
agents will gather. While we can determine this from agents
configuration sent to the controlling server, the system should
be able to use this data with little to none interaction from
user. In other words the optimization algorithm should be able
to adapt itself to a new set of parameters.

To make this task easier there are different algorithms
for each level of the system. There is typically one single
monitoring agent for each node on levels. For example there is
one agent for each virtual machine. This allows us to compute
one performance value per node based on data gathered by
agent.

The algorithms for each level were presented in [8] and
jobs distribution and virtual machines migration algorithms
performance was researched in [10]. Although performance
levels were high this could be further improved by implement-
ing some sort of artificial intelligence that will decide when
and on which level should an optimization be performed. The
difference from the previous approach would be that AI will
be learning, constantly changing parameters by itself, based
on gathered knowledge of systems behavior and state at some
points in time.

Fig. 1. Architecture of the system

III. ALTERNATING DECISION TREES

The algorithm we propose is based on alternating decision
trees. Researched by Freund and Mason in 1999 [4] and further
improved in 2002 by Holmes et al [5] this algorithm extended
concept of decision trees by allowing for more than one choice
coming from a single branch. More so a concept of a prediction
was added, which can be seen as a weighted decision. There
are several reasons behind not using any of the commonly used
machine learning algorithms:

• They have longer learning time

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 298 ----------------------------------------------------------------------------



• They have bigger overheads

• They are too complex for our tasks

In a high-performance system those points are crucial for
a choice of an algorithm.

Each level has its own tree with branches defining an
action, each of them having a set of prediction nodes. The
parameters these prediction nodes check are different for
each level and are gathered by appropriate intellectual agents.
Additionally there is a decision tree for the outer level, where
a decision on which level to optimize is made. There are a lot
of distinctively similar sub-trees that can be generalized and
instantiated when needed to provide flexibility and scalability.
For example there may exist a lot of virtual machines each
having a sub-tree. These sub trees are the same with only
parameters for prediction nodes being different. By allowing
instantiation of sub-trees we remove the necessity to recreate
the whole tree to add a new virtual machine, we simply
need to add a new sub-tree and fill its prediction nodes. The
resulting multi-leveled tree doesn’t have high overheads as was
evaluated in [9] (for multi-leveled trees in general).

An example of such a tree is shown on Fig. 2.

Fig. 2. Example of an alternating decision tree

IV. OPTIMIZATION ALGORITHM

The optimization algorithm itself was updated with deci-
sion trees and is more flexible now than before. Up until now
the algorithm had only one or two threshold values and values
could not be changed or added while the system is running; it
demanded a restart. Now however its just a matter of creating
a new sub-tree and instancing it, or even adjusting values ”on-
fly” which is the main advantage here. The system holds a set
of values which describe state of a sub tree at different day
times. Using these values it can behave accordingly, freeing
resources when load is low and vice versa.

The algorithm is separated into several levels according to
levels of the system. In our case there are three of them; the
supplementary and jobs queuing levels are not being optimized
as they are not real layers and thus not included in the
hierarchy. The job queuing level is involved in optimization
as a whole however.

The three levels are:

• Applications level

• Virtual level

• Physical level

A. Applications level

Applications level optimization happens the entire time
the system is working. There are two steps to this: jobs
queuing and applications migration. The jobs queuing was
researched and implemented in [7] and applications migration
was researched in [12]. The main idea is to try optimizing
applications load by distributing jobs according to a service
discipline and if there is be no increase in performance in
foreseeable future try to migrate applications to another virtual
machine. The decision to start migration is based on current
performance values of virtual machines and system as a whole.

B. Virtual level

When applications migration is done the system takes some
time to evaluate its performance. If it has not been improved
then the next step of optimization is used. On virtual level
there is only one step: virtual machines migration. This is a
long process; however thanks to live migration functionality we
dont need to stop physical server as we perform it. This means
that while one virtual machine is being migrated the other ones
will keep functioning properly and will keep participating in
optimization algorithm. At this point during migration only the
first step, jobs queuing, is active.

C. Physical level

This level is the last available step in optimization. When
it comes to this that means that load is so high, the resources
available to the server are not enough and thus system needs
more resources. When activated this step starts a new physical
server and deploys the necessary virtual machine on it. The
newly created server is included into optimization algorithm
and after successful deployment is able to accept jobs.

As mentioned before each of these levels is represented in
the decision tree as a set of connected branches. Each time

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 299 ----------------------------------------------------------------------------



an intellectual agent decides to update performance data on its
node prediction values for these trees are being recalculated.
The sub-tree branches are being removed or added as soon
as a change in system infrastructure is detected. For example
if a new virtual machine is deployed, its sub-tree is added to
virtual level and included into algorithm.

When deciding if optimization should be performed or not
the algorithm bases its decision on current day time and current
performance values. Due to this the tree is updated several
times during a day. This happens according to schedule when
day time is changed. The borders of day times are not fixed
and may be changed even while the algorithm is functioning.

Below is an example of the algorithm in pseudo code
for virtual machine migration (Listings 1, 2, 3, and 4). The
procedures listed in the listing are the main ones this part
of the algorithm. OptimizeVirtualMachine shows the main
procedure that runs every other, mainly RecalculatePredic-
tionValues which is the main procedure for learning. When no
decision can be made the algorithm decides that it was a false-
positive check and updates current values in the tree according
to the current ones gathered from intellectual agents. Sometime
later it will find optimal values for fast determination of
slowdowns.

Algorithm 1 GetDecision procedure
1: PROCEDURE GetDecision(node, data, decisions)
2: BEGIN
3: DOUBLE result := 0;
4: ARRAY branches := GetBranches(node);
5: INT branchesNumber := SIZEOF(branches);
6: FOR i FROM 0 TO branchesNumber
7: BEGIN
8: ARRAY branch := branches[i];
9: INT predictionType := branch[predictionType];
10: IF data[predictionType] LESS branch[prediction] THEN
11: result := result + branch[left];
12: ELSE
13: result := result + branch[right];
14: ENDIF
15: GetDecision(branch[node], data);
16: END
17: INT decisionsNumber := SIZEOF(decisions);
18: FOR i FROM 0 TO decisionsNumber
19: BEGIN
20: IF result LESS decisions[i] THEN
21: RETURN decisions[i];
22: ENDIF
23: END
24: RETURN NULL;
25: END

In general the algorithm for a single virtual machine can
be described as next: in the beginning the system just gathers
data from virtual machine’s intellectual agent. At this point
only job queuing is enabled. Then the decision algorithm has
to decide if changes in performance are big enough to go to the
next step of optimization. It does so by assuming a threshold
value based on current day time. If this value is exceeded then
the virtual machine is considered to be overloaded and the
next phase is started. In a tree we have several decisions that

Algorithm 2 MigrateVirtualMachine procedure
1: PROCEDURE MigrateVirtualMachine
2: BEGIN
3: INT currentDecision := GetCurrentDecision();
4: INT lastDecision := GetLastDecision();
5: IF lastDecision EQUALS currentDecision THEN
6: Migrate();
7: ENDIF
8: END

may be chosen based on current performance parameters and
previous decisions the algorithm made. Since this response
time peak may be temporary the algorithm checks previous
decision and if last time it decided to migrate virtual machine
to a different server then chances are it should do so again.
This is supported by current day time during which, as we
assume, the average load is not changed. If a decision that
virtual machine doesn’t need to be migrated or stopped is made
then prediction values for the whole tree are recalculated and
a new tree snapshot is saved. Similar decisions are made for
physical node deployment.

Algorithm 3 RecalculatePredictionValues procedure
1: PROCEDURE RecalculatePredictionValues(tree, data)
2: BEGIN
3: ARRAY branches := GetBranches(tree);
4: INT branchesNumber := SIZEOF(branches);
5: FOR i FROM 0 TO branchesNumber
6: BEGIN
7: ARRAY branch := branches[i];
8: INT predictionType := branch[predictionType];
9: branch[predictionType] := data[predictionType];
10: END
11: SaveTreeSnapshot(tree);
12: END

Algorithm 4 OptimizeVirtualMachine procedure
1: PROCEDURE OptimizeVirtualMachine
2: BEGIN
3: ARRAY data := GetDataFromAgent();
4: DOUBLE currentPerformance := data[performance];
5: DOUBLE thresholdValue := GetCurrentThresholdValue();
6: INT dayTime := GetCurrentDayTime();
7: TREE tree := GetTree(daytime);
8: NODE rootNode := GetRootNode(tree);
9: ARRAY decisions := GetDecisions();
10: IF currentPerformance GREATER thresholdValue THEN
11: INT decision := GetDecision(rootNode, data, decisions);
12: SWITCH decision
13: CASE 0: MigrateVirtualMachine(); BREAK;
14: CASE 1: StopVirtualMachine(); BREAK;
15: CASE DEFAULT: RecalculateThresholdValues(tree);
BREAK;

16: ENDSWITCH
17: ENDIF
18: END

Fig. 3 represents part of the algorithm responsible for
virtual machines migration.

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 300 ----------------------------------------------------------------------------



Fig. 3. Sequence diagram of virtual machines migration algorithm

This algorithm is common for all virtual machines and is
controlled at the main tree which is being extended with new
branches and sub-trees when configuration changes.

V. EXPERIMENTS

By performing the experiments we had two goals:

• Check the credibility of updated architecture in terms
of functioning

• Confirm the boost in performance

The first one is simply performing a number of experiments
with decision trees enabled and see if everything works fine.
The performance had to be at least the same as in [10].

The second one is to evaluate time it took the algorithm
to make a decision and average performance of the system
during day times. Since usage of trees can’t directly improve
migration time (or processing time) we instead aimed at
decreasing slowdown determination time. While doing so at
each day time we increase the overall performance of the
system.

And finally we check the performance of the system while
the tree is enabled and optimization is working. For this stage
we only checked it for virtual machines migration and disabled
application migration.

At first we evaluated the performance with trees and just
jobs distribution enabled. This experiment consisted of simply
running a number of jobs and checking the performance. In
this case we used 1000 jobs and checked time it took to process
each of them. The results are on Fig. 4

Fig. 4. Response time of the system with decision tree disabled

The response time is a little bit higher than without decision
tree but the average is essentially the same.

Then we evaluated slowdown determination time without
a decision tree. This gave us a value to compare. The value
itself is dependent on two parameters:

• Agents’ determination time

• Tree’s determination time

Both values are pre-set, weren’t changed during the exper-
iments and represent amount of time the performance needs to
be below threshold value to be marked as low. Both of them
were set to 15 seconds. The threshold value for both agents and
tree was 1 milliseconds. That means that if virtual machine’s
response time was higher than 1 millisecond for 15 seconds
we decide that performance of this machine is low.

The third experiment was performed with a decision tree
enabled. We were expecting at least some decrease in deter-
mination time due to the fact that the tree knows at which day
time the performance is expected to be lower. According to that
the system will determine current determination time and run
optimization algorithm. Without the tree and with only agents
determining the determination time it took 15.02 ms and with
the tree it took only 14.18 ms. With the tree the determination
time is lower which shows that there is improvement, however
this needs to be researched further.

The last experiment was the same as the first one: 1000 jobs
sent to the system, but this time decision tree was enabled. The
results can be seen on Fig. 5.

The results are a lot less stable. First hundred iterations
are the result of a ”cold start”: the system just started working
and needs some time to stabilize. The response time at average
is higher than without decision trees. This was expected as
inevitably there would be some overheads. Then there are
some peaks which is when recalculation of tree parameters

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 301 ----------------------------------------------------------------------------



Fig. 5. Performance of the system with decision tree enabled

took place. However there is some drastic improvement near
the end.

VI. CONCLUSION AND FUTURE WORK

As the experiments show there are overheads when using
decision trees. And although the response time is higher
than without using them there are some improvements in
performance. The application of decision algorithm definitely
improves average performance on a long-run; however a longer
experiment is needed to find out exactly how much.

In future the algorithm will be updated by integrating
ontologies and not just using results of intellectual agents
activity. In this work knowledge base was not taken into
consideration and its effect on the algorithm will be researched
later: the trees are planned to be generated based on current
system’s ontology which will provide a way to decrease time
needed to generate decision trees. Some optimizations to the
algorithm itself will be made to reach lower overheads.

ACKNOWLEDGMENT

This work was financially supported by the Government
of Russian Federation, Grant 074-U01. The presented result is
also a part of the research carried out within the project led
by ITMO University.

REFERENCES

[1] J.H. Seo, Y.H. Kim, H.B. Ryou and S.J. Kang, “A genetic algorithm
for sensor deployment based on two-dimensional operators”, in SAC ’08
Proceedings of the 2008 ACM symposium on Applied computing, March
2008, pp. 1812-1813.

[2] A. Cripps, “Using artificial neural nets to predict academic performance”,
in SAC ’96 Proceedings of the 1996 ACM symposium on Applied
Computing, Feb. 1996, pp. 33-37.

[3] B. Yong, Z. Xu, J. Shen, H. Chen, Y. Tian and Q. Zhou, “Neural network
model with Monte Carlo algorithm for electricity demand forecasting in
Queensland”, in ACSW ’17 Proceedings of the Australasian Computer
Science Week Multiconference, Jan. 2017, Article No. 47.

[4] Y. Freund and L. Mason, “The Alternating Decision Tree Learning
Algorithm”, in ICML ’99 Proceedings of the Sixteenth International
Conference on Machine Learning, June 1999, pp. 124-133.

[5] G. Holmes, B. Pfahringer, R. Kirkby, E. Frank and M. Hall, “Multiclass
Alternating Decision Trees”, in ECML 2002: Machine Learning: ECML
2002, Sept. 2002, pp. 161-172.

[6] B. D. Ecole, H. P. Le, R. Makhmara, T. D. Nguyen, “Fast genetic al-
gorithms”, in Proceedings of the Genetic and Evolutionary Computation
Conference, 2017, pp. 777-784.

[7] D. A. Zubok, T. V. Kharchenko, A.V. Maiatin and M. V. Khegai,
“Functional model of a software system with random time horizon”,
in Proceedings of the 17th Conference of Open Innovations Association
FRUCT, 2015, pp. 259-266.

[8] D. A. Zubok, T. V. Kharchenko, A.V. Maiatin and M. V. Khegai,
“Ontology-based approach in the scheduling of jobs processed by ap-
plications running in virtual environments”, in Knowledge Engineering
and the Semantic Web, 2015, pp. 273-282.

[9] E. Rogarda, A. Gelman, H. Luc, “Evaluation of multilevel decision
trees”, in Journal of Statistical Planning and Inference, April 2007, pp.
1151-1160

[10] D. A. Zubok, T. V. Kharchenko, A.V. Maiatin and M. V. Khegai,
“Multi-Leveled Hierarchical Control to Optimize Workload of a Service-
Oriented Platform”, in Proceedings of the 19th Conference of Open
Innovations Association FRUCT, 2016, pp. 279 - 284.

[11] D. A. Zubok, T. V. Kharchenko, A.V. Maiatin and M. V. Khegai,
“Multi-Agent Approach to Monitoring of Cloud Computing System
With Dynamically Changing Configuration”, in Proceedings of the 18th
Conference of Open Innovations Association FRUCT, 2016, pp. 410-416.

[12] D. A. Zubok, T. V. Kharchenko, A.V. Maiatin and M. V. Khegai,
“Evaluation Of Optimization Control Parameters in Multi-Leveled Cloud
Platform”, in Proceedings of the 21th Conference of Open Innovations
Association FRUCT, 2017, pp. 382.

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 302 ----------------------------------------------------------------------------


