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Abstract—We present a stochastic recursion based discrete-
event model of a high-performance computing cluster with
service rate switching capabilities. The model is easily adopted
to many common settings of modern supercomputers, such as
specific scheduling disciplines and various control policies. We
also provide some illustrative numerical experiments and discuss
further generalizations of the model.

I. INTRODUCTION

Energy-aware computing started with the advent of mobile
devices that had limited power availability. However, in the
last decade, energy-awareness became an important topic in
GreenIT. This is because, reports about energy demand of data
centres have shown astonishing figures, making data centres
the biggest consumers in the ICT sector [1]. For instance, in
2014 the energy demand of data centres in the U.S. was about
70 TWh which represented about 2% of the overall energy
consumption [2]. Also, it is estimated that the energy demand
of data centres in Western Europe to exceed 100 TWh by 2020
[3].

In contrast to other computing paradigms (e.g. cloud
computing and its concept of virtual machines), in high-
performance computing computations are executed on dedi-
cated physical resources (e.g. servers). Consequently, among
different types of data centres, HPC ones consume the most
due to the growing demand for higher performance and leaving
only limited possibilities for energy reduction. Table I presents
recent worse power consumption numbers from the TOP500
list of HPC systems [4], where QUARTETTO which is used
for university purposes has about 20 MW of power demand!

The energy reduction in HPC data centres can be achieved
through software and hardware solutions. Software solutions
comprise of intelligent energy management systems, the basis
of which is the provision of energy-aware job scheduling
algorithms. The main objective here is to re-schedule jobs such
that idle servers can be put into standby mode to save energy.
From hardware perspective, dynamic voltage and frequency
scaling (DFVS) technique [5] was proposed which has the
aim of dynamically switching the frequency and voltage of
the processor. Major hardware vendors like Intel and AMD
have developed their own DVFS implementations, namely
SpeedStep [6] and CoolnQuiet [7] respectively. The main
objective behind DVFS is to conserve power demand and
hence reduce the amount of heat generated by the chip. It
has numerous application scenarios such as mobile devices to

preserve battery, computing systems to decrease their cooling
cost and noise, and data centres to reduce the power demand
at the times of low workload utilization.

TABLE I. POWER CONSUMPTION OF HPC SYSTEMS [4]

System Power Power Efficiency
(kW) (GFlops/watts)

Lenovo ThinkServer RD650 (China) 3750 0.183
Cluster Platform DL380p Gen8 (US) 3840 0.163
Lenovo NeXtScale nx360M5 (China) 3510 0.157
Lenovo NeXtScale nx360M5 (China) 3645 0.155
QUARTETTO (Japan) 19431 0.052

A. High-performance computing

A high-performance computing (HPC) is a computational
paradigm build upon several nodes in such a way to perform
parallel computing of a single/several tasks by multiple central
processing units (CPUs) and fast inter-node data exchange.
Parallelism of a task execution allows to reduce computing
time by adopting special algorithmic and programming tech-
niques (resulting in some cases in significant increase in im-
plementation complexity). Being originally a highly homoge-
neous and well structured resource, modern HPC implements
heterogeneity at various levels, including the computing units
(CPUs or the so-called general purpose graphical processing
units), memory, storage etc.

In general, the HPC is used as a shared resource with
multiple users, submitting their tasks (software chunks) into the
central queue(s) managed by the so-called queue management
software (QM). A conventional QM dispatches the tasks to the
computing nodes (servers) according to prescribed scheduling
policy, queuing discipline, tasks requirements and limitations,
predefined reservations of the computing capacity (such as
scheduled downtimes) and many other parameters. However,
the key feature of the HPC system is the possibility of a
task to occupy multiple servers at once, starting and ending
the computation at reserved resources simultaneously. At the
same time, an HPC is highly expensive in terms of capital and
operational expenses, and thus should be planned in advance,
and managed with high accuracy.

The possibility to reduce operational expenses is related
to embedded mechanisms of energy saving, present in a
general HPC. Such mechanisms allow to vary the frequency
(by means of the so-called dynamic voltage and frequency
scaling, DVFS) of each CPU, as well as temporarily put some
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of the computing nodes into low power state (the so-called
sleep states, including the sleep and hibernate, if available).
However, reducing the energy consumption by both methods
implies significant degradation of the performance of a system
in terms of delay, sojourn time etc. Therefore, obtaining a
solution for various constrained optimization problems related
to energy efficiency is crucial for efficient system management.

B. Related work

Analysis of a multiserver system with simultaneous service
(however, not in the context of HPC modeling), to the best
of our knowledge, was first performed in the work [8] under
several severe restrictions. A detailed analytical study of a
queuing system with two servers and simultaneous server oc-
cupation/release by a customer was performed in [9] by means
of the so-called system point approach. This analysis was
extended several decades later in the work [10], where also the
simulation issues were addressed. We also note the works [11],
[12], addressing the stability criterion of a simultaneous service
multiserver system with arbitrary number of servers.

Among the first works related to modeling of a multiserver
system with simultaneous service should be mentioned the
work [13], where the so-called matrix-analytic approach was
applied to obtaining performance metrics. The work [14]
addressed the HPC model as an extension of the celebrated
Kiefer–Wolfowitz workload recursion [15]. A discrete-event
model of an HPC was first presented recently in [16]. Many
aspects related to modeling the driving sequences of an HPC,
such as task interarrival times and service times, daily load
cycles etc. may be found in [17], [18].

In order to reduce energy consumption, research for HPC
systems has mainly focused on the following topics:

• Energy-efficient or energy proportional hardware

• DVFS technique

• Shutting down hardware components at low system
utilization

• Power Capping

• Thermal Management

By designing energy-efficient hardware, the components them-
selves are energy-aware, i.e., they consume less energy than the
standard ones. Significant improvements have been achieved
with respect to idle power consumption of servers thanks
to advanced techniques of shutting down (e.g. C states of
processors) certain components of a computing node.

Since the processor’s power demand is a significant portion
of the total system’s power consumption (about 50 % under
load [19]), the DVFS technique is used for controlling the
CPU power. By running a processor at lower frequency/voltage
energy savings can be achieved, but the job execution time
is increased. In our previous work [20], we analyzed the
impact of DVFS-enabled processors using M/M/1-FCFS que-
ing systems and showed that Linux ondemand governor does
not perform in optimal way, taking into account both power
demand and performance. Pierson et al. [21] model service
placement on DVFS-enabled hosts as a Mixed-Integer Linear
Program. Power consumption of hosts for different voltage /

frequency combinations of DVFS is measured in idle and in
loaded state. Numerical results show that using more than two
DVFS power states leads to marginal improvement in the job
placing problem only. The main disadvantage of this approach
is that service performance is only considered by defining
service resource requirements. In [22], Markov modelling was
used for DVFS in multi-core processors. It works by detecting
phases in the workload subjected by an application. These
phases have corresponding performance and power attributes.
Once the phases have been detected, a static power schedule is
constructed and frequency scaling is performed based on the
schedule. This strategy works best for predictable and iterative
workload.

In a typical HPC data centre, servers consume nearly as
much energy in idle state as when running an application
(e.g. 60-70%). At phases of low system utilization, some
servers or their components could be shut down or switched
to a low-power state. This strategy thus tries to minimize the
number of active servers of a system while still satisfying
incoming application requests. Since this approach is highly
dependent on the workload, the challenge is when to shut down
components and how to provide a suitable job slowdown value.
In this regard, we mention several works studying energy
efficiency of datacenters, as well as multiserver systems [23],
[24], [25], [26], [27].

However, to the best of our knowledge, this work is a first
attempt to incorporate both the distinguished feature of an HPC
(the simultaneous service) and energy efficiency in a discrete-
event based simulation model under general assumptions.

C. Model description

Hereafter we consider an HPC from as a queueing-
theoretical model, and in this regard we adopt the more
common notion of server to address a minimal addressable
computing unit, which might be a CPU or computing node
node, and customer to denote a computational task in the
queue, dispatched by a QM. Thus, the model of an HPC is
a special subclass of multiserver queueing models.

Consider a c-server single queue system with an input of
customers, ith customer arriving at epoch ti has two charac-
teristics: job amount Si ∈ R+ and required number of servers
Ni ∈ {1, . . . , c} being occupied and released simultaneously
once the job amount is completed. Each server is capable of
serving customers at various rates, and in the sequel wolog.
two rates rL < rH that may be switched at each server in
no time are considered. The following practically motivated
assumption is implied: all c servers switch the service rate
simultaneously (note that in other case the service time of
a customer will be determined by the slowest server). To
eliminate the language ambiguity, we say that i is the label
of customer i (the number of customer in the order of arrival).
We also assume, that each server working at rate rx consumes
the energy e(rx) per unit time, x = {L,H}, while the server
consumes e0(rx) being idle.

The idea of stochastic modeling of an HPC is to obtain the
key performance measures in a simulation given the driving
sequences {ti, Si, Ni}, i � 1. Hereafter is assumed that the
system state does not infer the driving sequences, however, it is
relatively easy to eliminate this assumption by implying some
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moderate dependency (such as dependency on a current and
fixed amount of previous states). In this paper the stochastic
model of an HPC is obtained by means of discrete-event
simulation having the following per-customer performance
measures in consideration:

• delay (time from arrival to service starting epoch);

• sojourn time (time from arrival to departure), also
known as latency, or responce time;

• service time (time from service starting epoch to
departure);

• energy budget (amount of energy consumed for ser-
vice);

• slowdown (responce time divided by service time).

We also consider the following per-system performance mea-
sures:

• potential load (potential job completion rate);

• effective load (job completion rate from busy servers);

• job wasting (difference between potential and effective
loads);

• energy consumption (amount of energy consumed per
time interval).

All the respective performance measures might be averaged in
order to obtain mean performance characteristics. However, the
distribution of a performance measure might be more valuable
for decision making. A more detailed study of performance
metrics of an HPC might be found in [28].

We stress, that the model discussed in this paper is an
extension of earlier presented HPC model introduced in [16].
The stochastic recursions obtained in this paper are applicable
to more general settings and more queueing disciplines, and
in concluding section we discuss the possibilities of further
extensions of the model.

The structure of the paper is as follows. In Section II we
briefly introduce the model for simplified settings of FCFS
queueing discipline. In Section III we demonstrate possible
extensions of the model w.r.t. various queueing disciplines as
well as various control policies. We present some numerical
experiments results for illustration purposes of the method in
Section IV. In Section V we conclude the paper by demon-
strating further possible model extensions.

II. FCFS RANDOMIZED ASYNCHRONOUS CONTROL
SYSTEM

In this section additionally the following restrictions are
placed:

• customers do not share servers (thus the service time
of customer i is in the interval [Sj/rH , Sj/rL]),

• customers start being served in the order of arrival
(FCFS),

• the service rate switching occurs only at customer
arrival and service completion epochs by randomized
rule.

We adopt the following randomized switching rule. At an
arrival (departure) an independent coin is flipped, and with
probability pH (pL) the service rate increase (decrease) occurs.

A. Key Recurrent Relations

To set up discrete event simulation we first define set
of possible events in the system. By assumption, the con-
trol epochs are co-located with customer arrival/departure
epochs. Thus, the set of possible key events is restricted
to arrival and departure events only. At the time Ti of ith
key event occurrence we define the system state as a tuple{
Mi; I

A
i ; ID

i ; {Bi(m),m ∈ Mi};Ri

}
, where

Mi — (ordered) set of labels of customers present in
the system;

Ix
i — indicator of the event x ∈ {A, D} (arrival,

departure), IA
i + ID

i = 1;
Bi(j) — remaining job amount for customer j ∈ Mi;
Ri — service rate.

Let Mi = {mi,1,mi,2, . . . } be the set of customer labels at
Ti, where mi,1 < mi,2 < . . . are customer labels in the order
of customer arrival times. Then the set of labels of customers
being served is the following subset of Mi:

Mi = max
k�1

{mi,1, . . . ,mi,k :

k∑
t=1

Nmi,t � c} ⊆ Mi. (1)

The epoch Ti+1 is then recursively defined as follows

Ti+1 = min
{
tA(Ti)+1, Ti + Bi(mi,j)/Ri

}
,mi,j ∈Mi, (2)

where the counting process A(t) = k, tk � t < tk+1, k � 1 is
the number of arrivals up to time t; and Ti + Bi(mi,j)/Ri is
the potential departure time of the customer mi,j being served
(if any) at instant Ti (conventionally, Bi(∅) =∞). Define the
inter-event time

τi = Ti+1 − Ti, i � 1.

Note that since the arrival and departure epochs do not
coincide, we automatically assign IA

i+1 = 1 if Ti+1 is an

arrival, and ID
i+1 = 1 otherwise, such that IA

i+1 + ID
i+1 = 1.

For convenience denote the possibly departing task as the
task with minimal remaining processing time:

δ(Mi) := arg min
m∈Mi

{Bi(m)}.

The set of numbers of customers present in the system at Ti+1

is changed at key epochs as follows

Mi+1 = Mi ∪ {A(Ti+1) : IA
i+1 = 1}\{δ(Mi) : ID

i+1 = 1},
(3)

where the notion {A : B} denotes a conditional set, empty
if the condition is not satisfied. Then the remaining work is
evolved as follows

Bi+1(m) = Bi(m)− τiRiI{m ∈Mi ∩Mi+1}
+ SmI{m = A(Ti+1)}IA

i+1, (4)

where Bi+1(δ(Mi)) is nothing, if ID
i+1 = 1. To explain (4)

we recall, that the remaining job is decreased by the amount
of τiRi only for customers being served, and is initialized by
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the initial (given) job amount for a newly arrived customer, if
any.

Finally, the speed Ri+1 is given as follows

Ri+1 = rLID
i+1β(pL) + rHIA

i+1β(pH)+

+ Ri(1− ID
i+1β(pL)− IA

i+1β(pH)), (5)

where β(p) is an independent Bernoulli trial with success
probability p.

It remains to define the recursion basis at time epoch T1 =
t1 = 0:

M1 = {1}, B1(1) = S1, IA
1 = 1,

R1 = rHβ(pH) + rL(1− β(pH))

B. Performance Measures

To derive the per-customer performance measures, we first
define some key time epochs of some fixed customer j. Recall
that tj is the arrival time of jth customer. Then the service
starting time of customer j is defined as

t
(S)
j = min{Ti � tj : j ∈Mi}. (6)

We note that the time t
(S)
j � tj is not available at customer

arrival time, and the equation (6) takes into consideration the
future of the process, thus, this time epoch may be defined
only after obtaining the results of a simulation run. A possible
alternative for implementation might be inline auxiliary control
of the set Mi at each time epoch Ti, which would give the
following recurrent relation

t
(S)
j =

{
Ti, if ID

i = 1, j ∈Mi\Mi−1}, i � 2,
tj , if IA

i = 1, j ∈Mi\Mi−1}, i � 2.
(7)

We stress, that the service starting time of a customer j
corresponds to either its arrival instant, or the departure instant
of some preceding customer, and moreover, a single departure
epoch might correspond to multiple service starting times.
Similarly, the departure time is defined as

t
(D)
j := min{Ti � tj : j �∈ Mi}. (8)

At that, the per-customer performance measures follow imme-
diately.

• delay t
(S)
j − tj ;

• sojourn time t
(D)
j − tj ;

• service time t
(D)
j − t

(S)
j ;

• slowdown (t
(D)
j − tj)/(t

(S)
j − tj).

However, defining an energy budget of customer j requires to
involve the trajectory of the system between service starting
and departure epochs. It follows that energy budget may be
defined as

Nj

∑
i:t

(S)
j �Ti<t

(D)
j

e(Ri)τi. (9)

We note, that in fact, the service starting epoch of a customer,
defined in (6), requires to know the future of the process.

Now we define some auxiliary quantities derived at time
epoch Ti:

• workload (remaining job in the system): Wi =∑
m∈Mi

Bi(j);

• number of customers in the system: νi = |Mi|;
• number of customers in the queue: Qi = |Mi\Mi|;
• number of busy servers: ϕi =

∑
m∈Mi

Nm, i � 1
(with obvious convention

∑
∅
= 0).

We are ready to derive the per-system performance measures
at time epoch Ti:

• potential load: Ri(cI{Qi > 0}) + ϕiI{Qi = 0}),
where I{·} is the indicator function;

• effective load: Riϕi.

We turn to time interval-based perfomance measures of our
model, which are defined at time epoch Ti and are related to
the time interval [Ti, Ti+1). First we derive the job wasting.
The job wasting phenomenon is related to the non work-
conserving property of a queueing discipline under study.
When the task first waiting in the queue requires more servers
than are available at a particular time epoch, other tasks should
not overtake the first one, even if they require less servers
than are available. Thus the idle servers are wasting energy
without serving any customer. Note that this feature is in
contrast to a conventional multiserver queueing system. Since
this characteristic is related to time period, we first recall that
the number of idle servers at time Ti is c− ϕi. Thus, the job
wasting equals

(c− ϕi)τiRiI{Qi > 0}, i � 1. (10)

Finally, we derive the energy consumption (per unit time)
for time interval [Ti, Ti+1). First we note, that once Ti is a
departure leaving the system empty, then Ti+1 is necessary
an arrival, and thus the considered interval is idle time of the
whole system. Thus

Ei = ϕie(Ri) + (c− ϕi)e0(Ri). (11)

It remains to note, that in order to define the average per-
customer performance measure, it is sufficient to calculate the
sample average from all the customers in a simulation run.
Obtaining average per-system performance measures requires
appropriate aggregation over the time intervals, and normal-
ization by overall simulation duration T . We demonstrate this
aggregation by obtaining the mean number of customers in the
system, and the mean energy consumption (other performance
measures might be obtained similarly):

V =
1

T

∑
i:Ti�T

τiνi,

E =
1

T

∑
i:Ti�T

τiEi. (12)
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III. MODEL FLEXIBILITY

In this section we consider serveral straightforward ex-
tensions of the model presented in Section II. We embed
some realistic scenarios which might give additional insight,
however, we discuss even wider extensions of the model in
Conclusion.

A. Rate switching policy

Assume the following service rate switching policy, known
as hysteretic control. At arrival/departure instance Ti, the
service rate is switched to rH (rL, respectively) provided the
number of customers in the system νi exceeds kH (becomes
less or equal, than kL � kH ). Thus, the only required change
in the model is the service rate recursion relation (5), which
transforms to

RHC
i+1 = ID

i+1(rLI{νi = kL + 1}+ RHC
i I{νi �= kL + 1})+

+ IA
i+1(rHI{νi = kH}+ RHC

i I{νi �= kH}),
where we put a superscript HC to denote the hysteretic control
policy. We recall that if kL = kH , the policy turns out to have
a single threshold, and, moreover, the system without service
rate control is related to kL = kH = 0 or kL = kH =∞.

B. Queueing discipline

Now we violate the assumption of FCFS service discipline
to demonstrate, how can various queueing disciplines be in-
corporated in the model. For comparison we take the widely
used queueing disciplines, including the EASY Backfill [29].
We note that only the recursive relation (1) is to be changed at
this stage. Thus, we provide the new relations for replacement
of (1), and indicate it with an appropriate superscript.

Last Come First Served (LCFS) discipline allows the most
recently arrived customers to enter service. Thus,

MLCFS
i = max

k�0
{mi,νi

, . . . ,mi,νi−k :

νi∑
t=νi−k

Nmi,t
� c}.

Note that it follows from (4) that once a new customer
arrives, it may postpone the computation of an earlier customer
being served, thus this realization is related to the so-called
Preemptive-Resume scheme of LCFS.

Longest Processing Time First (LPF) discipline allows the
customers with the biggest remaining jobs to start service, once
the resources are available. Thus, to define the rule for selecting
the customers being served at epoch Ti, we first define an
ordering πi = (πi,1, . . . , πi,νi

), πi,j ∈ Mi such that Bi(πi,j) �
Bi(πi,j+1) for j � 1. Thus, πi is a permutation ordering the
customers inMi according to their remaining processing times.
To prevent newly arriving customers to enter service, we split
the formula with respect to indicator value ID

i+1, allowing the
ordering to be applied only at departure instants:

MLPF
i+1 = max

k�0
{πi,1, . . . , πi,k :

k∑
t=1

Nπi,t � c, ID
i+1 = 1}∪

∪ {MLPF
i : IA

i+1 = 1}.
The queueing discipline Shortest Processing Time First may
be analyzed similarly, but the permutation πi should order the
components of Mi according to increasing of Bi(πi,j), j � 1.

Now we turn to Backfill scheduling discipline. The so-
called EASY Backfill is a heuristic scheduling strategy that
allows small customers to overtake the first customer waiting
in the queue, provided they will not violate the reservation of
such a customer (i.e. will these overtaking customers have to
depart before the oldest waiting customer starts its service).
Thus, this strategy only differs from FCFS at the event {Qi >
1}. Below we consider such an event. In order to obtain the
backfilling event, we need to know the current schedule. In
fact, the schedule of the tasks is available at each time epoch
Ti, and the so-called workload vector (remaining jobs at each
server in ascending order, including the future ones) may be
constructed. We briefly recall the procedure of obtaining the
workload vector, given in [16], only noting that due to service
rate switching, the workload vector is given in terms of jobs,
but not times. Let

Z = {x ∈ Rc
+ : x1 � · · · � xc}

be the set of c-dimensional vectors with nonnegative compo-
nents. For each such a vector, define a scheduling mapping
σ : Z × {1, . . . , c} × R+ → Z. We stress, that this mapping
depends on the queueing discipline. Let W ∈ Z be some
workload vector, and assume that some customer requiring
n ∈ {1, . . . , c} servers for time b ∈ R+ is to be scheduled
together with W . For the FCFS model,

σ := σ[W,n, b] =

R(Wn + b, . . . ,Wn + b︸ ︷︷ ︸
n

,Wn+1, . . . ,Wc), (13)

whereR(·) puts the components of a vector in ascending order.
Thus, the customer b, n will be served by n least busy servers,
andWn is the waiting time of this fixed customer. To obtain the
workload vector at time Ti, we iteratively apply the mapping
σ to all the customers mi,1, . . . ,mi,νi ∈ Mi by the following
recurrent relation:

Wi(k) = σ[Wi(k − 1), Bi(mi,k), Nmi,k
], (14)

for k = 1, . . . , νi, starting from Wi(0) := 0 ∈ Z. In fact, the
customermi,k ∈ Mi is planned to be served after all the earlier
arrived customer will be served, with respect to the required
number of servers for this customer. Thus, the residual job
α(mi,k) that has to be complete before a customer mi,k may
enter the service, is given by the Nmi,k

-th component of vector
Wi(k − 1), i.e.

α(mi,k) = [Wi(k − 1)]Nmi,k
. (15)

Now let Qi > 1. Define ψi(k) = ψi,1, . . . , ψi,k ∈ Mi\Mi be
the subsequence of labels of customers waiting in the queue
at time Ti (if any), such that

Bi(ψi,j) < α(mi,νi−Qi+1),

i.e. the subsequence of customers waiting in the queue, which,
given sufficient resources, would depart before the first cus-
tomer waiting in the queue could start its service. Thus, we
first assume FCFS and perform the scheduling, and once we
know the job amount that has to be complete before a customer
waiting in the queue may start its service, we perform the
backfilling. The appropriate customer selection rule is

MBF
i = max

k�1
{ψi,1, . . . , ψi,k :

k∑
t=1

Nψi,t < c}.
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C. Workload-aware switching

In previous sections we defined the service rate switching
discipline with respect to the number of customers in the
system. Now we demonstrate another type of control related
to the workload (remaining work). Note that this approach
requires to know the amount of work for each customer in
advance, which (in practical case) may be available only as
an upper estimate, known as deadline. We briefly recall a
workload-based hysteretic policy first presented in [16]. When
the workload in the system hits the higher threshold wH

(lower wL), the service rate is switched to rH (rL). This
extension requires to define additional event type, since the rate
switching to rL may occur at intermediate times, not related to
arrivals/departures (whereas switching to rH epoch necessary
coincides with an arrival). Let IS

i be the indicator of switching
(from rH to rL) at time epoch Ti. Then the recursion (2) should
be modified as follows

Ti+1 = min

{
tA(Ti)+1, Ti + min

m∈Mi

Bi(m)

Ri
,

Ti +
Wi − kL

I{Wi > kL}Ri

}
.

Thus, the i + 1th time epoch is defined as the nearest event
from the potential departure, potential switching to rate rL

and arrival events. The corresponding change in (5) due to
hysteretic rate switching is as follows

Ri+1 =rLI{Wi+1 � kL}+ rHI{Wi+1 > kH}
+ RiI{kL < Wi+1 � kH}.

We recall that the workload Wi is defined with respect to (4).

IV. EXPERIMENTS

Implementation of the stochastic recursions model is per-
formed in hpcwld package for R statistical software available
at CRAN package repository. This package implements the
following functionality:
a. performance evaluation of a stochastic model of an HPC;
b. fast delay computation for every customer;
c. stability criterion validation.

Hereafter we present some numerical experiments for illus-
tration purposes. The experiments are based on the workload
data obtained from the high-performance cluster of the High-
performance Data Center of the Karelian Research Centre
of Russian Academy of Sciences were taken as the input
source. This dataset, included in the hpcwld package, con-
tains data related to the tasks completed during the times-
pan from 02.04.2011 to 16.04.2012, a total of 9389 tasks.
The data contains customer interarrival times, service times,
cores (servers) that tasks used, and delays experienced by
customers (submitted tasks), all in seconds, as recorded by
the SLURM queue management software. Note that due to
technical limitations, the data should be cleared before usage
(to eliminate erroneous records, such as negative number
of cores used), and appropriately modified (e.g. add several
milliseconds random delay for consecutive tasks that were
submitted with zero interarrival times). The corresponding
values of constants during simulation were as follows: low
and high speeds of servers (rL and rH ) equal accordingly to
2.0 and 2.66 (GHz), energy consumption at the idle mode

and at the working mode on low and high speeds accordingly
e0(rL) = 0.014, e0(rH) = 0.018, e(rL) = 0.041, e(rH) =
0.034. These parameters correspond to the Quad-Core Intel
Xeon 5430 2,66 GHz used in the HPC, as well as the energy
consumption of the whole system per core per unit time.

The model of a multiserver system under consideration has
c = 80 servers (corresponding to CPU cores of the HPC). The
interarrival and service times, as well as number of servers re-
quired, were taken from the aforementioned dataset, however,
for illustrative purposes we take various time intervals of the
simulation. Also we selected kL = 105 and kH = 3·105 as the
values of hysteretic workload-aware rate switching thresholds.
Workload data depicted at Fig. 1 shows the value of unfinished
work Wi for each key time epoch Ti (arrival, departure or
the speed switching), compared to the number of customers
at service. In this picture we can clearly see the workload-
based hysteretic control service rate switching policy. When
the workload level hits the kH threshold, the service rate turns
to rH = 2.66, and similarly when the workload level becomes
less than the kL threshold, the rate switches to rL = 2.0, and
the workload slope decreases. We also note, that changes in
the slope of the workload decrease may also correspond to
changes in the number of customers being served, which is
clearly visible from the Fig. 1.
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Fig. 1. Workload (black) and number of customers served (gray) at key time
epochs, simulation run

Fig. 2 shows the schedule of the HPC compared to cus-
tomer states (waiting, computing) for 500 customers, starting
from customer #7000 of the dataset. The irregularity of the
load is clearly seen, which results in heavy waiting times (gray
lines at lower picture) corresponding to huge tasks occupying
multiple servers (upper picture). We note that the simulation
was performed for the FCFS scheduling discipline. It is also
seen, that in many cases the servers are occupied by many
single-server tasks run simultaneously.

Fig. 3 shows the dependence of average stationary energy
consumption, evaluated by (11) and (12), and average station-
ary workload, on the service rate switching threshold for a
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Fig. 2. Upper: number of busy servers occupied by customers (grayscale
values correspond to different customers); lower: state of each customer in
the system, waiting (gray) and computing (black)

single threshold policy, that is, the hysteretic workload-aware
service rate switching, with coinciding thresholds kL = kH =
k. The threshold values were taken as k = 0, 105, . . . , 3 · 106.
The tradeoff between two key measures, the average stationary
workload, and the average energy consumption, can be clearly
seen. We note that the irregularity of the shape of the graph is
related to the fact, that it was obtained using a single trace (the
driving sequences obtained from the aforementioned dataset).
The dependence could be more smooth once obtained for a
set of independent randomized simulation runs. However, we
leave these experiments for future investigation.
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Fig. 3. Energy consumption for a single threshold workload-based switching

V. CONCLUSION

We presented an approach to implement stochastic sim-
ulation of an HPC by means of stochastic recursions. We
name a few directions for possible and rather straightforward
extensions of the model:

1) consider the characteristics of a customer as a mul-
tidimensional vector (corresponding to memory re-
quirements, CPU requirements, restrictions to specific
hardware in a real HPC system);

2) imply multiple queues to a single resource pool or
dedicated pool partitions;

3) address the server sleep state-related policies by in-
creasing the number of possible events and adopting
related transitions.

Note however that aforementioned extensions, although
implying additional complications in the state space of the
model, do not provide significant complexity and may be easily
implemented, as demonstrated in the Seciton III. The presented
method is implemented in hpcwld package for R language,
maintained in CRAN.
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