
Adaptation of System Dynamics Model Execution
Algorithms for Cloud-based Environment

Alexey Mulyukin, Ivan Perl
ITMO University

Saint-Petersburg, Russia
alexprey@yandex.ru, ivan.perl@corp.ifmo.ru

Abstract—This paper presents a process of adaptation of
system dynamics models execution algorithms to cloud-based
environment. System dynamics is an aspect of systems theory as a
method to understand the dynamic behaviour of complex
systems. Existing modeling algorithms used in popular modeling
solutions are either not available for free use or have several
disadvantages which prevent them from being used in distributed
cloud environment. Adaptation of execution algorithms aimed
not only to adapt execution process to distributed parallel
environments with higher reliability and wider range of possible
applications, but also to improve system dynamics model
execution performance. For example, existing algorithms of
model execution which are not ready for distributed
environments will fail to complete modeling task in case of
hardware failure, and optimized ones are able to smoothly
transfer execution process from one node to another with
minimal impact on overall model execution progress. Such
capabilities help to save many resources and, especially, time on
execution re-runs. In this paper described algorithms and
approaches designed for sdCloud solution which are focused on
transferring execution of system dynamics models into
distributed cloud-based environment and shown extra benefits
brought to modeling process by shift to the cloud.

I. INTRODUCTION
 System dynamics is an aspect of systems theory which is an
approach to understand the dynamic behavior of complex
systems. The system dynamic models consist of stocks and
flows. The stocks in scope of system dynamic represent some
real values of our world that can be changed in over time. The
flows in scope of system dynamic represent a function
describing stocks values changes. Those simple elements allow
constructing models of any complexity level. Such models can
describe real world processes or systems in required scale for
specific research needs. The system dynamic models cover
many areas of our world including but not limited to economic,
medicine, social, mechanic and engineering. In scope of system
dynamics used the system of linear equations that solved by
iterative approach in required model time space range that
defined by researches that investigate model behavior. The
model solving process is also can be called as model execution
process. When we are talking about execution of a system
dynamics model we are assuming a process of sequential
computation of model states over a given period with the
provided modeling step, representing a minimal time frame to
navigate in modeling results [1]. For example, we can take the
simple epidemic model, that describe how disease spreads

among area population, and this model built for answering the
next question: “Can disease spreads to all population or disease
is disappeared and all population will be healthy?” and
answering to this question called is model execution [1], [2].

II. OVERVIEW OF EXISTS SOLUTIONS

To perform model execution on cloud computing cluster we
should consider existing model execution algorithms used in
System Dynamics. As an example, we can consider the next
modern solutions for computing system dynamic models:
PySD, SDEverywhere, sd.js, Vensim, AnyLogic and AnyLogic
Cloud. We split those solutions to three categories and dig into
each deeper with detailed overview of each category.

A. Open source libraries

PySD, SDEverywhere and sd.js are open source libraries
that implements execution engines for computing system
dynamic models in xmile or vensim formats, those formats are
most popular among modelers for now [3], [4], [5]. Those
solutions based on linear computation process, that just takes
input configurations, process it on single CPU core and in local
memory space and then returns results when all computations
are completed. The one of key issue of those solutions are
targeting software engineers more than modelers and scientists.
Those libraries can be easy integrated in your applications, but
it hard to use for end users. To compute a simple model, you
should have basic knowledge of programming languages. For
example, if you want to compute model via SDEverywhere you
should install on your local machine compiler of C language
and many other dependencies which are required for this
library, after that use UNIX console and generate C code of
your input system dynamics model, compile them, run and
after it you can see results in console or raw output file. And it
will be just raw output data which is not interested, and this
output should be “manually” handled. However, if we have
skills in programming you can integrate those solutions and
make automatic analytics of output or render need
visualizations. So, those approaches make a high adaptation
threshold and correspondingly have a small number of end-
users. Meanwhile, those solutions are very interesting to
community, because supported by open-source community and
provided by free license.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

The second group of tools consists of proprietary solutions,
like Vensim and AnyLogic, which are very popular for now
and have many active users [6], [7]. Let’s look closer at how
those applications are work. We can’t give accurate assessment
of used algorithms, but we can say why open-source solutions
has more prospects in development. Vensim and AnyLogic
solutions have several differences in comparison with open-
source solutions. For example, Vensim and AnyLogic have
changes in build-in algorithms of model computing that can
provide events from computation process with information
about changes to UI elements. So, it makes results of model
executing animated and easy to understand for end-user.
However, those solutions have issue related to computing
system dynamic models on local environment without
possibility to attach additional computation nodes to improve
performance and reliability. Also, those solutions can’t be used
as a part of your business applications, you can’t integrate
those solutions by easiest way.

C. Web-oriented solutions
And to the last we look at web-oriented solutions for

computing system dynamic models, like: sdCloud, AnyLogic
Cloud, Insight Maker [7], [8], [9], [10]. All those solutions are
available for any user that have connection to Internet and have
installed an any Internet browser. This provides a low
adaptation threshold for end-users to use any of those web-
applications. However, each of those applications implemented
in different ways and provide different features to end-user.
Looks detailed for each one.

Firstly, look at Insight Maker, this solution provides to user
possibility to build models directly in browser with
WYSIWYG editor. Also, this web-application allow saving
models in cloud storage, execute and see results data
visualization directly in browser. You can embed your model
to any other website via embedding by iframe HTML tag as
well. However, computation process with visualizations
executed on local user machine (directly in user web browser).
So, we can say that Insight Maker is not use all advantages of
cloud-oriented solutions. For executing complex system
dynamics models you still have a high-performance local
machine. Using this solution, you can’t export results in any
formats like csv, for continuing work on best tools for analytics
like Microsoft Excel, etc.

Now look at AnyLogic Cloud solution. This web-
application provides to user possibility to execute models on
internal cloud environment and views results visualization.
However, user can’t create model or create results visual
representation directly in AnyLogic Cloud. To perform those
actions, you should use desktop application and export your
model to AnyLogic Cloud. Also, we should mention that all
results are sent to end user as events via network connection
and those events handled by browser scripts. Because all events
provided for each time-step of model executing, this leads to
high network abusing and high CPU usage. And those metric
values are grown in proportion to complexity of visualization
data of model executing. However, AnyLogic Cloud have
interesting features with model input parameters optimization
tasks.

And in the end, we look at sdCloud solution. This web-
application provide to user possibility to execute models in
most popular formats among modelers using internal cloud
environment. sdCloud – it a cloud platform that wrap open
source tools for working with system dynamic models directly
in web browser. For now, this platform gives to user possibility
to upload model definition, run it, and see or download results
in any handful formats: table representation, programming
representation (e.g. json, csv). So, user can use all advantages
of open-source solutions, for using it we should just have any
web-browser, even any simple mobile browser, and connection
to Internet. However, issues with monolithic structure and
algorithms there are still, because internally used the same
approaches.

D. Generalizing
Looks backward to all of what we say in this section, we

can extract key features of each kind of system dynamic model
execution solutions and present differences in table
representation in Table I.

TABLE I. COMPARING FEATURES FOR DIFFERENT KIND SOLUTIONS

Feature Open-source Proprietary
desktop

Web-oriented
(w\o sdCloud)

Supported by
community Yes No No

WYSIWYG
model editor No Yes Yes / No

Results
visualization No Yes Yes

User adaptation
threshold High Middle Low

Integration with
business

applications
Yes No No

High usage of
local machine

resources
Yes Yes Yes

So, we can extract all key issues that inherent to each kind
of model execution applications. First issue is intense usage a
local computation resources and this is a key and principal
issue. And the second issue – high threshold of user adaptation
for using and integrating those approaches to business
applications.

Execution of system dynamic models requires many
computing resources (i.e. processor time and memory) and
existing algorithms are not designed for execution in cloud
environment. The monolithic structure of used model
computation algorithms is a general cause of this issue. By this
cause, we can’t split and use this approaches on few execution
nodes in order to improve performance and reliability of built
solution. There are some cases like power outage issue,
network problems, or any other hardware or software faults. If
model execution requires much time (for example 4-6 hours)
and computing hardware or software will break on last steps of
model execution, then all results will be lost, and model should
be executed from beginning. This case is not usual, but it’s
possible. And if we want to build the cloud-oriented
application, we should build the reliable solution that can

B. Proprietary desktop solutions

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 180 --

guarantee high availability of service to end-user. And when
we talk about single model execution, described situations with
issues of such kind is very rare and can't significantly affect a
single user. However, when we talk about cloud-oriented
solution of system dynamics model execution, we should
provide the availability in long-term, for example weeks,
months, years, etc. And in this period probability of this issue is
more often than when we talk about single model run that can
be proceed in half-day in average. We also need to consider
continues modeling which require high available service for
providing continues results to end-user [11].

The second issue of existing execution approaches is
results data persistence. Model execution generates big data
volumes for complex models over modeling time. And
existing algorithms store these results in memory and only
after fully completion of model execution sends results to
external storages. This makes a load not just for memory, but
also on network when this data volumes are sends to data
storage.

So, our global goal is to design architecture for model
execution process that can be used on cloud computing cluster
and solves described issues reliably.

III. GOALS
Based on previous section of this paper we can determine

our step-goals which can help us to reach the global goal –
build the cloud computing cluster for system dynamic model
executing. We need to find a middle ground between ease of
use by end users and easy of integration in external business
applications. We should strive to quick provide of model
results in handful formats and straightforward way for
researches. Our sdCloud solution internally use the open-
source solutions to execute system dynamic models in most
popular model definition formats. However, we say that those
solutions can use only local environment to execute models.
So, we need propose approach to improve usage of local
environment and add possibility to attach additional
computation nodes. Also, we should make it by flexible and
agile way to integrate additional open-source and internally
developed tools for working with user system dynamics models
and provide results to end-user by quick way.

After small review exists solutions presented in previous
section of our paper we can say, that all algorithms based on
following steps: read model and input data, compute each time
frame and provide events to UI (if required), persist results.

Afterwards, we can define goals which can help us to build
a new process of system dynamic model execution. The first
goal is to split algorithm of model execution on smaller atomic
parts. Reaching this goal will allow us to manipulate model
execution process and build a new approach that can be applied
to cloud computing cluster. The second goal is to build a new
process that allow execute system dynamics models on
distributed systems. Therefore, it will be possible to design
architecture for cloud computing environment for executing
system dynamic models – sdCloud [8], [9].

IV. BUILDING A NEW PROCESS OF MODEL EXECUTION

A. Analysis of regular model execution process
The current model execution process can be described by
following steps:

1) Read model structure in specific format;
2) Read input data of each model components;
3) Compute all time frames sequentially (post events about

changes to UI);
4) Return modeling results.

To reach the first goal we should extract all possible
atomic parts from this process.

The first part of regular execution process is reading a
model structure. This part can’t be split anyhow, but it can be
optimized in another way. Recently, the practice of
transforming the structure of a model into executable code has
been used. For example, James Houghton creates solution
which converts a system dynamics model definition from
vensim and xmile formats to executable code on Python
programming language [3], [12]. Todd Fincannon uses the
same approach to execute the vensim models, this solution
convert model defined in vensim format to C or JavaScript
source code, compile and execute it [3]. This approach allows
to optimize some execution time on reading model structure
when it is required to execute the same model over and over on
different sets of input data. It may seem that this optimization
will bring a slight increase of performance for regular
modelling process. However, if model used in pipeline of
analytics on real-time data streams provided by continues
modeling process, it can make a significant contribution to
performance improvement [11].

The next step of execution process is reading an input data
of model components. This step also can’t be split to more
atomics parts in general. But we can use different approaches
to delivery this data from users. In this case, users can be
represented by external applications that used models
automatically and delivery input parameters via network
channels. Some models can have small count of input
parameters and users can provide those values in single batch.
However, some models can have the large count of input
parameters and to optimize delivery process those users can
defines default values of each input parameter and then
delivery to computation system only parameters that required
for overriding. It can optimize communication process between
user and execution system. When we are talking about
optimizing a model execution process, we assume only model
execution environment, and when model execution process was
initialized all actual and required input parameters has already
stored in data storage that should be read.

The more interested part of model execution process is
computation of model time-frames sequence. There are two
different levels for optimization:

1) Optimize a whole computation process of time frames;
2) Optimize a computation process of only single time
frame.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 181 --

When we talk about optimization of whole computation
process, we assume that we take a whole process that can be
computed on single node at one time. In other words, in general
we can use different nodes, but at one-time moment we can use
only one computation node. However, when we talk about
optimization of only single time-frame computing, we can use
multiple instances of computation nodes for one time-frame
and one model at one-time moment. Therefore, we can use
HLA terminology for this level, because this describe
specifications and interfaces for distribute computing systems,
which can compute one model and one time-frame on different
nodes at one-time moment [13]. So, differences of those
optimization levels are count of used computation nodes at one
time-step. For first level of optimization it can be only one, for
second level of optimization – several. And, how you can see
we can’t use specifications that provided by HLA for our
current work. This paper is focused on first level of
optimization, but our team also works in researches about next
level optimization of system dynamic models [14].

The main goal of this step is computation algorithm which
compute a model execution results that represented by
sequence of time-frames. Time-frame is a simple data set that
describes model state for a specific time in model time space.
The time-frame contains values of each stock components and
all required states of model components. The system dynamics
model computation is based on iterative algorithms with
applying the prediction and approximation functions. To
compute next time-frame, we should take the results of
previous computation step and apply transition operations
described in model definition. Afterwards, we can repeat
computations until all result time-frames for model are
completely computed. So, we can say that computation of
single time-frame is depends only on previous time-frame and
additional metadata of model computation process. By
metadata, we mean – current modeling time, modeling time
range, etc. This knowledge allows us to extract this part from
algorithm and makes few atomic parts. Generalizing what has
been said we can split time-frames computation process on
following steps:

1) For each time-frames:
a. Gets the input data of current model execution;
b. Gets the results of previous execution step;
c. Compute next time-frame based on retrieved data;

2) Returns the computed time-frame results.

The last step of execution process is returning results of all
time-frames. The problem of this step is that all results persist
in local memory and complex models which executed during
long period of time in model time space generates big volumes
of data that are stored in local memory and only after execution
they sent this data volume to external storages (via network or
disk IO operations). And this operation requires additional time
and computation resources. Also, if we will want to make some
additional execution result analysis it will be possible only after
completing all computation process and persisting results to
external storage. The main idea for optimizing it – persist each
(or almost each) time-frame separately. As mentioned earlier
for computing a next time-frame required only the previous

computed time-frame, respectively we can save all others
computed time-frames to external storage and unload them
from local memory.

B. New model execution process
Generalizing what has been said about each steps of model

execution process we can show a new detailed scheme of
model execution based on atomic steps:

1) Read model structure;
2) Read input data for initial state of model components;
3) For each time-frames:

a. Gets the input data of current model execution
(initial step, current time in model time);

b. Gets the results of previous execution step;
c. Compute single time-frame based on retrieved

data;
d. Returns the computed time-frame result;

4) Aggregate all computed time-frames;
5) Returns aggregated results.

To compare these processes, you can see the next time
diagram that presented on Fig. 1.

Fig. 1. Comparing time-diagram of two model execution processes (1 –
reading the model structure, 2 – reading the model input data, 3 – compute
single time frame, 4 – return the results of model execution, 5 – compute
analytic functions)

Now we have a new process of model execution. Step with
results persisting depends only on require time-frame
computation instead all model execution. And we can use it for
designing architecture for cloud environment.

V. APPROACH VALIDATION
To prove the described solution two system dynamic

models were created. The first model describes the classic
execution process of models. The second model – new
execution process. We introduce two key questions to those
system dynamic models:

1) When model execution process completed?
2) How many memory resources required to execute the

model?

To describes processes of model execution and answer to
the first question we should introduce the model time-frames
flow. This flow contains 4 states:

1) Initial state – presents the state when time-frame is not
computed yet;

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 182 --

2) Computed state – presents the state when time-frame is
already computed;

3) Saved state – presents the state when time-frame was
saved to external data storage;

4) Analyzed state – presents the state when time-frame
through by analytical functions.

Transitions of time-frames of models are linear and
described by following rates:

1) Computation rate – represents the rate of time-frames
that transitioned from initial state to computed state and
describes by equation (1);

2) Saving rate – represents the rate of time-frames that
transitioned from computed state to saved state and
describes by equation (2) and (4);

3) Analysis rate – represents the rate of time-frames that
transitioned from saved stated to analyzed state and
describes by equation (3) and (5).

Transition to the next state in classic execution process of
system dynamic models cause only when all time-frames
transitioned from previous state to the current. So, we can
describe required rates, which presents above, with next
equations:

(1)

Where – is the time in seconds of
computation process for single time-frame of the model,

 – is the total count of time-frames of the model
that still stay in initial state.

(2)

Where – is the speed in bytes per seconds
of network connection in between computation service and
external data storage service, – is the size in bytes
of one time frame of the model, – is the
overhead coefficient that indicates that network transactions
require use the additional information into messages,

 – the total count of time frames of the model
that already computed.

(3)

Where – is the time in seconds of
analyzing process that required for single time-frame of the
model, – is the total count of time-frames of the
model that already saved to external data storage.

Transition to the next state in new execution process of
system dynamic models performed as soon as possible. When

few time-frames already transitioned to new state, but other
time-frames of time model are not transitioned yet, this is not
affect time-frames that already transitioned and this time-
frames of the model start transitioning to the new state. And
we can describe the rates with next equations:

(4)

Where – is the count of required saved time-
frames of the model for preventing overload of the network.

(5)

Those equations can help us to answer to the first
question: “When model execution process completed?”. To
answer on the next question, we should describe the model of
the process memory. The memory it is the stock that can have
two rates – income memory usage rate and outcome memory
usage rate. The first rate responds to memory allocation to
application. In our computation process memory required to
store results of every time-frames. We can describe this rate
by equation (6).

 (6)

Where – is the rate of transitioned
time-frames of the model from initial state to computed state,
value of this rate was described above by equation (1). The
outcome memory usage rate responds to free not required
memory in application and this implement by garbage
collector mechanism. We can describe this process by
equation (7).

 (7)

Where – is the total size of memory in bytes
that allocated by application from Operating System at current
time, – is the total size of memory in bytes that
required to application correct work in fact, this value is
described by equation (8), – is the size of
memory in bytes that garbage collector was stay in allocation
state by application, – is the size of memory in bytes
when garbage collector can collect and free not used memory
batches.

 (8)

This model of memory usage of application in
computation process can answer to the second question: “How
many memory resources required to execute the model?”

To run simulations, we are defined parameters of our
model that presents in Table II. All models were developed in
xmile formats and executed in sdCloud.io application.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 183 --

TABLE II. COMPARING FEATURES FOR DIFFERENT KIND SOLUTIONS

Parameter name Value
StepsCnt 100’000
frameDataSize 1’920 Bytes
netPacketOvr 1.04
computeTime 8 ms
analyseTime 8 ms
networkSpeed 12.5 MB per seconds
gcThr 30 MB
gcReservation 10 MB

After defining all constants that required for computing
those models we can analyze results. Results of model
executing presented below at Fig. 2 And Fig. 3.

Fig. 2. Time diagram with interpretation of modelling results

Fig. 2 shows that execution process for classic approach
completed near 1615 second. After it all time-frames of the
model were computed, saved to external storage and all
analytical functions was applied. But for new process
approach execution complete near at 810 second. This value
completed less than time of classic model execution process.
Fig. 2 is interpretation of modelling results.

Fig. 3. Memory usage by computation application by classic and new
processes

Fig. 3 shows how classic and new execution approaches
used the memory of execution environment. The max value of
allocated memory by classic approach requires the 192 MB.
The max value of allocated memory by new approach requires
the 32 MB. And this value is significantly less in comparing
with classic model execution approach, where this value is six
time higher.

At the current level of technology, such amount of
memory is the very small piece of all memory amounts which
can be used in computation node. For example, server
platforms based on modern Xeon chipsets supports the 6 TB

memory. However, when we talk about computations on cloud
environments it is critical. Because cloud systems developed
for big number of users working in parallel and this generates
high load to cloud system. So, every small piece of saved
resources can lead to significant overall improvement on a
cloud-wide scale. Under users, we assume not only a big
number of modelers who are running their models in parallel
for a short period of time. Another use-case of our platform is
a continuous cloud modelling when some model is running on
a server for a significant amount of time and it is constantly
filled with data coming from some real system. For example,
IoT infrastructure of transportation system that includes
sensors from cars and streets periodically generates big
volumes of data. This real-data stream sent data to cloud
environment to predict the state of system for monitoring and
prediction of the maintenance period [11], [15], [16], [17].

Also, we should verify reliability of new computation
solution. For that purpose, we should build the simple
structure schemes and compute probabilities of system failure-
free operation [18].

We extract four main components of computation
solutions:

1) Execution service;
2) Network connection;
3) External data storage;
4) Analytical service;

Fig. 4. Simple structure of classical computation approach

In the first case, all components of model can’t be
connected as parallel, we can connect only the full copy of
system. By basic theory of reliability, reliability of this system
that have all components in chain can be computed by
equation (9).

 (9)

Fig. 5. Simple structure of new computation approach

In the second case, some components can be replicated by
copies individually. For example, we can’t provide the second
network connection for computation processor by
straightforward way. To solve this, we will need a specific
server hardware with multiple NIC and separate network
channels to destination node with data storage, and data

0
20
40
60
80

100
120
140
160
180
200

0 200 400 600 800

M
em

or
y

us
ag

e,
 M

B

Model time, Seconds
Classic execution process New execution process

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 184 --

storage also should have the same hardware configuration. It
possible, but it goes beyond the scope of this paper about
software solutions. Many solutions of data storage already
have possibility to run-up it in cluster with replications. In our
solution we use MongoDB, but another document oriented
solutions have the same functionality. So, we can use three
nodes of data storage. And as described above, new process
allows to continue computation process for system dynamic
model from broken step, instead of rerunning it from scratch.
So, by basic theory of reliability we can compute reliability of
this system by equation (10).

 (10)

Those equations have four parameters and for comparing
these trends we should take the traits of resulting data by
specific parameter. For example, we make reliabilities p2, p3
and p4 are constants value is 0.9 and for p1 we take a range
from 0.15 to 0.95. Fig. 6 shows that reliability of the new
computation approach higher than classic computation
approach. For other trends, we have the same behavior for
trends. This is proof of reliability of new computation
approach.

Fig. 6. Proof of computations approach reliability

VI. ARCHITECTURE OVERVIEW

As it was said earlier, to execute one time-frame of model
is required to have model definition and previous time-frame
results. Because of that, it is possible to execute just single
time-frame and this approach also will allow us to store a
time-frame results into external storage as soon as possible. If
previous model execution step has been saved soon as possible
to storage we can continue modeling on any other available
node. This can help to solve problem of power issue or any
other hardware or software faults on the current computation
environment because we can move execution process to
another execution environment with the least possible losses
of computing resources. Another benefit of such transition of
execution process is an ability to move models between nodes
to optimize cloud resources usage. In modern data-centers
there is an option to bring servers up and down on demand.
This approach allows to significantly optimize power
consumption of the deployment if the solution is hosted on
real servers or monthly rental pricing for virtual servers which
are working on a pricing plan like “pay-as-you-go”. For

example, modelling cloud service deployment may serve
requests for a time zone. In the beginning of the workday,
modelling activity may grow, and cloud service will bring
more and more resources up to serve everybody needs. While
servers (real or virtual) will get up, models executions for
everyone will be initiated on a minimal set of cloud service
resources which are always up irrespectively how low current
load is. Later, when new computation resources will be ready
and available, already started models can be distributed to the
newly available hosts. In the evening, when activities will go
down, reverse process may take place. To prepare servers for
shutdown, models will be transferred from low loaded servers
to release them completely.

To implement this approach, we should make the
independent services which can hosts on different
environments and can communicates with each other via
network channel. This way in software design called as micro-
service cluster approach that allow to design and implement
any process in a flexible, scalable and reliable way [19], [20].
These three criteria are very important in modern software
development and are even more important when talking about
cloud solutions. Flexibility of the architecture implemented
with possibility of injection of any new additional services that
can extend or improve functionality of system. Horizontally
scalable systems provide an easy and reliable way of
increasing their capacity based on a simple increasing of
number of used executors. If one of the service in this
architecture has some issues, i.e. it crashed with critical error,
so performance of entire system will decrease but it is still
works and take some time for operations to fix the issue and
restore initial performance of the system. Also, this approach
allows to use separate hosting environments and physically
separate computation nodes.

To implement this solution, we should use some
communication process between services, and it should be
network communication because it allows to use separate
nodes.

The first step of our pipeline is the service which can
assign the model and its time-frames for computation to
another execution service. This service takes the model and
previous step of model execution and send request to start
computation of time-frame of model on any available service.
To make a correct decision about choosing the available
execution service it communicates to each service and ask it
about load and availability. To make the decision about node
to compute the model uses the next parameters: model stocks
count, count of required to compute time-frames, available
CPU cores count and those performance. The count of model
stocks and require computing time-frames influence
proportionately on computation node load; and count of
available CPU cores and those performance metrics influence
inversely on computation node load. So, we can build decision
function and select a node that have a smallest load by this
function. This function presents by equation (11).

(11)

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

0 0,2 0,4 0,6 0,8 1

Pr
ob

ab
ili

ty
 o

f s
ys

te
m

 fa
ilu

re
-

fr
ee

 o
pe

ra
tio

n
of

 w
ho

le
 sy

st
em

Probability of system failure-free operation of component p1

P1

P2

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 185 --

The next step of this pipeline is the model time frame
computation service. This service takes the model structure
and the previous results, after it compute the results of new
time-frame and then send results to other services via
distributed message queue. For preventing the network abuse
all new computed time frames stored to local storage and
when another decision function says to service that this local
buffer is ready to send into external data storage, all this buffer
moves out from this service to persist. This function should
base on next parameters: size of time-frame in bytes and time
of storing this data in local memory. For example, this
function can look like as equation (12).

(12)

The two configurable constants in equation can help to
improve usage of network (prevent network abuse) and solve
issue with not saved smallest time-frames in long computation
processes. The NetworkDataSizeThreshold parameter allow
service to send data by group in one batch that can be
compressed and processed by single “call”. The
MaxSaveDelayTime allows to save small time-frames by
single instances if computation process takes many time, it
allows next services in pipeline to process those time-frames
immediately without big blocking time.

The last step of model execution pipeline is persisting
computed results into storage and computes some analytic
functions. For it we introduce the separate services – Results
persisting service and Analytics service. The first service takes
the results of current computed time-frame, persist it to data
storage.

For communication between services in pipeline we can
use the special message broker based on exchanges and
queues. Exchange – it’s the input for any messages, can route
messages between few queues by specific rules or broadcast
input messages to all connected queues. The next services in
pipeline connected to those queues, listen it for new messages
and process when new one arrived. This approach allows us to
setup any count of each service of specific type on different
environments. For these purposes, we can use the next
solution like as RabbitMQ or Apache Kafka [20].

Generalizing what we say about all services in model
computation pipeline we can build the next diagram that
presents on Fig. 7. This diagram shows each used service in
architecture and communication flow based on messages.

VII. BUILD PROOF OF CONCEPT OF DESCRIBED
ARCHITECTURE

To completely proof our solution about new model
executing solution and architecture we build proof of concept

which can execute and store results of modeling in specific
storage. We use the following technologies to build our
solution:

1) OpenSUSE;
2) C# 4.5, MONO Runtime;
3) Python;
4) MongoDB;
5) Rabbit MQ.

Fig. 7. Diagram of services architecture of cloud-oriented solution for systems
dynamics model solution

By first iteration of our proof of concept we are
implements a simple pipeline without failure simulation
functions and without load-balancing. So, we build two micro-
service: computation service, results persistence service. For
comparing we also build the solution by classical execution
process. We collect following metrics: CPU usage of process,
Memory usage of process, Network usage.

By the second iteration of proof of concept we introduce
low probability of system failure for each process and
implement pipeline completely.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 186 --

 To collect all required metrics and introducing a probability
of system failure we implement a simple script which can
attach to specific process and collect metrics, store those data
to local file with simple readable format, like comma-
separated values, and check whether it is necessary to failure
the attached process. For this reason, we choose the Python.

After first run of this setup we got the following results:

1. CPU usage of new solution is more biggest than
classic execution process (Fig. 8), but this value is
not critical and can be justified as cost for more
operations that related to common functions and
additional operations that should be done when
solution use few services.

2. Memory usage for new solution is more stable
process than classic solution, which allocate new
memory ranges for each step of modelling. Memory
usage are free when results are sends to results
storage, but differences between max memory usage
of classic execution process and new is biggest in 5
times (~55 Mbytes and ~12 Mbytes, Fig. 9). And this
value depends on system dynamic model complexity.
Of course, we assume that part of memory
(~10 Mbytes) required for executing application
itself. So, differences between memory usages can be
rich to 22 times (~45 Mbytes and ~2 Mbytes).

3. Network usage for classic execution process abuse
network connection and external results data storage
when execution is completed (Fig. 10). While the
new execution process evenly uses the network
connection for persist model resulting into storage.

4. Fig. 8. show that model execution for new solution is
completed near 153’000 ms, while the classic
solution is completed near 154’400 ms. At this time
of execution, we can sure that model execution
process is successfully completed, and all modeling
results is persisted into remote storage.

Generalizing all results which was got from first run of
our simple proof of concept we can say that new solution
required less computation resources, and those results confirm
our theoretical results (Presented at section V of this paper).
Memory usage was reduced in 22 times.

So, we can start to develop complete solution with all
services and compare it with classical execution process on
high load. We already have execution and result persistence
services. To fully complete our design, we should create
balancing service, configure exists services and central broker
to work in parallel. Also, we should implement restore service
which can able to detect broken services and try to restore it,
including possibility to restore itself.

For high load testing we should generate traffic for our
services with different kinds of models and input models. For
this purpose, we take some models from open source libraries
of system dynamic models and generates for it big bundles of

input parameters. For each test run we use identical sequence
of system dynamic models and input parameters for it. This
turn can reduce errors in our metrics that related with the
differences in input data for testing. In total for high load
testing we have almost 50 models of different kind of
complexity and we generate almost 10’000 correct input
values for each model. In total we should execute 500’000
model runs with our testing and collect all required metrics for
it.

Fig. 8. CPU usage with linear approximation for classic and new model
execution processes

Fig. 9. Memory usage in MBytes for classic and new model execution
processes.

Fig. 10. Network usage for classic and new model execution processes

0,0145

0,0155

0,0165

0,0175

0,0185

10
00

00
10

27
00

10
54

00
10

81
00

11
08

00
11

35
00

11
62

00
11

89
00

12
16

00
12

43
00

12
70

00
12

97
00

13
24

00
13

51
00

13
78

00
14

05
00

14
32

00
14

59
00

14
86

00
15

13
00

15
40

00

C
PU

 U
sa

ge
, %

Classic
New

0

10

20

30

40

50

60

10
00

00
10

30
00

10
60

00
10

90
00

11
20

00
11

50
00

11
80

00
12

10
00

12
40

00
12

70
00

13
00

00
13

30
00

13
60

00
13

90
00

14
20

00
14

50
00

14
80

00
15

10
00

15
40

00
15

70
00

16
00

00

M
em

or
y

U
sa

ge
, M

B
yt

es

Memory Usage Memory Usage

0

0,05

0,1

0,15

0,2

0,25

10
00

00
10

34
00

10
68

00
11

02
00

11
36

00
11

70
00

12
04

00
12

38
00

12
72

00
13

06
00

13
40

00
13

74
00

14
08

00
14

42
00

14
76

00
15

10
00

15
44

00
15

78
00

N
et

w
or

k
us

ag
e,

 %

Network Usage Network Usage

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 187 --

Fig. 11. Demo setup for classic execution process solution

For our purposes we build the following configuration of
classic execution process: 4 execution services that attached to
one queue with execution parameters which run in parallel
(Fig. 11); and following configuration of new execution
process: one load-balancer service that route executions to 4
execution services and one persistent service, all those
services communicating via ESB (Fig. 12). All execution
service for classic and new process, are attached to special
Fault service and Restore service. Fault – service, it’s a test
service that modelling system-faults and kill specified service
with specific probability value. Restore service monitor all
execution services periodically (for our test solution, ping
period sets to 5 seconds), and if specific service is down,
restore service wake up faulted execution service again and
come back to processing model execution again. As a part of
this experiment we should gathered the following metrics:

1) Overall experiment time;
2) Total useful time of all execution services – CPU time

that used by service for computing model results;
3) Total overhead time of all execution services – CPU

time that used by service for restoring to previous state
after fault;

4) Total idle time of all execution services – CPU time
that used by the services in waiting for new jobs from
queue.

Fig. 12. Demo setup for new execution process solution

Our execution of experiments for 500’000 model
executions take more than 6 hours. We run experiment on
local developer machine with Intel i7 CPU (4.2 GHz, 4x2
Cores) and 16 Gb Memory. Results of experiment run is
presented in Fig. 13.

Fig. 13. Ratio of all valuable metrics from experiment run.

Fig. 13. shows that new execution process more useful for
using this approach on distributed computation systems. The
overall time of experiment for new execution process lower
than for classic approach mostly in 3 times (4.7 hours for
classic and 1.5 hours for new approaches). Wherein the usage
of CPU time for execution services is reduced by 33%. The
next most interesting experiment metric is a CPU overhead
time, value of this metric means how many time was spent by
service to restore to previous computation state after service
fault. In beginning of this paper, we are described this
situation and propose solution to increase reliability of
execution process. Results from experiment run shows that
overhead CPU time for classic execution approaches requires
25.359 seconds to restore, while the new execution process
requires 0.027 seconds to restore. So, we can say that we are
increase reliability of execution process of system dynamics
models. When we compare these results with results that
presented in section “V. Approach validation”, we can see that
theoretical and practical results are mostly similar.

VIII. COMPUTING TOGETHER WITH CONTAINERS

Recently using the containers for hosting the applications
are very popular in modern software cloud solutions.
Containers isolate application in environment and contain all
required dependencies and can be ran on any environment
which configured to use containers. And micro-services
architecture it is the first step of using the containers. When
entire big and complex solution assembled from small pieces
like as micro-services it very easy to use containers for each
small independent service. The general profit of using the
containers it possibility to dynamical scaling of each ones.
Also using the container-oriented hosting such as the Amazon
EC2, Google GCF or Microsoft Azure cost is cheaper than
rent the dedicated or virtual servers because you can pay only
to really used load.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Overall time CPU Usage CPU Overhead
time

R
at

io
 o

f e
xp

er
im

en
t m

et
ric

s

Classic execution process New execution process

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 188 --

Designed architecture of cloud oriented model
computation system is fit to using it together with containers.
When we discuss containers, we mean the Docker containers.
Docker containers are popular, supported by community and
by many hosting providers, like an Amazon [21], [22]. We can
encapsulate each service into Docker containers and then we
can improve our Monitor service with possibility to
automatically scaling. This service should communicate with
each service and monitor it load values and if required move
load from one small loaded to another small loaded service
and shutdown it; or in another case up the new computation
service and move some load from huge loaded service to
newly created service. This simple strategy just example of
flexibility power of designed architecture, more detailed
description how it can be implemented and really work is not
fit to scope of this paper.

This approach will not only save costs on leasing hosting
environments, but also improve the functionality and
responsivity of the system because auto scaling allows to
process many and many requests from users.

IX. CONCLUSION

Modeling in system dynamic is a powerful tool that has
wide application range in different areas. However, existing
solutions for model execution are not always simple enough
for regular modelers, for example: software like a PySD or
SDEverywhere. Being that execution process of system
dynamic models is computation resource-consuming and
vulnerable to hardware faults. We introduce a new idea how
this process can be improved and used for cloud-oriented
solution. Paper introduces adaptation of execution process of
models, new process requires more complex infrastructure, but
it allows us to provide a higher quality service for executing
system dynamic models. This process more reliable in
comparing with classic model execution solutions because in
case of hardware or software faults the new process loose only
small piece of resulting data instead losing all resulting data.

Our theoretical and practical results show that new model
execution process have better metrics in comparing with
classic model execution solution. For example, the new
solution can better balancing network usage and reduce CPU
usage by 33% in comparing with classic approach. Also, we
can reduce time to restore computation to the normal state
from 25 seconds to 0.027 seconds for 500’000 executions with
4 execution services and reliability of each service is 99.8%.
The memory usage of new approach also is reduced in
comparing with classical solution of model executions in 5
time.

REFERENCES
[1] Jay W. Forester, The Beginning of System Dynamics. USA: MIT,

1989.
[2] Gul Zaman, Il Hyo Jung, “Stability techniques in SIR epidemic

models”, PAMM: the Proceedings in Applied Mathematics and
Mechanics., vol. 7, 2007.

[3] GitHub website, Source code of PySD by James Houghton, Web:
https://github.com/JamesPHoughton/pysd/

[4] GitHub website, Source code of SDEverywhere by Todd
Fincannon, Web: https://github.com/ToddFincannon/SDEverywhere

[5] GitHub website, Source code of sd.js by Bobby Powers, Web:
https://github.com/bpowers/sd.js/

[6] Vensim website, Web: https://www.vensim.com/
[7] AnyLogic: Simulation modelling for business, website:

https://www.anylogic.ru
[8] sdCloud: Bringing system dynamics into cloud, website:

http://sdcloud.io
[9] Perl I. A., Ward R., “sdCloud: Cloud-based computation environment

for System Dynamics models”, Proceedings of the system dynamics
conference, 2016.

[10] InsightMaker: Free simulation and modelling in your browser,
website: https://insightmaker.com

[11] Perl I.A., Mulyukin A. A., Kossovich T. A., “Continuous Execution
of System Dynamics Models on Input Data Stream”, PROCEEDING
OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION, 2017,
pp. 371-376.

[12] J. Houghton, M. Siegel, “Advanced data analytics for system
dynamics models using PySD”, 33RD INTERNATIONAL
CONFERENCE OF THE SYSTEM DYNAMICS SOCIETY, vol. 2,
2015, pp. 1436-1463.

[13] Richard M. Fujimoto, e-document “The High Level Architecture:
Introduction”, Web: http://www.acm-sigsim-
mskr.org/Courseware/Fujimoto/Slides/FujimotoSlides-20-
HighLevelArchitectureIntro.pdf

[14] Mulyukin A. A., Kossovich T. A., Perl I. A., “Effective Execution of
Systems Dynamics Models”, PROCEEDINGS OF THE 19TH
CONFERENCE OF OPEN INNOVATIONS ASSOCIATION FRUCT,
2016, pp. 358-364.

[15] P. Marshall, “System dynamics modeling of the impact of Internet-
of-Things on intelligent urban transportation”, Regional Conference
of the International Telecommunications Society (ITS), 2015.

[16] Abbas K. A., Bell M. G. H., “System Dynamics Applicability to
Transportation Modeling”, Proceedings of the System Dynamics
Conference, Transportation Research Part A: Policy and Practice,
vol. 28, issue 5, 1994, pp. 373-390.

[17] Preventive and Predictive Maintenance, Web:
https://www.lce.com/pdfs/The-PMPdM-Program-124.pdf

[18] A. M. Polovko and S. V. Gurov, Basics of reliability theory. SPB.:
BHV-Petersburg, 2006.

[19] S. Newman, Building Microservices: Designing Fine-Grained
Systems, 1st Edition. O’REILLY, 2015.

[20] Eberhard Wolff, Microservices: Flexible Software Architecture,
Addison-Wesley, 2016.

[21] Rene Peinl, Florian Holzschuher, Florian Pfitzer “Docker Cluster
Management for the Cloud - Survey Results and Own Solution”,
Journal of Grid Computing, vol. 14, issue 2, June 2016. pp. 265-282.

[22] Using Docker Containers for Data Science Environments by
Brittany-Marie Swanson, Web:
https://www.datascience.com/blog/docker-containers-for-data-
science

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 189 --

