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Abstract—In this work, we use simulation to verify the
stability conditions of the so-called N -model, which consists of
two servers and two classes of external customers, both generated
by Poisson inputs. Service times are server-dependent and, in each
server, are i.i.d. When server 1 is occupied, and there are waiting
customers in queue of server 1, then a class-1 customer jumps to
server 2, thereby becoming a class-(1,2) customer. We consider a
non-preemptive service priority: a class-1 customer starts service
in server 2, when a class-2 customer, if any, finishes his service.
Thus, server 2 assists server 1, while the reverse interaction is
impossible. The purpose of this research is to verify the tightness
of the stability condition found in [8] by fluid a approach, and to
deduce a simpler sufficient stability condition, which is obtained
in an explicit form by a regenerative approach. Moreover, our
analysis includes verification of the conditions when the 1st server
is stable, while the 2nd server is unstable. In addition, we verify
by simulation a monotonicity property of this model: the idle
stationary probability of server 1 attains a minimum when the
2nd server is permanently occupied by class-2 customers.

I. INTRODUCTION

This model is a variation of the single-server N−model
from [6], in which server 2 accepts class-1 customers when
free, but gives preemptive priority to class-2 customers. For
this reason, the stability conditions of the present model and
the model from [6] are different. Following [8], we call the
present model the N -model with static priority . In this N -
model, which is very well motivated, see again [8] and also
[9], [10], server 1 can be treated as beneficiary, while server
2 is the donor.

This queueing system configuration has a lot in common
with the notion of flexible servers, meaning that some service
capacity may be transferred from one server to another to
accommodate varying demands. Also closely related are cross-
trained servers (see [1], [2], [12], [13] and the references
therein) where one server (or pool of servers) is fit to handle a
limited set of customers, whereas a second server(pool) can
handle more types of customers that enter. The described
queueing networks can model a broad class of computer
networks with rescheduling of jobs, multiserver systems with
heterogeneous job types, etc. As stated in [3], this system can
model a computing system where processors have overlapping
capabilities.

The models with flexible servers mainly appear in analysis
of multiclass multiserver systems to find an optimal allocation

by minimizing a cost function. As a rule, the identification
of stability region is based on the so-called resource pooling
(or complete resource pooling) assumption implying that a full
(aggregated) capacity of the system is used in when the system
is heavy loaded. For instance, such an approach is applied in
[14] for a multiclass system, to solve an optimal allocation
problem by construction of a linear program solution. We
stress again that cooperating servers join efforts to serve the
corresponding customer, and it makes the stability analysis ex-
tremely hard. In this regard, we mention the paper [15] which
shows that a correct stability analysis is not straightforward
even under exponential assumptions.

It is worth mentioning that in order to develop the sta-
bility analysis of the non-preemptive scheduling discipline,
the author of [8] has been forced to modify the well-known
and recognized fluid stability analysis, because its classic
form (see, for example, [4]) does not allow to analyse this
complicated model.

However, there are some problems concerning the applica-
tion of the stability analysis developed in [8]. The first problem
is that this analysis holds only provided an ”Assumption 1”
holds, which in turns states that there exists a specific solution
of a linear program related to this model. Thus before being
able to find the stability conditions, we must first formulate and
solve this linear program. Another important problem is that
the basic stability condition in [8] (see also the analysis below)
in general is not formulated in an explicit form. More precisely,
this condition contains, besides the given first moments of the
governing distributions (that determine the service times and
inputs), also an unknown parameter. Actually this parameter is
the stationary busy probability of the 1st server provided the
2nd server is overloaded by class-2 customers. Thus, to apply
this condition in practice, this parameter must be estimated in
advance.

In practice, the presence of this unknown parameter makes
the stability analysis of this model highly difficult, because
simulation can take a lot of effort, requires development of the
corresponding algorithms, and yields numerical result only for
the simulated system parameters with little additional insight.
Hence, it is useful to search a simpler stability condition which
can be practically implemented, but which may be less tight.

The contribution of this work is as follows. First of all, we
give a simple proof of the necessary stability condition of the
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two-server model, using an alternative regenerative approach.
Then we estimate by simulation the mentioned parameter, and
verify both our stability conditions of each server and the
stability criterion of the two-server system from [8]. Moreover,
we verify by simulation an important monotonicity property
of the model: the stationary busy probability of the 1st server
attains minimum when the 2nd server is overloaded by class-2
customers. It opens the way for a full regenerative stability
analysis of the system, which we leave open for further
research at this point.

The paper is organized as follows. In Section 2, the model
is described in detail, and the main notations are given. Section
3 contains in brief the regenerative proof of the necessary
stability condition. Also, we deduce in an explicit form the
stationary solution for a special case of the model. In this
section, a simpler set of stability conditions are discussed as
well. Finally, in Section 4, simulation results are given, which
demonstrate the difference between stability regions given by
different stability conditions, in addition to the mentioned
monotonicity property of the busy probability.

II. DESCRIPTION OF THE MODEL

We consider a two-server queueing model, both with
infinite-capacity buffers. The 1st server is fed by a Poisson
input with rate λ1, and the 2nd server is fed by Poisson input
with rate λ2. Class-1 customers can be served both servers
1 and 2, while class-2 customers can be accommodated by
server 2 only. Moreover, an arbitrary class-1 customer waiting
in the 1st queue, jumps to server 2 and has non-preemptive
priority over class-2 customers: it starts service immediately
after the class-2 customer being served (if any) leaves server 2.
We call such a customer a (1, 2)-customer (or (12)-customer).
It is unimportant for stability analysis which waiting class-1
customer makes this jump.

We assume that the service times of class-i customers
{S(i)k , k ≥ 1} are i.i.d. with rate μi = 1/ES(i) ∈ (0, ∞), i =
1, 2, (1, 2). (In what follows, we omit the serial index to denote
a generic element of an i.i.d sequence.) All sequences are
assumed to be independent.

We denote Qi(t) the queue size (the number of customers
in the server and waiting for service) in server i at instant
t− , i = 1, 2. We assume an arbitrary work-conserving
service discipline in each pool, in particular, an arbitrary
waiting class-1 customer may jump to server 2 (provided
Q1(t) > 1) because stability/instability does not depend on
the order of customers, which (in each class) are stochastically
undistinguishable.

The regenerations of server 1 are generated by class-1
customers arriving to an empty system. Denote by V1(t), B1(t)
the arrived and departed work, respectively, in the interval
[0, t]. Also, denote by L1(t) the work lost by server 1 in the
interval [0, t]. In other words, it is the summary (not realised)
unfinished work in server 1 of class-(1,2) customers. Denote by
A1(t) the number of class-1 and A12(t) the number of class-
(1,2) customer arrivals in (0, t]. Denote by W1(t) the remain-
ing work (workload) at instant t+, and let ρi = λi/μi, i = 1, 2.

The stability analysis in [8] has been developed to obtain
stability of the entire 2-server system, and in particular, the sta-
bility of the isolated 1st server is not considered. Nevertheless,

it may be sometimes useful to know the stability condition of
the 1st server regardless of the state of the 2nd server. Introduce
a basic process

X(t) = Q1(t) +Q2(t), t ≥ 0,

describing the total number of customers in the system.

Let Tn be the nth regeneration instant of the process
{X(t)}, which is generated by a customer arriving in an
empty system. More exactly, if tn is the nth arrival instant
in the superposed input (Poisson) process, then regenerations
are defined recursively as follows: set T0 = 0 and

Tn+1 = inf(tk > Tn : X(t−k ) = 0), n ≥ 0. (1)

We recall that the regeneration period lengths Tn+1 − Tn

are i.i.d., and the values of the regenerative process {X(t)}
belonging to different regeneration periods are i.i.d. as well.
Note that, for the non-preemptive priority, we can not consider
regeneration of the 1st server solely because of a dependence
between the states of both servers. (However, it is possible
for the system with preemptive priority, because in this model
class-1 customers ”do not see” the class-2 customers.) Let T be
the generic regeneration period length of the 1st server system
generated by a class-1 customer arriving in an empty system.
In other words, T is distributed as any difference Tn+1 − Tn.

III. STABILITY ANALYSIS

In this section, we apply a regenerative approach to obtain
a simple proof of the necessary stability condition of the 1st
server solely.

To find the necessary stability condition of the 1st server,
we assume that it is stable (positive recurrent), that is ET1 <
∞ [7]. This condition implies the existence of stationary
distribution the process {X(t)}, that is X(t) ⇒ X, t → ∞,
and any associated processes we consider below. (Here ⇒
means convergence in distribution, and X is the stationary
number of customers in the system.)

Note that B1(t) = t− I1(t), where I1(t) is an empty time
of server 1 in the interval [0, t]. We have the following balance
equation for any t ≥ 0:

V1(t) =W1(t) + L1(t) + t− I1(t). (2)

By the Strong Law of Large Numbers (SLLN), with probability
(w.p.) 1,

V1(t)

t
=

∑A1(t)
k=1 S

(1)
k

A1(t)

A1(t)

t
→ ρ1, t→∞. (3)

Denote by L(t) the set of numbers of class-1 customers that
have jumped to server 2 in the interval [0, t), and |L(t)| =
A12(t) as its capacity. Then

L1(t) =
∑

k∈L(t)
S
(1)
k . (4)

Now, by the SLLN, w.p.1 as t→∞,
1

t
L1(t) =

1

t

∑
k∈L(t)

S
(1)
k

=st

∑
k∈L(t) S

(1)
k

A12(t)

A12(t)

A1(t)

A1(t)

t
→ ρ1P�, (5)
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where =st means stochastic equality, and the limit

P� := lim
t→∞

A12(t)

A1(t)
, (6)

exists and is the stationary probability that a class-1 customer
jumps from server 1 to server 2. Denote indicator 1(t) = 1,
if server 1 is busy at instant t, and 1(t) = 0, otherwise, and
let Pb be the stationary busy probability of server 1. Then, by
positive recurrence of the cumulative process {B1(t), t ≥ 0},
w.p.1

lim
t→∞

B1(t)

t
= lim

t→∞
1

t

∫ t

0

1(u)du = Pb, (7)

see [11]. By positive recurrence, W (t) = o(t), t → ∞
w.p.1 [11], and (2)-(7) imply the following important relation
connecting the stationary busy probability and stationary loss
probability of the 1st server:

P� = 1− Pb

ρ1
. (8)

Because a (generic) interarrival time τ is exponential, then

P(τ > S(i)) > 0, i = 1, 2. (9)

Then it is easy to show that the positive limit exists [11]

lim
t→∞

I1(t)

t
> 0. (10)

Because t = B1(t) + I1(t), then it follows from (2), (7) and
(10) that the necessary stability condition of the 1st server is

ρ1(1− P�) < 1. (11)

Next, we present the necessary stability conditions of
the original two-server system. Denote W2(t) as the current
workload in the 2nd server at instant t, B2(t) = t− I2(t) the
accumulated busy time of the 2nd server, I2(t) – the summary
idle time of server 2, and V12(t) – the work that arrived in
server 2 from server 1, in the interval [0, t], i = 1, 2. We
assume positive recurrence, ET < ∞, and write the balance
equation for the work V2(t) that arrived in server 2 in interval
[0, t]:

V2(t) + V12(t) =W2(t) + t− I2(t). (12)

Note that

V12(t) =
∑

k∈L(t)
S
(12)
k =st

A12(t)∑
k=1

S
(12)
k .

Again, by the positive recurrence, W2(t) = o(t), t→∞ [11],
and as above, we obtain that the following limits w.p.1 exist

lim
t→∞

V12(t)

t
=
λ1
μ12

P�, lim
t→∞

V2(t)

t
= ρ2, lim

t→∞
I2(t)

t
> 0. (13)

Using (8) we obtain from (12), (13) the necessary stability
condition of the entire system:

ρ2 +
λ1
μ12

P� = ρ2 +
λ1 − μ1Pb

μ12
< 1. (14)

Finally, we note that the regenerative approach also allows to
establish stability of the 1st server and instability of the 2nd
server, if the following conditions hold:

λ1 < μ12 + μ1; (15)

λ1 > μ1Pb + μ12 − ρ2μ12. (16)

Remark. We note that the previous analysis can
be extended to the model where each server is replaced by
a pool with an arbitrary number of servers working in parallel.

Stability condition (14) is identical to the condition ob-
tained by a modified fluid approach in [8]. However, it is
proved in [8] that (14) is also the stability criterion, if we

replace Pb by the stationary busy probability P
(o)
b of the 1st

server provided there are always class-2 customers in the
queue of the 2nd server. (In other words, the 2nd server
would be permanently busy accommodating class-2 customers
if class-1 customers do not jump to server 2.) Denote the

corresponding idle probability πo(0) = 1 − P(o)
b . Then the

stability criterion becomes

ρ2 +
λ1 − μ1(1− πo(0))

μ12
< 1. (17)

Thus, to apply in practice stability condition (14) or (17),
we must know probability Pb (or πo(0)), which in general
can not be expressed in terms of the first moments of the
interarrival time and service times only, but rather depends on
their distributions. Thus, this quantity needs to be estimated
by simulation.

An exception, when explicit solution is easy available, is
exponential service times in both servers and moreover, μ2 =
μ12. Recall that ρ1 = λ1/μ1 and denote

σ =
λ1

μ1 + μ2
.

Then the corresponding Kolmogorov equations for the station-
ary probabilities of the state of the 1st server (provided the 2nd
one is permanently full) are as follows:

λ1πo(0) = μ1πo(1),

λ1πo(k) = (μ1 + μ2)πo(k + 1), k ≥ 1, (18)

where πo(k) = P(Q1 = k) is the stationary probability that
there are k customers in server 1. (That is, Q1 is a weak
limit: Q1(t) ⇒ Q1.) Fig. 1 (reproduced from [8]) illustrates
the transition rates of the Markov chain {Q1(t)}.

Fig. 1. Transition rates for the system with saturated server 2

To explain (18), we note that when μ2 = μ12, the
process {Q1(t)} is a Markov chain because, by the mem-
oryless property of exponential distribution, the state of the
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2nd server is insensitive to type of customer that occupies
server 2. It is remarkable that relations (18) are valid both
for the non-preemptive priority and for preemptive-resume
priority. Solution of (18) together with normalization condition∑∞

0 πo(k) = 1 gives the following explicit expressions:

πo(k + 1) = σkρ1πo(0), k ≥ 0,

πo(0) =
1− σ

1− (1− ρ1)σ , (19)

which coincide with the ones that are given in [8]. Taking into
account that, when the 1st queue is positive, both servers join
efforts to serve class-1 customers, the inequality

σ =
λ1

μ1 + μ1 2
< 1 (20)

guarantees stability of the 1st queue in the worst-case scenario
when the capacity of the 1st server is insufficient to process the
arriving load. Thus if condition (20) is valid, then the process
{Q1(t)} will be stable. It holds both for non-preemptive
and preemptive-resume priority, because, under overloaded
conditions for server 1, class-1 customers occupy server 2
permanently, and these two different types of priorities become
indistinguishable. Provided the 2nd server is overloaded, class-
1 customers are always waiting in the 1st queue before jumping
to server 2. This waiting time can be interpreted as a ”lost part”
of the joint capacity μ1+μ12. On the other hand, the condition
Pb < ρ1 holds since not all arriving work is processed by
server 1, due to the collaboration with server 2. At the same
time, stability of the 1st server is possible even if ρ1 > 1. In
summary, we expect that indeed the following inequality

σ ≤ Pb ≤ min(ρ1, 1), (21)

holds in all scenarios where the 1st server is stable, and in

particular for Pb = P(0)
b . Taking into account (21), we can

conclude that if the following condition

ρ2 + σ < 1, (22)

holds, then stability criterion (17) holds as well, and thus (22)
is a sufficient stability condition of the original system.

IV. SIMULATION RESULTS

In this section, we present some simulation results. It is
worth mentioning that the source work [8] does not contain
simulation result illustrating corresponding theoretical state-
ments. Oppositely, we think that simulations are very useful
and illustrative to demonstrate the usefulness of the developed
theory.

First, we estimate the idle probability of the 1st server
πo(0), with a saturated 2nd server, using the explicit formula
(19):

πo(0) = 1− λ1μ12 + λ1μ1
μ21 + μ1μ12 + λ1μ12

. (23)

Fig. 2 illustrates the evident convergence of the sample mean
estimate π̂o(0) to the theoretical value πo(0) = 0.63 in (23)
as the number of customer arrivals increases.

Fig. 2. Theoretical value πo(0) vs. estimated value π̂o(0) with λ1 = 1, λ2
= 7, μ1 = 2, μ12 = 5, μ2 = 5

Now we demonstrate the following monotonicity property
of the probability π(0). Let π̂o(0) be the estimate of the
probability π(0) when the 2nd server is saturated by class-
2 customers, and π̂(0) be the estimate of the probability
π(0) in the original system. Then we show that the estimate
π̂(0) attains a minimum when the 2nd server is permanently
busy, that is π̂(0) ≥ π̂o(0). Intuitively, this property is clear
because, with the saturated 2nd server, class-1 customers in
general will jump to the 2nd server less intensively than
in the original model. Hence, the 1st server will be idle
during less time, implying πo(0) ≤ π(0). This property is
confirmed for 1) exponential service times (Fig. 3) with rates
λ1 = 1, λ2 = 8, μ1 = 2, μ12 = μ2 = 5, and for 2) Pareto
service time distribution (Fig. 4),

F (x) = 1− (1/x)ki , x ≥ 1, i = 1, 2, (12),

with parameters λ1 = 0.2, λ2 = 0.5, k1 = 3, k12 = k2 = 4.
Recall that the mean Pareto service time S(i) equals

ES(i) =:
1

μi
=

ki
ki − 1

, i = 1, 2, (12).

For this example, the service rates are equal to μ1 =
0.68, μ12 = μ2 = 0.75,

Fig. 3. The monotonicity of π̂(0) for exponential service times
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Fig. 4. The monotonicity of π̂(0) for Pareto service times

Now we verify the stability/instability of the system and of
each server, for different service time distributions, by means
of the conditions obtained above. We denote ni the number
of class-i customer arrivals, and use n1 = n2 = 20000 in all
experiments below.

Note that by (21) (22), the difference

σ − λ1 − μ1(1− πo(0))

μ12
:= Δ (24)

satisfies the inequalities

0 < Δ ≤ ρ1(1 + μ12
μ1

),

and this indicates a possible difference between stability re-
gions, which are delimited by condition (22) and minimal
condition (17), respectively.

The following scenarios are possible.

1. Stability of both servers.

2. The 1st server is stable, the 2nd one is unstable.

3. Instability of both servers.

For each of these cases, we verify inequalities (21).

Case 1. Fig. 5 illustrates the stability of the second server under
condition (17), with πo(0) replaced by the estimate π̂(0) in the
original model, that is

λ1 < μ1(1− π̂(0)) + μ12 − ρ2μ12 (25)

for λ1 = 0.2, λ2 = 0.5 and Pareto service times with
parameters k1 = 3, k12 = k2 = 4, implying μ1 = 0, 68, μ12 =
μ2 = 0.75. (The behaviour of the 1st queue is similar, and
the corresponding picture is omitted.) It is more convenient to
rewrite inequality (21) as

1−min(ρ1, 1) ≤ π(0) ≤ 1− σ. (26)

Then we obtain π̂(0) ≈ 0.75 ∈ (0.701, 0.858), where the
bounds of interval (here and below) correspond to the upper
and the lower bounds in inequalities (26).

Note that behaviour of the 1st queue is similar.

Fig. 5. Stability of the 2nd server with Pareto service times

Case 2. Note that conditions λ1 < μ1 + μ12 and

λ1 > μ1(1− π̂o(0)) + μ12 − ρ2μ12 (27)

imply stability of the 1st server, and instability of the 2nd
server. However, we replace π̂o(0) by the observed estimate
π̂(0), in which case in general (27) does not imply instability of
the 2nd server. However, this allows us to simplify the analysis
(because we do not care about the behaviour of the 2nd server
in advance). On the other hand, if the 2nd server becomes
unstable, then π̂(0) = π̂o(0).

Figs. 6, 7 illustrate the stability of the 1st server and
instability of the 2nd server with input rates λ1 = 0.2, λ2 =
100 and Pareto service times with parameters k1 = 3.1, k12 =
k2 = 3.2, implying service rates μ1 = 0.68, μ12 =μ2 = 0.69.
Also π̂(0) = π̂o(0) ≈ 0.75 ∈ (0.705, 0.854), and (26) holds.

Fig. 6. Stability of the 1st server with Pareto service times

Fig. 7. Instability of the 2nd server with Pareto service times
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Case 3. Now we consider instability of both servers, with the
input rates λ1 = 10, λ2 = 7 and with Pareto service times with
parameters k1 = k12 = k2 = 3, under condition λ1 > μ1
+ μ12, implying σ > 1. Note that instability of the 1st server
implies instability of the 2nd server as well. This yields service
rates μ1 = μ12 = μ2 = 0.67 and, as we expect, the estimate
π̂(0) = π̂o(0) → 0. Fig. 8 illustrates the instability of the 1st
server, in view of the unlimited (linear) growth of the queue
size in the 1st server. Note that behaviour of the 2nd queue is
similar, and the illustration is omitted.

Fig. 8. Instability of the 1st server with Pareto service times

We also consider a Weibull service time distribution

F (x) = 1− e−xki
, x ≥ 0, i = 1, 2, (12).

Recall that the mean of Weibull service time S(i) is expressed
by the formula

ES(i) = Γ(1 +
1

ki
) =:

1

μi
, i = 1, 2, (12),

where Γ is the Gamma function.

Fig. 9 shows the stability of the 2nd server for parameters
λ1 = 0.2, λ2 = 0.5, k1 = k12 = k2 = 2, implying service rates
μ1 = μ12 = μ2 = 1.13. In this case inequality (26) holds as
well, since π̂(0) ≈ 0.85 ∈ (0.82, 0.91). (The behaviour of the
1st queue is similar, and not shown.)

Fig. 9. Stability of the 2nd server with light-tailed Weibull service times

Fig. 10, 11 illustrate stability of the 1st server and instabil-
ity of the 2nd server for Weibull service times, with parameters
λ1 = 1, λ2 = 7, k1 = 2, k12 = k2 = 5, implying service rates μ1 =

Fig. 10. Stability of the 1st server with light-tailed Weibull service times

Fig. 11. Instability of the 2nd server with light-tailed Weibull service times

1.13, μ12 = μ2 = 1.09. In this case π̂(0) ≈ 0.14 ∈ (0.11, 0.55),
and (26) holds again.

Also we obtain instability of both servers (under condition
λ1 > μ1 + μ12) with light-tailed Weibull service times with
parameters λ1 = 10, λ2 = 20, k1 = k12 = k2 = 2, implying μ1
= μ12 =μ2 = 1.13. Also in this case π̂(0)→ 0. The queue size
in both servers increases linearly, as the number of arrivals
increases, as for Pareto service times, see Fig. 8.

It seems tempting to use a simpler but less tight stability
condition, for instance,

λ1 < μ1 + μ12 − ρ2μ12, (28)

where the unknown parameter π0(0) is replaced by 0. Of
course, this may lead to an error, as the following example
shows. We take parameters λ1 = 5, λ2 = 0.5, k1 = 3, k12 = k2
= 4, implying μ1 = 0.667, μ12 = μ2 = 0.75 and π̂(0) ≈ 0.74. In
this case condition (28) holds, but we indeed observe instability
of the 2nd server (as on Fig. 11), because in this case the tighter
condition (25) is violated.

V. CONCLUSION

In this work, we verify the stability of a special case of the
so-called N -model with two interacting servers, where server
2 helps to serve class-1 customers arriving in the 1st server.
It is well-known that stability analysis of computer systems
with interacting servers is a challenging problem. We outline
a new regenerative proof of the necessary stability conditions
of this model (obtained earlier by the fluid approach in ([8]),
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and this approach for this problem is new to the best of our
knowledge. Another contribution is that we present stability
conditions which allow to distinguish stability and instability
regions of each server individually. Moreover, we demonstrate
the monotonicity property of the estimate of the 1st server
idle probability. Theoretical results are illustrated by numerical
examples, obtained by simulation, which confirm our findings.
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