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Abstract—In that feasibility study we report on the capability
of the inertial measurement units embedded in a smartphone to
adequately reconstruct the spatio-temporal trajectory of human
head during a widely used the Timed Up and Go (TUG) motor
test. The data obtained with the help of a commercially available
motion stereo video capture system served as the reference. We
found that the trajectories reconstructed from the signals of
3-axial accelerometer and gyroscope of a smartphone matched
well with those obtained by a conventional video system. In the
time domain this matching was clearly high, while in the spatial
domain there were inconsistencies between two methods seen
at the “sit-to-stand” and “stand-to-sit” phases. In conclusion,
the smartphone’s sensor system efficiently reconstructed the
spatio-temporal trajectories. Therefore, even relatively cheap
MEMS sensors can be used for the purpose of reliable motion
analysis, especially in the condition when the body effectively
damps mechanical shocks and vibrations during the TUG test.
Vertical human movements during walking can be measured
even by inertial sensors in smartphones with rather low cut-off
frequencies (15-25 Hz).

I. INTRODUCTION

Safe locomotion is critical for personal social adaptation
of the man because it provides communication, mobility,
employment, and, hence, independent living. Both neurological
pathologies and specific normal states, such as ageing or
fatigue, exert profound impact on force, power, endurance,
coordination and velocity of muscle contraction. Impaired
body balance and walking often provoke falls and traumas
[1]. Therefore, it is vitally important to accurately describe the
movement, and to mark its most informative features, which
points on the motor disorders. That would allow elaborating
prognoses and, finally, preventing these motor disorders.

Reliable predicting/preventing methods that allow detecting
minor deteriorations of body balance and thus the risk of
traumas in sports and under ageing are already used [2].
Also, daily walking activity/ability may serve as predictor of
mortality [3], morbidity, quality of life and even life span [4].

Unlike body balance, the human gait requires more com-
plex assessment methods, such as 1) computerized walkways,
and 2) motion video-capture. These two are reliably accurate
in describing phases of gait, step and stride parameters, and
therefore are regarded as “gold standard” for gait studies. Still,
these are usually applied in laboratory setting [5].

Thus, video-based methods are accurate but costly, difficult
to install and operate, and these are often vulnerable to occlu-
sion and illumination change in home settings [6]. Therefore,
we aimed at comparing of gait spatio-temporal parameters

obtained with help of a commercially available smartphone
attached to a head during the TUG test with referenced records
from a conventional stereo video motion capture system.

The paper is organized as follows. In section II the most
relevant works are presented and evaluated. It is concluded that
wearable sensors, including those built in smartphones, seem
perspective to analyze human gait. In section III the algorithm
of inertial data processing from accelerometers and gyroscopes
is presented. Section IV presents the experimental design with
special attention to the inertial measurement and processing
system and the TUG test. In the Results and Discussion section
V we provided a series of graphical presentations of raw and
processed trajectories from IMU sensors and reference video
system, and conclusions.

II. RELATED WORKS

In recent years, wearable sensors for gait characterization
attract growing attention due to their reliable accuracy and
low costs [5], for example, “smart shoes”, inertial sensors
(accelerometers, gyro sensors) [7], [8], [9]. Also, surveillance
camera and smartphones were suggested to trace the motion
and gait of a human body with light returning spheres fixed
on it [10]. This method appears interesting, though complex.

Second, sensor placement appears as an important issue
in gait analysis. In the video-based analysis, light returning
elements are usually fixed symmetrically on the major joints
(knee, heap, ankle, elbow, shoulder) and head. As for the wear-
able inertial sensors, they are mostly adjusted to extremities
and lower back [11]. In our earlier study we proposed to
adjust the light-returning element on the top of head [10]. The
head is one of the most informative objects for gait analysis.
Also, head is the top element of the body construct (reversed
pendulum) and thus it adequately reflects all displacements of
the whole body.

The other important issue in gait and body balance analysis
is the motor test selected. In recent years, the Timed “Up and
Go” test gains much attention from both physiologists and
clinicians to assess gait in healthy controls and neurological
populations, for example with Parkinsons disease (PD) [12],
[13], [14], [15]. The TUG test is comprised of the chain of
events which are can be regarded as a part of usual daily
living activity: 1) sit-to-stand motion, 2) stand-to-go motion,
3) short (3 m) strait walk, 4) U-turn, 5) back walk, and
6) stand-to-sit motion [16]. For healthy people, execution of
the TUG test usually takes 12-16 s. Also, a “long” (L-test)
version of the TUG test with is proposed for clinical use [17].
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Additionally, the TUG test in its instrumented form (iTUG)
was acknowledged informative and reliable [12].

In conclusion, wearable 3-axial accelerometer and gyro-
scope sensors are increasingly used to capture the spatio-
temporal parameters of gait. The reliability of such systems
in comparison with the reference camera-based systems is
high [18]. Inertial Measurement Units (IMU) incorporated in
smartphones can provide records that match registers obtained
by laboratory instruments [19]. The IMU of iPod are also used
as wearable inertial sensors to assess gait [20]. Therefore,
IMU-based methods of human motion analysis can be used
instead of complex and expensive systems and methods based
on video capture and recognition equipment. We consider high
performance inertial modules as superfluous for gait features
analysis especially for the fixing point at a head. Humans
skeleton and muscles act as a physical damper smoothing
strong acceleration signals generated at every step performed.
Characteristic frequencies of such a motion are below 10 Hz.
Thus cheap commercial-off-the-shelf MEMS sensors might be
used in these applications.

III. INERTIAL DATA PROCESSING ALGORITHM

In order to analyse the trajectory of an object the data
obtained from inertial module should be processed. First,
systematic errors are removed. Then, the coordinate axes are
rotated to be aligned to the global frame using the orientation
relative to the gravity vector. After that, gyroscope data are
integrated to obtain the rotation angle; accelerometer data are
filtered and double integrated to obtain the trajectory. Double
integration of acceleration leads to huge errors in trajectory.
However, for short duration motion containing repeatable parts,
like for motion during the TUG test, the errors might be
significantly corrected.

A. Biases subtraction

Biases of accelerometers and gyroscopes might be found
analysing the raw data corresponding to no motion conditions.
For the TUG test this can be done during the sitting on
the chair before and after the test (SS0 and SS1 periods
correspondingly).

For automatic recognition of these still periods the k-point
moving variance of the gyroscope signal is compared with a
threshold. The number of samples is k = 50 for 0.5 second
window size. The maximum duration of a standstill period
using for further analysis was limited to 10 seconds.

To estimate the accelerometer biases on 3 axes, the refer-
enced gravity vector g = [009.82] is transformed into the sen-
sor coordinate frame and subtracted from the measurements.
Then the biases are calculated as the mean difference between
the measured and reference values:

accbias =
1

NSS0

NSS0∑
i=1

(acci − qi ⊗ [0 g]T ⊗ q∗i )

where accbias – systematic error, acci = [x
′
iy

′
iz

′
i] – accelerom-

eter measurements in the sensor’s coordinate frame, NSS0 –
number of samples in SS0, qi – orientation quaternion, [0 g]
– referenced gravity vector in quaternion representation, ⊗ –
the quaternion multiplication operation.

The gyro biases are estimated as the mean value over the
period SS0.

Thus, both accelerometer and gyroscope systematic errors
are calculated and must be subtracted from the raw measure-
ments.

B. Orientation estimation

The implemented orientation filter is based on the nonlinear
complementary filter proposed in [21]. The filter state is a
quaternion q representing the orientation of the device relative
to the reference coordinate system. The reference coordinate
system is chosen so that the Z axis is co-aligned with the
gravity.

Each measurement from the inertial sensors (either gyro-
scope or accelerometer) is sequentially sent to the filter input
along with the measurement timestamp and sensor type. Then
the update of the filter state is performed.

The correction q̇ of current orientation quaternion is calcu-
lated as follows:

q̇ =
1

2
q ⊗ ωg, (1)

where q – the unit quaternion reflecting the orientation of the
device body frame relative to the reference frame, ωg – the
gyroscope measurements in quaternion representation (with a
scalar part equal to zero).

After finding the correction quaternion q̇, the previous
estimated orientation could be updated according to:

qn = qn−1 + q̇ · T, (2)

where T is the time between two consecutive measurements.
Finally, the normalization of the quaternion is performed after
the update procedure.

The filter state update on the accelerometer data is per-
formed in the similar way. Before the update, the estimated
offset (systematic error) is subtracted from the measurements
of the accelerometer. Then the corrected accelerometer mea-
surement acorr is normalized. And the orientation correction
ωa, which should be applied to align measured acceleration
vector with the gravity, is calculated as:

ωa = ka · (acorr × gest),

where gest = q ⊗ [0 0 1]T ⊗ q∗ is the reference normalized
acceleration vector of the gravity transformed into the body
coordinate frame, ka is the weight coefficient of accelerometer
measurements. The coefficient value ka is either ka = 2 under
conditions of low dynamics or ka = 0.5 under conditions
of high dynamics. The distinction between these states is
determined automatically by comparing the energy of gyro
measurements with a predefined threshold.

For the orientation update the calculated value ωa is
placed into the equation (1) instead of ωg , then the correction
quaternion is calculated and the quaternion of orientation is
updated using the formula (2).

Using the estimated orientation the corrected sensors
measurements are transformed from the sensor local frame
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(X ′Y ′Z ′) into the reference static coordinate system (the
global frame XY Z).

⎛
⎜⎝
0
x
y
z

⎞
⎟⎠ = q ⊗

⎛
⎜⎝
0
x′
y′
z′

⎞
⎟⎠⊗ q∗ (3)

To get the linear acceleration a, the gravity vector g is
subtracted from the accelerometer measurements.

C. Velocity and position estimation

The velocity estimation vn is obtained using integration of
the linear acceleration according to:

vn = vn−1 + an · (tn − tn−1),

where an – the linear acceleration at the moment tn.

The linear acceleration contains at least two types of errors:
a) not perfectly excluded bias and b) random errors. In practice
for the time periods of dozens of seconds the random error
component prevails due to its nature – the flicker noise.

The unconsidered bias leads the integration error (the
velocity) to be growing linearly in time. And the random error
bends this straight line.

However, some corrections to improve the integration result
might be done. For the sensor fixed on a foot, ZUPT (zero
velocity update) technique might be applied. In case of fixing
the sensor on a head, the most convenient correction is the
following.

Knowing that SS0 and SS1 are the still periods with the
velocity equal to zero (v = 0), the velocity correction during
the TUG test activity is calculated as the linear interpolation
between the values at the end of SS0 and the beginning of SS1
periods. Then this correction is subtracted from the velocity
estimation. The velocity during SS0 and SS1 is explicitly set
to zero.

To get the position estimation the velocity is integrated.

xn = xn−1 + vn · (tn − tn−1).

D. Z-coordinate motion correction

As it was said, due to the double integration of a noisy
acceleration signal the calculated coordinates are not accurate
in long term aspect.

For gait analysis the step duration and Z-coordinate vari-
ations of a head during walking periods are vital. In order to
extract the vertical oscillations the following data processing
method similar to a high pass filtering is proposed.

First, the Z axis data are filtered by a low pass filter, and
a trend curve is constructed. Then the difference between this
trend and not filtered data is analysed.

To get the short time variations of the position, its low
frequency component is calculated using two consecutive
median and moving average low pass filters:

ztrend =

n+wma/2∑
i=n−wma/2

medfilt(z).

The size of the filter window is set to wmedfilt = 100
samples for the median (approximately 2 steps time interval)
and wma = 25 samples for the moving average filter.

IV. EXPERIMENT DESCRIPTION

A. Reference video positioning system

In our study, we used the Videoanaliz Biosoft 3D setup
(Biosoft LTD, Moscow, Russia) as the reference positioning
system. It is commercially available and actively used in Russia
[22]. The concept of motion stereo video capture system is
shown in Fig. 1.

Fig. 1. TUG test environment

The system includes two synchronized video cameras
Baumer TXG (90 Hz) connected to a computer via Firewire-
1394 interface. The stereo cameras register the motion of a
reflecting ball (balls). The ball can be fixed to an object with
an adhesive film.

To increase the sensitivity of the tracking two additional
infra-red backlight projectors were installed. After saving
stereo video in AVI format, the specific Biosoft commercial
software is used to reconstruct the motion.

The software performs automated identification of labels
(reflecting balls) on video, computation of their coordinates in
3D, construction of a 3D model of a subject and kinetogram
(with the option to superimpose it with original video). The
data can also be exported to the TXT and MS Excel formats
for further analysis.

Spatial resolution of the reference video positioning system
for low dynamic objects with velocities less than 3 m/s is
estimated to be ≈0.2 cm for Y and Z axes, and ≤1 cm for
X axis (the axes are noted corresponding to the scheme on
Fig. 1).

B. Inertial measurement and processing subsystem

In the experiments described below Xiaomi Mi4 smart-
phone equipped with STMicroelectronics LSM6DB0 sensor
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module was used. The inertial module includes a 3-axis
accelerometer, 3-axis gyroscope and Cortex-M0 core. Though
Xiaomi Mi4 contains a magnetometer, it was not used for a
trajectory restoration, since magnetic field is very disturbed
indoors.

LSM6DB0 characteristics are presented in Table I.

TABLE I. CHARACTERISTICS OF LSM6DB0 INERTIAL MODULE

Parameter Value
Linear acceleration measurement range ±8 g

Linear acceleration sensitivity 0.244 mg/LSb

Angular rate measurement range ±2000 dps
Angular rate sensitivity 70 mdps/LSb

Noise characteristics and LPF settings N/A

Although LSM6DB0 can independently fuse the data from
all embedded sensors by iNemo Engine software and provide
the result to the Android OS, all the processing within the in-
vestigation was carried out using raw data from accelerometer
and gyroscope in order to use previously developed advanced
algorithms [23], [24], [25] and to demonstrate the hardware
independence.

The raw data sampled at 100 Hz were collected using Sen-
sor Fusion software provided by the University of Linkoping,
Sweden [26] and then processed by the scripts in Python.

C. TUG test description

The TUG test is composed of a series of consequent
motions in a relatively small room [14]. Before the test the
subject 1) freely rested on a chair (still period), 2) then, by
the command the subject stood up (the sit-to-stand phase), 3)
walked 3 meters forth (walking phase), 4) turned back (U-
turn phase), 5) walked back to the chair (back walk phase),
6) turned back in front of a chair and sit down (turn-stand-to-
sit phase), 7) still period. General design of the TUG test is
presented on Fig. 1.

The smartphone was fixed on the back of the head of a
researcher by the tight knitted hat as presented in Fig. 2. The
smartphone did not change its orientation relatively to the head
while the researcher moved.

Fig. 2. Xiaomi Mi4 smartphone fixed on the back of the head of a researcher

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Inertial data analysis

The data from 3D-accelerometer and 3D-gyroscope col-
lected in TUG test were processed according to the methods
described in Sec. III.

Fig. 3. Raw inertial data (3 spatial components of acceleration and rotation
rate)

Raw data are presented in Fig. 3.

X ′, Y ′ and Z ′ axes are the internal axes of the inertial
module and are not aligned with the global frame.

Since the smartphone was fixed not vertically, the mean
values over the internal Z ′ axis of the accelerometer in statics
are shifted from zero level to ≈-3 m/s2 (as presented in the
upper plot in Fig. 3).

After the calibration of accelerometer and gyroscope using
the data within the still period prior to the phase A of the
TUG test the biases of the accelerometer and gyroscope were
subtracted (Sec. III-A). Then, using the estimated smartphone’s
orientation, 3D-measurements were rotated to fit the global
frame according to the method described in Sec. III-B. The
result is shown in Fig. 4.
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up. Thus only the Z-component of acceleration vector contains
the gravity. And the biases of the gyroscope are excluded from
the raw data.

All phases of the TUG test can be clearly identified on
Fig. 4:
- still period (0–0.7 s);
- phase A (Sit-to-Stand, 0.7–2.2 s);
- phase B (Walk 1, 2.2–4.4 s);
- phase C (Turn, 4.4–5.6 s);
- phase D (Walk 2, 5.6–8 s);
- phase E (Turn-and-Sit: turn 8-9.2 s and “sit” 9.2–10.3 s);
- still period (11–13 s).

The periods of rising from a chair and sitting down on a
chair are characterized by the alternate signals over X axis of
angular rate, left turns – by two peaks over Z axis of angular
rate, performed steps – by Z axis acceleration signal.

The trajectory was obtained by double integration of the
unbiased acceleration data. The motion of the head over Z
coordinate in time (see Sec. III-C) is presented on the upper
plot in Fig. 5 by the solid line.

Fig. 5. Z axis coordinate motion of the head of a pedestrian (restored by
means of inertial system)

To determine the amplitude of vertical displacement of the
head the technique described in Sec. III-D was applied. The
low pass filtered trend is marked by a dashed line (upper plot
in Fig. 5). The extracted vertical oscillations of the head are
presented in the bottom plot in Fig. 5. The head displacement
in the Walk phase is ≈5 cm.

B. Comparison with reference video positioning system

The movement of the head of a researcher was also
registered by the reference video stereo camera system. Curves
for X , Y and Z coordinates are presented in Fig. 6. The
path length along Y axis was ≈2.9 m. Characteristic cross
section views in Y Z and XY planes are shown in Fig. 7 and
Fig. 8. Curves corresponding to the phases A, C and E are
very specific.

To compare the IMU-based calculations with the reference
trajectory, the motion of the head along Z axis was filtered
and processed in the same way as for the inertial signal. The
result is presented in Fig. 9.

Fig. 6. X, Y and Z relative coordinates of the head of a pedestrian within
the TUG test (reference video positioning system)

Fig. 7. Characteristic motion of the head of a pedestrian during the TUG
test (YZ vertical plane, reference video positioning system)

The form and the amplitude of vertical oscillations of the
head registered by the reference video positioning system and
restored by the inertial data processing are very close to each
other (see Fig. 10).

The main difference between the solid and dashed lines
corresponds to the moment of fast sit-to-stand and stand-to-
sit transitions (2-nd and 10-th seconds). The fronts of the
generated acceleration signals during this motion are too steep.
And the internal digital filtering system (inside the smartphone:
embedded in LSM6DB0 or Android OS, might be adaptive
filtering) seems to make them more flat.

However, all the tiny vertical oscillations of the head were
“caught” by the inertial data processing algorithm.

C. Applying the proposed method for longer TUG tests

To test the proposed method for teh longer TUG procedure,
the same researcher was asked to make ≈20 steps in each
Walk phase. The result of Z coordinate motion is presented in
Fig. 11.

The curvature of the dashed line in the upper plot demon-
strates double integration errors (mostly in velocity calculation
part). However, the technique of the construction of the low
pass trend and further plotting the difference between the trend
and the unfiltered trajectory yields the same result for vertical
head displacement – 5 centimetres.
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Fig. 8. Characteristic motion of the head of a pedestrian during the TUG
test (XY horizontal plane, reference video positioning system)

Fig. 9. Motion of the head of a pedestrian during the TUG test (Z-coordinate,
reference video positioning system)

D. Possible extracted features for gait disorders analysis

Gait is a rather complex motion for analysis because it
provides dozens of parameters [9]. Vienne et al. extracted as
little as 57 parameters from gait analysis and classified them
in 7 groups. Among these are:

1) springiness (e.g., step time),
2) sturdiness (e.g., step length, range of motion, vertical

acceleration),
3) smoothness (e.g., anteroposterior acceleration of

lower back, maximum acceleration or speed of all
body parts),

4) stability (e.g., mediolateral range of motion of the
lower back),

5) steadiness (e.g., variation coefficients a of all part and
all directions),

6) symmetry (e.g., right-left symmetry of parameters of
springiness and sturdiness),

7) synchronization (double stance time, phase coordina-
tion index).

As it follows from this list, only few parameters can be
extracted by means of only one sensor (fixed on a head).
However, such important parameters as time of step or stride,
time of turning, time of sit-to-stand and stand-to-sit phases are
easily read from the trajectories.

Fig. 10. Comparison of the restored Z axis trajectories for both methods:
reference video positioning system and IMU-based approach

Fig. 11. Z axis head height oscillations of a pedestrian for a longer 20 steps
TUG test

Similarly, Mico-Amigo et al. have recently shown that
using a single body-fixed sensor allows distinguishing PD-
associated gait from that of healthy controls [27]. In this
study, gait was assessed under either self-paced (self-selected
speed, SSS) and as-fast-as-possible (fast speed, FS) condition
during 5 meter long walk that equals 7 steps. Over 160
kinematic parameters were extracted using accelerometers and
gyroscopes. Among the most valid parameters for the SSS
condition were the following: relative root mean square (RMS)
of vertical displacement, relative displacement at the start of
movement, range of anterior-posterior velocity, and relative
RMS of vertical acceleration at the pre-last step. As for the
FS condition, duration of the middle step and angular velocity
around the medio-lateral axis of the last step appeared as
predictors for PD [27]. It would be wise to apply this 5 meter
walk paradigm to the TUG test to discriminate between PD
patients and healthy controls, because 3 steps paradigm gives
lesser data for analysis. Additionally, gait speed, stride length,
variability, cadence, foot angles and clearance are valid for
instrumented gait analysis [28].

As these characteristic events are very important for diag-
nostics of the symptoms of parkinsonism, such as bradikinesia,
freezing, shuffling slow steps, we regard our result as sufficient
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to apply a smartphone IMU to record PD-specific events
(features) from the spatio-temporal trajectory obtained from
the only one body segment. Alternatively, one can consider of
applying several IMU sensors on various parts of the body for
a more profound analysis of the above listed parameters.

VI. CONCLUSION

In a panoramic review [29] published in 2016 the authors
stated that only “surprisingly low percentage of 6% of the
studies” included high level technologies for the assessment
of Parkinsons Disease. Obviously, the accuracy of MEMS-
based inertial devices was unsatisfactory to register the human
motion and to extract the gait features.

Human body mechanically damps shocks and vibrations
during walking, and the head is a perfect instrument to reflect
the process. The characteristic frequencies of this smoothed
motion are rather low and can easily be registered by cheap
MEMS sensors with LPF cut-off frequency of ≈15-25 Hz.
Thus we proposed to use IMU equipped smartphones (or
stand alone light weight sensors wirelessly connected to a
smartphone) to measure the vertical motion of the head and
to use it for gait analysis. The corresponding inertial data
processing method includes: sensors biases subtraction, IMU
module orientation estimation, velocity and position estimation
and Z-coordinate motion high pass filtering.

Now, as it was demonstrated, a single inertial 3-axial sensor
embedded in a smartphone allows reconstruction of spatio-
temporal trajectories of the head during the TUG test with the
accuracy comparable with that of a commercial motion capture
video system.

This result seems promising to elaborate an easy-to-do,
low-cost, at-home, single-sensor method either to discriminate
between PD patients and healthy controls, to evaluate the effect
of anti-PD therapies, or to monitor current motor condition of
PD patients. Longer walk (5-10 meters) with greater number of
steps (10-20 steps) seems more reliable for better segmentation
of the walk and capture gait signatures.
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