
Deadlock-Free Routing in SpaceWire Onboard
Network

Lev Kurbanov, Ksenia Rozhdestvenskaya, Elena Suvorova
Saint-Petersburg State University of Aerospace Instrumentation

Saint-Petersburg, Russia
{lev.kurbanov, ksenia.khramenkova}@guap.ru, suvorova@aanet.ru

Abstract– n this article we consider the deadlock-free
routing problem for onboard SpaceWire network with
redundant devices. We work with static routing, it means
that, routing tables are calculated and uploaded into the
switches before launch the SpaceWire network. We solve
deadlock-free problem with Up/Down routing approach,
which is based on acyclic directed network graph. To build
acyclic directed graph we modify the original algorithm of
DFS based creating spanning tree. To find the routes of
data transmission in the network we convert created
directed graph to channel dependency graph. Also in this
article we provide an example and explanation of our
algorithms for deadlock-free routing in SpaceWire
network.

I. INTRODUCTION

This article is a continuation of the work [1], which tells
about new computer-aided design system (CAD) for onboard
SpaceWire networks, consisting of four components:

1) Onboard network topology design and evaluation of its
structural characteristics;

2) Data transmission routing in a network;

3) Generation of the scheduling table for the STP-ISS
transport protocol for the transmission of the data with
Scheduled quality of service;

4) Simulation of the network operation with all the data
current component got from other 3 components.
Simulation performs with graphical user interface.
Visualization and graphical user interface is used from
VIPE project [2].

The article [1] is focused on the first component of CAD
and it considers fault-tolerance analysis algorithm for
SpaceWire onboard networks, which is based on k-connectivity
search on a graph.

In the current work we consider the second component of
CAD. Our task is data transmission routing in a network
without deadlocks. This is one of the most important tasks in
network design; it implies finding sequence of switches
between source and target devices and creating routing tables
for these switches. As we said, we work with static routing
according to CAD’s development specifications. Static routing
differs from dynamic routing in that routing tables are adjusted
in switches only once before network launch and cannot be

automatically changed during network operation. Only
manually changing the routing tables is possible, without
special algorithms in contrast to dynamic routing. In other
words, network administrator has to take a hand in each case
when changes appear in onboard network. This is main
disadvantage of static routing, but on other hand static routing
is more stable and does not require large hardware and software
switch resources for routing table service.

In dynamic routing, routes and routing tables are calculated
on basis of the analysis of incoming messages during network
operation. Switches or special devices, that are responsible for
network state, can change routing tables taking into account
incoming messages with information about network state. For
instance, mechanism Plug-and-Play in SpaceWire network. In
Plug-and-Play there is the special device (manager), which is
responsible for routing tables state and their dynamic adjusting
in case of network reconfiguration during network regular
operation. In case of dynamic routing additional routes are used
for service packets transfer, also switches should have
processors and should be ready to execute special commands or
analyze service packets by itself (without Plug-and-Play
manager in network). The necessity of additional resources is
disadvantage of dynamic routing. Increasing of network
persistence is an advantage of dynamic routing. In case of
dynamic routing designer of network does not have to analyze
all possible network situations and find all possible routes to
avoid any fault and save the traffic.

Static routing from this point of view is more restricted, but
it has undeniable advantage – predictability. Network
administrator using static routing knows packet routes at any
moment, since they are known and do not change during
network operation. The drawback of static routing is that
scaling possibility is minimal or it is absent at all. When new
device is added to N switches in network, it requires executing
N write-commands. To put it otherwise, it is necessary to make
special command about new device into each switch to adjust
their communication with new device.

Therefore we can select the advantages of static routing:

Easy checkout and adjusting in small networks. In small
networks administrator can fast and with high quality
check state of switches and determine fault in case of
packet loss;
Does not require additional software and hardware
resources, since routing protocols are absent. Switches

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

do not have to have processors, opportunity analyze
commands and provide QoS of protocols;
It is not necessary to create time out in switches
operation. After executing the command, switch is
immediately ready for operation. Time out period
appears when switch rewrites his routing table. During
this period all incoming packets have to wait for when
switch will be able to transmit them to output ports;
At any moment of network operation it is easy to predict
switch operation. Administrator knows every routing
tables.

The drawbacks of static routing are following:

Weak scaling. In large networks it is impossible to add
new device. Switches cannot determine and add new
device in operation;
Low stability to unpredicted network situations. Predict
all possible network situations even in small network is
difficult task for designer, and with increasing
number of devices in network this task becomes
impossible;
Full checking route is necessary in case of packet loss. It
is not obviously what the reason of packet loss.
Therefore network administrator has to check each node
in the route to determine the reason of fault and make
manually corresponding changes to avoid subsequent
packet losses.

In the current work we focus on onboard networks, which
are based on SpaceWire standard. SpaceWire technology
provides opportunity of creating onboard computing network
with flexible network architecture and high throughput.
Adjusting routing tables and adaptive routing tables in switches
makes possible of using static routing in SpaceWire network.

The deadlock-free routing in static routing provide
guarantee that packet transfer will be successfully finished in
the target device, if following conditions are observed:

There is the path in the network between source and
target nodes, that can be used for data transfer;
All physical channels and switches are stable and work
correct.

The onboard network architecture is changed from mission
to mission according to actual tasks. Therefore designers
cannot use solutions that were achieved in previous projects. It
means that for each new mission it is necessary to repeat whole
process of network design including deadlock-free routing and
creating routing table. This is very difficult and high
consumption task. In this article we provide solution of this
task. We describe a method that helps find deadlock-free routes
and choose more suitable routes, taking into account criteria.

In section II we describe SpaceWire onboard network and
its features and restrictions. Statement of the problem and its
analysis are in section III. Explanation of deadlocks and
description of deadlock-free routing you can find in section IV.
Section V includes description of Up/Down routing that was
chosen as base approach of deadlock-free routing. Section VI is
devoted to search of routes in channel dependency graph that

we obtain after applying Up/Down rules. Section VII describes
the criteria which is used for second component of CAD.
Conclusion is section VIII.

II. THE NETWORK DESCRIPTION

The network consists of main and redundant elements,
because in case of failure of any element in the network, the
only possible solution to support the maintain network
operation is to replace the failed network element with
workable network element that is similar to previous element.
The network element can be a switch, a physical channel, a
port or a unit in the device. The main network element we call
element that is immediately ready to transmit the data. The
redundant network element we call element that is workable
but which does not take part in regular network operation.
Other word it is disabled element, but which can be enabled in
case of failure of main element.

Fig 1. shows an example of network, where you can see
redundant and main network elements. Nodes with units “A”,
“B” and “C” correspond to devices in the network. Remain
nodes are switches. The main elements in this example are dark
grey colored switches and all units “A”. The redundant
elements are light grey colored switches and all units “B” and
“C”. The redundant channels are channels that are connected
between redundant elements or between redundant and main
elements.

Fig. 1 An example of SpaceWire onboard network

III. STATEMENT OF THE PROBLEM. RESTRICTIONS OF
SPACEWIRE STANDARD

The task of the second CAD component is to find the
specified by network designer number of routes, which do not
lead to deadlocks and satisfy to specified criteria (the maximum
data transmission delay and distance between connected
devices). It is advisable to solve this task consistently,
separating it into subtasks:

Find all possible routes that do not lead to deadlocks;

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 108 --

Choose routes that satisfy to criteria.

We have to note the additional requirements for data
transmission routing:

At least one of routes should to use only main network
elements;
Route that uses redundant elements should also use
main elements.

SpaceWire standard has restrictions that we have to take
into account:

1) Device in the network can generate packets with any
rate and send these packets to any devices.

2) The packet that reaches its destination is deleted from
the network. A packet arriving at the destination address
is not forwarded to the network.

3) Wormhole routing is used in a network.

We also observe the following rules for packet transmission
that are used in the network:

The wormhole routing rule. When a packet enters the input
port on switch, the packet header is read, and according to
routing table header is sent to output port. Packet tail is
transmitted through switch “on the fly”, taking up channel for
transmission. Only one packet can be transmitted on the
channel at a time.

The blocking rule. If the required channel is busy, packet is
stored to the input buffer of switch and waits until the busy
channel becomes free. If size of packet is larger than buffer
space, the rest of packet is stored into input buffers of previous
switches according to its route, occupying all channels between
these switches. The packet cannot be separated and partially
transmitted or transmitted through different routes. If the tail of
blocked packet does not occupy full space in the buffer, the
next incoming packet at this port will fill the rest of buffer
space and will be blocked according to the blocking rule.

The rule of packet removing. This rule is related to device
operation. The packet is completely unloaded from the network
when the device receives the header byte.

These rules are basic for SpaceWire standard and it is
necessary to take them into account.

IV. DEADLOCK-FREE ROUTING

In the network transfer process some packets may be locked
and these packets do not reach their destination nodes. Usually
such situations are results of deadlocks, when packet can be
locked by other packets that use necessary resources for this
packet. In other words, the main reason of deadlocks is the
limited set of resources in the network. The physical channel is
the main network resource.

Deadlocks appear as a result of cyclical dependences of
resources in the network. When a packet is transmitted over a
network, it takes up a physical channel on each hop between
switches. As the packet travels through the network, the tail of
the packet releases previously occupied channels.

Packet in the network has two states:

“Exclusive ownership of channel” in case of packet
transmitting;
“Resource wait-for” state, when header of packet is
blocked.

The “exclusive ownership” and “resource wait-for”
conditions makes cyclic dependencies and deadlock
possible [3].

D

A B

1 2

34

Fig. 2 Example of deadlock

In the Fig.2 you can see an example of deadlock. Circles
represent the source and target nodes, squares represent
switches. There are four routes in the network. Packet 1 has the
route D-4-1-2-B. Packet 2 is transmitted through B-2-3-4-D.
Packet 3 is transmitted through A-1-2-3-C. Packet 4 has the
route C-3-4-1-A. Lines with arrows represent direction and
route of data transition from source node to target node. Solid
lines represent packet’s “exclusive ownership of channel”. The
dash lines correspond to packet’s “Resource wait-for”
state.

In Fig. 2 deadlock includes all packet flows. The packet
from node A is blocked on switch 3 because of packet from
node B. The packet from node B is blocked on switch 3 by
packet from node C. The packet from node C is waiting for free
channel between switch 4 and switch 1, which is occupied by
packet from node D. Packet from node D is blocked on switch
1 because of packet from node A.

Such deadlock stops whole network, and data transmission
is impossible.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 109 --

To describe this situation we create the channel dependency
graph (CDG). An example you can see in Fig. 3.

CDG describes dependency of channels, which are used by
packets. The vertices represent channels of network. Arcs
correspond to sequence of using the channels by packets.

Fig. Channel Dependency Graph

Dally W. J. and his colleagues in [4] formulated the
following theorem: The routing function in the network is
deadlock-free, if there are no cycles in the Channel
Dependency Graph. This theorem is fundamental in deadlock-
free routing problem.

In Fig. 3 you can see two cycles. The cycle with the bold
line shows the situation from example in Fig. 2. The second
cycle with dash line represent other deadlock, which can appear
in the network.

There is a solution for deadlock-free routing problem [5].
Authors present an algorithm of breaking cycles in CDG. If
deadlock exists, it removes by virtual channel insert. The
presented algorithm [5] does not restrict designer in choosing
the routing, but it requires some resources and technologies that
cannot be applied in some networks. For example, it is
impossible to solve deadlock-free routing problem by virtual
channel insert for SpaceWire network, since this standard does
not support virtual channel technology. Such strategy can be
used only if deadlocks are rare and it is possible to remove
them by introducing additional resources [6].

V. UP/DOWN ROUTING

To solve deadlock-free routing problem authors [7] present
an approach that is based on Up/Down routing for regular and
irregular topologies. The Up/Down routing is the popular
solution for deadlock-free routing in the modern commercial
networks.

The classic Up/Down routing approach consists of the
following steps:

1) Graph representation of the network;

2) Spanning tree construction with breadth-first-search
algorithm (BFS);

3) Numbering of vertices in the spanning tree;

4) Direction assignment of the edges in spanning tree
according to the numbering of vertices (direction from
vertex with low number to vertex with higher number).
The resulting graph should be acyclic;

5) Applying Up/Down rules in the directed acyclic graph
based on network structure.

The Up/Down rules can be formulated in following points
that are consistent in their execution:

a) A route can be laid through zero or more channels in
“up” (forward) direction;
b) A route can be laid through zero or more channels in
“down” (backward) direction.

The sequence of applying of these rules is strictly regulated
and requires consistently execution: a at first and then b.
Applying a after b is forbidden.

In this way we can avoid channel dependencies, because of
packet cannot be transmitted through physical channel in “up”
direction after transmitting through physical channel in
“down” direction.

For instance, in Fig. 6 according to Up/Down rules the
route -1-4-3- is allowed. The route -1-2-3- is forbidden.

In [7] authors in detail describe method that creates the
spanning tree based on deep-first-search algorithm (DFS). The
provided algorithm is more flexible in criteria adjusting to
making the route, than classic method with BFS based
spanning tree.

When we create DFS based spanning tree, it is necessary to
choose the root vertex and choose the next vertex. In [8]
authors present heuristic rules to choose root vertex for
creating DFS based spanning tree. Also authors formulate
heuristic rule to choose next vertex to add it to spanning tree.

If we create DFS based spanning tree from each vertex in
the graph we get different solutions. In each directed graph
that we acquire from spanning tree we can find at least one
route between any couple of devices. It means that to get full
set of solutions we have to build spanning tree from each
vertex in the network graph.

According to our statement of problem we have to find all
possible routes, therefore we consider full set of
solutions.

When working with the SpaceWire network, the proposed
methodology should be clarified. To choose the root vertex we
should consider only those that are representation of the
devices. Otherwise, if we create spanning tree from switch, we

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 110 --

can lose this switch as functional network element, because of
transmitting through this switch becomes impossible
according to Up/down rules.

If we create the DFS based spanning tree from vertex that
is a representation of device in the network (Fig. 4.a), we get
solution, where all switches can transmit data and are
functional elements in the network. In case when we create
spanning tree from vertex that is a representation of switch
(Fig. 4.b), we get solution, where switch 5 cannot transmit
data.

) b)

Fig. 4 An example of solutions with different root vertices: a) root vertex
is device A; b) root vertex is switch 5

That is because of all channels that are connected to switch 5
are outgoing. According to Up/Down rules packet can income
to this switch, but it cannot be transmitted forward, since after
transmitting through channels in “down” direction transmitting
through “up” direction is forbidden. Therefore, we build
spanning trees only from those vertices that are representation
of devices in the network.

To build DFS based spanning tree it is necessary know
what the next vertex will be added to spanning tree. In [8]
authors suggest choosing as next vertex that has with
maximum number of connections with vertices in the spanning
tree. In case of tie, next vertex is vertex that has maximum
value of average topology distance. Authors argue that
applying of this heuristic leads to reducing number of routing
restrictions in the switches. You can find more detail
information in [8]. An example you can see in Fig. 5.

Fig.5 shows an example of DFS based spanning tree. The
boldest arcs (between vertices A,1,4,D) correspond to main
branch, i.e. branch that is created until first return from
recursive function. The less bold arcs correspond to secondary
branches that are created after first return from recursive
function. The thinnest arc (between vertices C and 3)
corresponds to last secondary branch. The set of solid arcs and
vertices forms the spanning tree. The dash arc is the connected
arc between branches in the spanning tree.

Fig. 5 DFS based spanning tree

Let’s consider with algorithms that we use. For
comfortable reading the algorithms we offer use Table 1 with
notations and their descriptions.

We represent network as non-directed graph G (V, E). The
set of vertices V corresponds to set of all devices and switches.
This set includes main as well as redundant nodes in the
network. Set of edges E corresponds to set of all channels,
including channels between redundant elements. This network
representation is most comfortable for finding deadlock-free
routes and take into account redundant network
elements.

An algorithm that we use does not require the vertices
numbering to assign the edge direction. We assign the
direction during the DFS creating spanning tree. This
algorithm is shown in the Algorithm 1. The original algorithm
is presented in [8].

Textual accompaniment for direction assignment
algorithm:

As input data we use root vertex v, flag MainBranch is
equal to TRUE;

The main cycle of algorithm is the deep-first-search of
the graph G. This cycle executes until set ST is equal to
set V;

Vertex v is added to set ST, then we search all its
neighbors (str. 3-4);

If vertex v has no any neighbors, it means that current
branch is finished. We set flag MainBranch to FALSE
and make return from recursive procedure (str. 5-8);

If set of neighbors NV is not empty, we find all edges
between each neighbor vertex and vertices in the
spanning tree, except current vertex v. For each edge we
assign the direction according to MainBranch flag (str.
9-19);

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 111 --

TABLE I. INSTRUCTIONS

If main branch is creating (MainBranch=TRUE), then
arc direction is from vertex in the spanning tree to
neighbor vertex. If secondary branch is creating
(MainBranch=FALSE), then arc direction is from
neighbor vertex to vertex in the spanning tree (str. 12-
16);

We add arc to set A (str. 13,15);

We store for each neighbor vertex number of
connections with the spanning tree (str. 18);

We filter set of neighbors NV and save next vertex that
has maximum number of connections with the spanning
tree (str. 20). If there are several such vertices, we filter
NV again and save only one next vertex that has
maximum value of the average topology distance (str.
21-25);

We assign the edge direction between current vertex v
and chosen next vertex according to MainBranch flag. If
main branch is creating (MainBranch=TRUE), then arc
direction is from current vertex v to neighbor vertex. If
secondary branch is creating (MainBranch=FALSE),
then arc direction is from neighbor vertex to current
vertex v (str. 26-30);

We add arc to set A (str. 27, 29);

Algorithm is repeated for next vertex (str. 31).

This algorithm does not lead to cyclic directed graph, since
cycles are possible if we create in one branch both arcs with
forward and backward directions. According to our algorithm
we can create only one type of direction in one branch.

Since we build the spanning trees from vertices that are the
representation of devices in the network, there are several
solutions. In Fig, 6 you can see one of the solutions of
direction assignment algorithm. This solution is for root
vertex A.

In Fig. 6 the bold arrows correspond to arcs and their
direction after applying direction assignment algorithm. The
grey arrows in the switches 1, 2, 3 and 4 show allowing
direction for transmitting data according to Up/Down routing.
As a result of algorithm in switch 2 data transfer is forbidden
from channel 2 to channel 3 and in opposite direction as well.
In this way we avoid the channel dependencies and the
deadlocks.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 112 --

1 2

34

A B

CD

Channel 2

Channel 4

Ch
an

ne
l1

Ch
an

ne
l3

Fig. 6 The network directed graph after direction assignment algorithm

VI.CONVERSION OF DIRECTED GRAPH TO CDG. THE ROUTES
SEARCH .

Since we get the directed graph we suggest to convert it to
CDG for more comfortable routes search. Conversion should
be with respect to Up/Down rules and it can be separated by
two subtasks:

Creating the additional arcs in opposite direction;

Conversion of arcs to vertices of CDG and connecting
them according to Up/Down rules.

Creating the additional arcs. Since in the network full-
duplex channels are used, we represent each channel as two
arcs with opposite directions. As we work with directed graph
at this stage, we create arc with opposite direction for each arc
in the graph, marking the original arc. The marking arc is
necessary for connecting the vertices in CDG. Graph with
additional opposite arcs we call digraph D(V, A’), where A’ is
the set of original and opposite arcs. The algorithm of
conversion of directed graph G to digraph D is shown in the
Algorithm 2.

Conversion of arcs to the vertices of CDG. The vertices in
CDG correspond to arcs in digraph D. The key moment
creating CDG is the connecting its vertices. Connections in
CDG correspond to possible sequence of using channels by
packet. We create CDG with respect to Up/Down rules and
some sequences of using channels are forbidden. It means that

arcs that create cycles in the CDG will be absent, therefore we
avoid channel dependencies and deadlocks are excluded.

The graphical representation of conversion of directed graph G
to CDG is shown in Fig. 7 for descriptive reasons.

Fig. 7 An example of conversion of directed graph G to CDG

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 113 --

Now it is easy to find all routes between couple devices
using BFS based algorithm in CDG. We suggest apply the BFS
algorithm starting with leafs of CDG (incoming channels to
devices). When we use BFS starting with leafs, we can create
routing tables for all devices on each step of BFS algorithm.

The BFS algorithm allows us to find all routes between
couple devices, including shortest routes, and write into all
intermediated nodes corresponding routing tables.

Without filtering the gained routes by selection criteria, the
result of algorithms is an adaptive routing for each switch in the
network. The drawbacks of the adaptive routing you can
find in [1]. In the current work there are selection criteria,
which are described in the next section.

VII. ROUTES SELECTION BY CRITERIA

In case of existing of several routes between devices,
selection of optimal routes is applied. To define the degree of
route optimality (A), we suggest to use formula of weighted
average for two criteria that takes the following form:

(1)

, where

x1 – coefficient that is responsible for number of hops
between devices. The reduction x1 reduces the distance
influence on selection the optimal route.

x2 – coefficient that is responsible for delay in data
transmission between devices. The reduction x2 reduces
the delay influence on selection the optimal
route.

Network designer should set the coefficients x1 and x2 for
each information flow.

To bring the parameters to the general range, we propose to
normalize the parameters using the following formulas

h= (2)

= (3)

where MinDist – minimal distance (hops) among all routes
between considered couple of devices, Dist – number of hopes
in the current route; MinDelay – minimal delay among all
routes between considered couple of devices, Delay – delay for
the current route.

Since coefficients depend from each other (x1+x2=1), we
can express it with y:

x1 = y,

x2 = 1-y.
(4)

Therefore to select the optimal route by distance and delay
criteria it is enough to set y.

VIII. CONCLUSION

In the current work we have researched the deadlock-free
routing problem in SpaceWire onboard networks. We have
considered the reasons of deadlocks and presented an algorithm
for deadlock-free routing. This algorithm is based on Up/Down
routing approach and the DFS spanning tree. Our algorithm
does not require the numbering of vertices to assign the edge
direction and guarantees acyclic directed graph as result. To
find routes according to Up/Down rules we have built the
CDG, where it is more comfortable find all routes using BFS
algorithm. Also we suggested distance and delay criteria to
choose optimal route among gained routes between each couple
of devices.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Ministry of Education and Science of the Russian
Federation under the contract RFMEFI57816X0214.

REFERENCES
[1] Lavrovskaya I., Olenev V., Korobkov I., “Fault-Tolerance Analysis

Algorithm for SpaceWire Onboard Networks”, Proceedings of the
21st Conference of Open Innovations Association FRUCT. – FRUCT
Oy, Oct. 2017, pp. 28.

[2] Syschikov, Y. Sheynin, B. Sedov, V. Ivanova, “Domain-specific
programming environment for heterogeneous multicore embedded
systems”, International Journal of Embedded and Real-Time
Communication Systems, vol 4. 2014, pp. 1-23.

[3] S. Warnakulasuriya, T. M. Pinkston, “Characterization of deadlocks
in interconnection networks”, Parallel Processing Symposium, 1997.
Proceedings., 11th International. – IEEE, 1997, pp. 80-86.

[4] W. J. Dally, C. L. Seitz, Deadlock-free message routing in
multiprocessor interconnection networks, 1988.

[5] Seiculescu, S. Murali, L. Benini, G. De Micheli, “A method to
remove deadlocks in networks-on-chips with wormhole flow
control”, Proceedings of the Conference on Design, Automation and
Test in Europe, March 2010, pp. 1625-1628.

[6] J. Duato, S. Yalamanchili and L. M. Ni, Interconnection networks: an
engineering approach, 2003.

[7] J. C. Sancho, A. Robles, J. Duato, “A new methodology to compute
deadlock-free routing tables for irregular networks”, International
Workshop on Communication, Architecture, and Applications for
Network-Based Parallel Computing, Jan. 2000, pp. 45-60.

[8] J. C. Sancho, A. Robles, “Improving the Up/Down routing scheme
for networks of workstations”, European Conference on Parallel
Processing, 2000, pp. 882-889.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 114 --

