
Data Distribution Services Performance Evaluation
Framework

Krinkin, Filatov, Filatov, Kurishev, Lyanguzov

Saint-Petersburg Electrotechnical University “LETI”

St. Petersburg, Russia

kirill.krinkin@fruct.org, {ant.filatov, a rt32fil, ba ttousai45736, xtail1996}@gmail.com

Abstract—DDS (data distribution service) is a middleware pro-
tocol and API standard for data transferring using a publisher-
subscriber model from the Object Management Group (OMG).
There exist various open source and commercial implementations
of DDS standard that provides API and services for data
distribution. Every developer claims that his implementation
fits standard and provides the best possible parameters for
data transferring. Three different implementations of DDS are
compared to determine their usability and performance charac-
teristics. This paper presents a testing framework that allows to
evaluate different implementations in the same experiments and
moreover to include another DDS.

I. INTRODUCTION

Object Management Group [1] is an open membership, not-
for-profit technology standards consortium, that was created
by leading IT companies (including IBM, Apple Computer,
Sun Microsystems etc.) for developing enterprise integration
standards for a wide range of technologies in 1989. One of
the developed standards – Data Distribution Service (DDS)
– describes a data transfer protocol based on a publisher-
subscriber pattern that is one of the most useful patterns for
data transfer.

There are two base documents that describe DDS stan-
dard: the specification that describes a Data-Centric Publish-
Subscribe (DCPS) model for distributed application commu-
nication and integration [2], and Real-time Publish-Subscribe
Protocol (RTPS) DDS Interoperability Wire Protocol [3]. Ac-
cording to these documents several vendors such as Vortex [4],
eProsima [5], Prismtech [6] etc. provide their implementations
of the protocol.

In this work three open source, the most popular and
widespread implementations were chosen for comparison.
They are presented below:

• OpenDDS (by Prismtech)

• OpenSplice (by Vortex)

• Fast-RTPS (by eProsima)

The testing framework for estimation DDS parameters was
developed. The main idea is to put several implementations
in the same conditions and to test them as a black box. To
perform the same experiment on every DDS it was necessary
to implement adapters that have the same input interfaces and
provide the data distribution that is based on the corresponding
implementation. The output measurements should be presented
in the same format so that they may be compared.

The focus of the work is to compare the characteristics
of message transportation using different implementations of
DDS and to find the one that is the most successful. Moreover
the aim is to present the framework that allows to perform this
comparison for any DDS implementation even for one that is
not considered in this paper.

The paper is structured as follows: in Section II there is the
description of existing comparison methods and a relevance of
this paper; Section III provides a description of the developed
testing framework; the results of the DDS implementation
comparison and framework usability are presented in Section
IV.

II. STATE OF ART

According to DDS standard the transferring of any in-
formation happens in the area that is called domain. There
is no way to exchange the information between different
domains. There are several participants and topics in any
domain. Topics - are the channels for exchanging the data
while participants can send and receive the information from
any topic in one domain. A participant consists of publisher(s)
and/or subscriber(s). To have the opportunity of exchanging
data in several topics each publisher and subscriber may
contain several data writer and data reader that are directly
responsible for transferring low level data through topics. In
the Fig. 1 the scheme of a domain is presented.

Fig. 1. Example of connections of participants in one domain

The Fig 2 clarifies the types of connection between
components of DDS

Commonly there are three indicators that are measured to
test the DDS parameters:

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



Fig. 2. Illustration of the references of DDS components

1) Latency for transporting a message in dependency on
its size. There is a delay between sending messages
that is enough to handle each one, so there is no
queue of messages in this test.

2) Throughput of a system - amount of messages that
can be handled per second in dependency on the size
of a message. In this test messages are sent one by
one with no delay.

3) Jitter - the difference between time for handling of
two consecutive messages.

The developer of OpenSplice calculated the latency and
throughput [7]. Latency was measured for two participant
and messages no more than 32 kilobytes. Throughput was
measured for a bigger graph of participants, but the size
of a message was still little. P. Bellavista et all compared
OpenSplice with another DDS, RTI [8]. They tested DDS im-
plementations on small graphs with maximum 5 participants.

The tests that were performed by the developer of
OpenDDS [9] and Fast-RTPS [10] are the same as those that
were mentioned above: the latency was measured for small
size of messages.

Rizano et all [11] evaluated the latency of several DDS
including OpenDDS. In that work the latency was measured
for the graph containing one publisher and several subscribers
(their amount varied from one to five) and for message size
not larger than 1000 bytes.

F. Martin et all [12] has compared the performance of Fast-
RTPS in different settings such as ’best efford’ or ’reliable’
distribution. In that work authors measure the latency and also
the percentage of messages looses. They performed the tests
on different network technologies: Ethernet and wifi.

In this research two first indicators are united to make
the system closer to the real one. The general scenario of
testing is that a certain graph of publishers and subscribers is
assigned, where each publisher writes 100 messages of some
length into some topic without a delay. Each message contains
a field where the time of sending a message is specified. All
subscribers who read this topic calculate the time spent on the
transfer as soon as they receive a message. Because there are
many messages and sending can take less time than processing
(especially for large messages), the processing time for each
new message increases. This allows to determine both latency
and throughput in one test. latency is the time to send the first
messages, and the throughput can be estimated by the degree

of increase in the time for processing messages. The jitter is
also always measured.

III. THE STRUCTURE OF TESTING FRAMEWORK

To solve tasks mentioned above, the testing framework was
developed. The purpose of its creation was to provide opportu-
nities to conduct identical tests under the same conditions over
different DDS. Since the objects of research were exactly DDS
implementations, the main measured characteristic was the
time for transferring messages. The greatest interest is provided
by the time that DDS middleware takes to transmit messages,
not considering the processing. Thus, exactly the moment of
time when the message was sent and also the moment when
the message appeared should be evaluated precisely.

In order to uniformly conduct tests for all DDS, one
must create an external interface for each implementation.
The interface should provide the functionality of creating a
separate publisher process and a separate subscriber process,
specifying the topic with which this participant will interact.
Such a design solution allows not to think about those cases
where one participant can simultaneously write in two topics
and read from three. To calculate the time required only for
sending a message, it is sufficient to use participants, who
represents only one reader or only one writer.

Thus, as input to the test framework, two components can
be distinguished:

• a text file representing the connection between writers
and readers;

• custom files that create the reader and writer processes
for each of the tested DDS.

So a structure of the test framework could be presented
with a following list:

• Implementation of common API for every considered
DDS – this part will be called adapter in the following
text. This implementation presents inheritances for
abstract classes of publisher and subscriber which
implementations are unique for every DDS but could
be launched in a same way using this API.

• Scripts that allow to launch all publishers and sub-
scribers consistently for every DDS and store their
result outputs.

• Scripts that presents results from previous step with
plots for friendly visual analysis.

This structure is presented on ig. 3

Adapter should consists of BasePublisher and BaseSub-
scriber classes. One BasePublisher creates one participant in a
common domain, one publisher in this participant and one data
writer. BaseSubscriber creates one participant, one subscriber
and one data reader correspondingly. So BasePublisher as well
as BaseSubscriber are separate processes and moreover two for
example BasePublishers are separate processes too. Separating
processes could demonstrate true power of DDS, because one
of ideas for DDS standard allows two participant exist as
separate parts in a local network, where there is no ability
to use shared memory.

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 95 ----------------------------------------------------------------------------



Fig. 3. Test framework structure

Except creating participants, readers, writers etc. adapter
should send messages through named topic. Another unique
idea of developed test framework is based on publishing
messages non-stop. Every test from other sources is based on
idea that there is a delay between publishing messages. So
there is no opportunity to measure an execution time in stress,
when there are hundreds participants and everyone publish
messages in their own rhythm.

The important aim of the testing framework is to estimate
the performance of DDS implementations. That means that it
is necessary to calculate time taken for message transferring
without handling. So BasePublisher should implement an
instrument for storing information about message pushing and
BaseSubscriber – about message pulling with an opportunity
to link the time of sending with the time of receiving, avoiding
collisions with a large number of messages.

Using an idea of separate processes where only one data
reader or data writer exist it is very easy to present a graph
of links between publishers and subscribers. In this case one
publisher is able to write in only one topic, and one subscriber
– read from only one topic. So graph of links is presented as
a set of topic names and identical number of participant that
should be connected to this topic.

IV. RESULTS

The seven experiments that present quantitative characteris-
tics of each DDS were considered in this work. The complexity
of graph increased from first test to the last one to show
the changing of time that is required to handle messages in
an unloaded system and an overloaded one. All settings of
DDS were set as default, so the transaction mode was set as
”reliable” which means that every subscriber must get every
message, and every topic stores all the messages and doesn’t
drop or delete them. The description of considered tests is
presented below.

1) The graph consists of one publisher and one sub-
scriber. The size of the message varies from 100
bytes to 1 megabyte. Messages of one size are sent
in isolation from messages of another size in the

amount of 100 samples. This test is designed to check
the latency value declared by a developer. The graph
structure is presented in a Fig. 4a. The latency result
is presented in a Fig. 4b, where the abscissa indicates
the size of messages. The jitter is shown in a Fig. 4c.

2) The graph consists of 9 publishers, 9 subscribers,
all linked through one topic. Thus, each publisher
sends 100 messages, and each subscriber receives 900
messages. The bound for processing messages in this
test is 30 seconds. The size of the message varies
from 100 bytes to 1 megabyte. The graph structure is
presented in a Fig. 5a. The latency result is presented
in a Fig. 5b, where the abscissa indicates the size of
messages. The jitter is shown in a Fig. 5c.

3) There are 45 publishers and 45 subscribers that are
linked through 5 topics. Each publisher sends 100
messages, thus at one moment the middleware should
handle a huge amount of messages. The size of the
message varies from 100 bytes to 100 kilobyte. The
graph structure is presented in a Fig. 6a. The latency
result is presented in a Fig. 6b, where the abscissa
indicates the size of messages. The jitter is shown in
a Fig. 6c.

After the testing, the obtained data was analyzed in the fol-
lowing manner. Figures 4b,5b,6b, shows the overall dynamics
of changing of the execution time. It shows that openDDS
performs the most quickly in all tests, and in addition, it
demonstrates a little change in the time during the processing
of messages.

Plots in Figure 4 present results in simplest test case - one
publisher and one subscriber connected with common topic.
This is an example where it is possible to measure delivery
time for one message and to evaluate the time that is required
for DDS when it is not overloaded. The average time of all
tests in this test case begins near 1 ms and ends near 100 ms.
OpenDDS is the fastest, OpenSplice is slower, but generally
they behave the same way. Time increases going through
message size, and transferring messages with 100 bytes size
are in ten times faster than 1 megabyte size.

On Fig 5 and 6 amount of participants is bigger –18
and 90 correspondingly. These are stress tests, when there
could be requested transfer of 1 GB of data in one moment.
Latency obviously become bigger too. In these test cases
average time is measured in seconds, tens of second or hundred
of seconds. This time is taken only for receiving messages and
there is no handling.

Obviously increasing amount of participants leads to the
increasing amount of delivery time. But there is no ability to
run for example OpenSplice on huge amount of participants
because this DDS has a upper bound of it. There could be only
120 participants [13].

In the presented figures one can extract the time required
to deliver the first message. It can be assumed that this time is
latency. Thus, it is possible to compare the data obtained in the
considered test cases with the data presented in [8] [12] [11]. It
should be noted that in the current work and in the works listed
above, various graphs of writers and readers were examined,
but it is possible to note that the data obtained using the

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 96 ----------------------------------------------------------------------------



(a) Links in 1st test case

(b) Latency for 1st test case

(c) Jitter for 1st test case

Fig. 4. Output plots for 1st test case

developed testing framework coincide with the data obtained
by the authors of other works.

V. CONCLUSION

Three most popular and widespread implementations of
DDS Standard were considered and compared in this paper:
OpenSplice, OpenDDS and Fast-RTPS. Moreover the frame-
work for testing these three implementations was implemented.
The framework is constructed in the way that it is easy to
include any another DDS.

It is important to mention that in this work all imple-

mentations were tested in ”safe” mode which means that all
messages were stored in memory all the time, every message
was followed with a confirmation about delivery and that is
the reason why the time of processing each next messages
increased. This behavior is also caused by not real-time kernel
of operating system.

Tuning parameters of DDS implementations, such as de-
creasing reliability of system, dropping messages after they
have been received might decrease the latency and some DDS
might work faster.

Looking through the received results one can say that in

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 97 ----------------------------------------------------------------------------



(a) Links in 2nd test case

(b) Latency for 2nd test case

(c) Jitter for 2nd test case

Fig. 5. Output plots for 2nd test case

unloaded system the delivery time is about 0.1 ms that might
be too much for real-time systems. In the future it is required to
run the same test on the real-time operating system, since DDS
standard was developed on a real-time publisher-subscriber
protocol and it should suit real-time tasks.

VI. ACKNOWLEDGMENT

Authors would like to thank TRA Robotics for provided
support and materials for working on this research.

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 98 ----------------------------------------------------------------------------



(a) Links in 3rd test case

(b) Latency for 3rd test case

(c) Jitter for 3rd test case

Fig. 6. Output plots for 3rd test case

REFERENCES

[1] “Object management group.” https://www.omg.org/.

[2] “Data distribution service specification version 1.4.” http://www.omg.

org/spec/DDS/, 2015.

[3] “Dds interoperability wire protocol specification version 2.2.” http://
www.omg.org/spec/DDSI-RTPS/, 2014.

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 99 ----------------------------------------------------------------------------



[4] “Vortex opensplice.” http://www.prismtech.com/vortex/
vortex-opensplice.

[5] “Eprosima fast-rtps.” http://www.eprosima.com/index.php/products-all/
eprosima-fast-rtps.

[6] “Prismtech opendds.” http://opendds.org/.

[7] “Vortex opensplice performance results.” http://www.prismtech.com/
vortex/vortex-opensplice/performance.

[8] P. Bellavista, A. Corradi, and L. Foschini, “Data distribution service
(dds): A performance comparison of opensplice and rti implementa-
tions,” in Computers and Communications (ISCC), 2013 IEEE Sympo-
sium on, IEEE, July 2013.

[9] “Prismtech opendds performance results.” http://opendds.org/perf/

lab100125/latency results.html.

[10] “Eprosima fast-rtps performance results.” http://
www.eprosima.com/index.php/resources-all/performance/
40-eprosima-fast-rtps-performance.

[11] T. Rizano, L. Abeni, and L. Palopoli, “Experimental evaluation of the
real-time performance of publish-subscribe middlewares,” 2013.

[12] F. Martin, E. Soriano, and J. M. Canas, “Quantitative analysis of security
in distributed robotic frameworks,” Robotics and Autonomous Systems,
vol. 100, pp. 95 – 107, 2018.

[13] “The opensplice deployment guide.” http://download.prismtech.com/
docs/Vortex/html/ospl/DeploymentGuide/guide.html#participantindex.

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 100 ----------------------------------------------------------------------------


