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Abstract—The main difficulty in IIR-filter hardware 
implementation using fixed-point  arithmetic is an accurate 
continuous to discrete model conversion. We propose an 
alternative approach to IIR-filters fixed-point  implementation 
based on adaptive discrete operator selection (z-operator or -
operator) and filter parameters optimization. This approach 
provides significant reduction of utilized logic elements for 
the given level of implementation accuracy. 

I. INTRODUCTION 
Fixed-point arithmetic is widely used in custom hardware 

designs, digital signal processors and microcontroller programs 
implementation. The advantages of operations with short 
numbers (up to 32 bits) are especially evident when target 
platform is FPGA (field programmable gate array) or ASIC 
(custom chip). The literature provides various data on relative 
effectiveness of fixed-point solutions, but it always notes the 
lower expense of the chip logic cells, the increase of maximum 
clock frequency of the device and the reduction of energy 
consumption. Govindu et al. [1] state that fixed-point 
arithmetic allows to reduce the energy consumption of device 
up to 7–15 times, 5–10 times reducing the required chip area 
and 1.25 times increasing the performance. Ewe et al. [2] show 
that infinite impulse response (IIR) filter implementation in 32-
bit fixed-point arithmetic is 5.7 times more profitable 
considering LEs utilization. The filter response time can be 
decreased 5.2 times compared to the IEEE 754 (single) data 
type. Over the past decade an efficiency of the hardware 
solutions for floating-point operations has grown rapidly. 
However, many up-to-date publications [3], [4] still note 
multiple superiority of the fixed-point arithmetic for hardware 
implementation.  

In general, increasing a filter accuracy and chip space 
economy are opposite problems. Therefore it is necessary to 
find their optimal ratio for the filter design task. In this paper 
we use the term «compactness» to specify the relation between 
logic elements number and root-mean-square or maximum 
error of hardware filter response. Considering examples in [2], 
the most precise fixed-point filter can be three times more 
compact than a filter operating with numbers in IEEE 754 
format. Therefore, when the compactness of filter 
implementation becomes a design efficiency criterion the 
fixed-point arithmetic is preferable. 

Ways to increase filters compactness can be divided into 
three main groups: use of alternative number representation 
formats, special mathematical methods application and model 
optimization. The first group includes use of variable dynamic 
range number format (for example, dual fixed-point) [2], 

stochastic computing, modular arithmetic etc. The second 
group includes application of higher order continuous-to-
discrete time conversion methods [5], optimal implementation 
forms [6] and alternative discrete operators [7]–[9]. An 
optimization approach includes tuning of filter amplification 
factor to avoid overflow and the choice of word size for the 
state variables and filter coefficients representation. Currently, 
approaches from the third group are common, while the 
methods of the first two groups are used relatively rarely 
despite their efficiency in many cases. From one hand, constant 
growth of FPGA logic cells number mitigates the severity of 
the filter compaction problem. But in many cases the most 
compact implementation is still the most preferable, e.g., in the 
aerospace industry tasks. In our work we show that of 
alternative discrete operators application in combination with 
optimization techniques is the efficient way to obtain compact 
filter implementation on FPGA. 

The paper is organized as follows. Section II specifies 
discrete -operator and its modifications, as well as operator 
choice criterion. Section III provides filter coefficients tuning 
technique based on numerical-analytical approach. Section IV 
describes several practical examples. The paper ends with 
conclusion. 

II. ALTERNATIVE DISCRETE OPERATORS

One of the alternative approaches to filter design consists 
in the replacement of the discrete z-operator with so-called -
operator [7]: 

where sT  is a sampling period. When sampling period 
decreases, zeros and poles of the discrete -filter converge to 
zeros and poles of the continuous prototype. -operator 
expressed with equation (1) had not have any parameters, thus 
parametric -operator was suggested later [8]: 

Here  is a free parameter. To decrease a quantization 
noise and to simplify hardware implementation of operator -1 
it was proposed to define parameter  as negative degree of 
number 2. 
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TABLE I.  EQUATIONS FOR Z  COEFFICIENTS RECALCULATION 
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One can see that only two additional summations are added 
to the structure of the 2nd order section of -filter compared to 
the structure of z-filter, see Fig. 1. Multiplication in FPGA is 
implemented as a simple commutation of a binary bus with 
discarding low-order bits. 

Fig. 1.Implementation of -1 operator  

To implement a filter using -operator it is necessary to 
convert the coefficients of z-model using the equations from 
Table I. These expressions can be easily obtained via 
substitution of (2) in the discrete section of the 2nd order: 

Here z denotes shift operator. The second order section 
based on -operator looks as follows: 

The Direct Form I is not suitable for the implementation of 
-filter because of the unstable pole 11z  in the structure of 

operator 1  (Fig. 1) [8]: 

Therefore, -systems are usually implemented in the Direct 
Form II (DFII) or its transposed version (DFIIt), see Fig. 2. 

Alternative discrete operators allow resolving two main 
challenges connected with the limited precision of number 
representation using fixed-point arithmetic. It includes the 
following: 

1) Avoiding the filter zeros and poles “sticking” together
and with the z-plane unit and thus making the filter coefficients 
more informative; 

2) Filter state variables amplitudes equalization. For this
reason the choice sT  is not optimal in the most cases. 
Usually sT  gives better results. 

Fig. 2. Representation of the Direct Form II for the 2nd order section. di denote 
the  state variables 

Fig. 3 represents the frequency responses for various state 
variables of two band-stop filter implementations  

Both filters have the sampling rate equal to 44.1 kHz. 

It is generally assumed that amplitudes alignment for the 
state variables means alignment of their H -norms. When 
implementing a filter in DFII, the equation for choosing the 
quasi-optimal value of *  for every 2nd order section is [8]: 

where xdzF ii /)( ,,  is the transfer functions from input to 
the state variables: 

Expressions for DFIIt look similar and give close values of 
*  in practice. Having *  it is necessary to choose 
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Fig. 3. Frequency responses for the state variables of band-rejection filter (5) for various values of : a)  = Ts b)  >> Ts

It is impractical to reject z-operator completely because -
operator complicates the filter structure and some negative 
effects can appear in -model at low sampling frequencies, e.g. 
limit cycles. Besides, -model accuracy is not superior to 
accuracy of z-model on these frequencies. 

The criterion for an operator choice was introduced by the 
authors of this paper earlier in [10]. Considering this criterion, 
the implementation of the 2nd order section with complex 
conjugate poles 2,1 jr  will be more accurate using -
operator when 

In other case one should prefer z-operator. 

When a cutoff frequency and the filter type are known in 
advance a simple criterion can be used: 

where /cutoff sf f . Criterion (8) is applicable for the low-
pass filters, band-stop filters and for several other cases when 
it is in a good agreement with criterion (7). 

III. FPGA IMPLEMENTATION OF THE FIXED-POINT FILTERS 
The key feature of the fixed-point algorithms development 

for FPGA implementation is the flexibility of word lengths 
selection. Thus the task of filter design can be reduced to 
choosing the minimum bit depth values which provide the 
required accuracy level. 

We briefly determine our filter implementation strategy 
below. The filter of the arbitrary high order specified in 
arithmetic with a floating point should be divided on the 1st and 
2nd order sections. Each section should be analyzed considering 
discrete operator choosing criteria (7) or (8). Then sections are 
sampled with a given period sT  using bilinear transform. 
Further we use an iterative algorithm of filter conversion to the 
fixed-point data type.  The algorithm of -filter implementation 
is as follows. 

1) First, we substitute 1 in (6) and compute *  in 
floating-point arithmetic. Then calculate 

and find ,max ( ) , 0..2f ig F z i  (see Fig. 3), and 

then calculate 

2) Next, we set the initial word length for the state variables 
representation 

where K  is a bit depth of input signal (ADC/bus of the 
previous system section/part), and 1 is the overflow preventing 
bit. 

Then we convert filter to the fixed-point arithmetic. The 
numerator and denominator coefficients should be scaled 
individually. The initial approximation of the fractional part 
length for the both cases is equal to 2/WL . 

3) We set the test linear chirp (LC) signal covering the 
passband and stopband of the filter. The convenience of the LC 
signal consists in the predictability of its spectral characteristics 
as well as in the opportunity to construct frequency response 
using envelop response of an integer filter faster and more 
precisely than by Fourier transform. Then we should calculate a 
reference filter response with real coefficients refU . 

4) We simulate an integer filter considering the rounding of 
the coefficients and other effects related to the integer 
arithmetic: shift to the fractional part of the filter coefficients 
after multiplication, overflows such as “wrap around” etc.  

If there are no overflows and difference between the output 
signal and reference doesn’t exceed the required level 
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then the required implementation is found. 

At each step the following parameters are randomly varied 
using Monte Carlo method: 

1n N  n2 ;
fractional part length of the numerator and 

denominator; 

To increase the accuracy of an input signal representation 
and to fulfill whole width of the state variables we implement 
left circular shift of the ADC signal (Fig. 4) in the range 

Than we calculate the response of the integer data type 
filter for each parameters variation and increment the machine 
word length if the parameters combination providing required 
accuracy level without overflows was not found after iterN  
iterations. 

Fig. 4. Scaling scheme for an input signal to increase the accuracy of signal 
internal representation 

5) On step 5 we test the found integer filter on the signal
set including white noise with various amplitude. During this 
the widths of internal buses between state variables, adders 
and multipliers are finally determined. One should go back to 
the step 4 if the overflow of the state variables is detected. 

6) Finally, we substitute numerical parameters of the filter
into a code template of the filter module and its testbench in 
Verilog HDL. Also we generate a set of files for the input test 
signals. The synthesized filter module can be included in the 
design of target device without re-verification because of the 
debugged automatic code generation procedure. 

In case of z-operator implementation some specific steps 
should be excluded, but general idea is the same. 

IV. EXPERIMENTAL FINDINGS

We carried out two series of numerical experiments. In the 
first experimental set we obtained a quantitative estimation of 
FPGA hardware resource consumption while implementing z-
filters and -filters. One of the theoretically predicted results 
was the confirmation of the correctness for criteria (7) and (8). 

The second set of experiments was devoted to the research 
of some aspects of synthesis algorithm. We considered the 
optimal filter representation form selection and the required 
iterations number iterN estimation of Monte Carlo process. 

A. Comparison of discrete operators 
We investigated several implementations of filter (5) with 

various sampling rates. When implementing 9-bit filters, it was 
assumed that ADC bit depth is 8 bit, for 12-bit filters ADC 
depth was set to 10 bit, and for 16-bit filters we set bit depth 
equal to 12 bit. These values of the bit depth are typical for 
common industrial ADC and are widespread through many real 
devices and applications. Experimental results are provided in 
Fig. 5(a). The chart shows which implementation is the most 
accurate, assuming those can be constructed using the above 
strategy. 

Errors in filter implementations using z- and -operators are 
almost equal at point 0.1. It is in good agreement with our 
theoretical assumptions. Note that while  decreases, the error 
of both discrete implementations for a fixed machine word 
length increases. 

Fig. 5. Errors of the discrete filters for various operator types depending to the normalized cutoff frequency and word lengths 
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Fig. 6. Comparison of -implementations of various filters in DFII and DFIIt forms. Here LPF denotes low-pass filter, HPF – high-pass filter, BP – band-pass 
filter, Notch – band-stop filter, and Resonant LP is an LPF with 20 dB peak resonance 

Fig. 5(b) shows the approximation of the experimental 
results. The represented charts clearly demonstrate the 
advantages of -operator when 0 . 

DFII structures were implemented in Verilog HDL and then 
synthesized with Quartus II software. We used Altera Cyclone 
IV target without embedded multipliers utilization. 
Quantitative estimations of logic elements (LE) consumption 
are shown in Fig. 7. One can see that if we want the maximum 
error do not to exceed level 0.1% , z-operator filter requires 
twice as many logical elements. If  or  decreases the 
benefit of using -operator is even greater. The dependency 
between logic elements utilization and the word length is 
almost linear.  

B. Investigation of the synthesis algorithm 
To compare two representation forms of -filters under 

investigation – DFII and DFIIt – several different filters were 
implemented with various parameters (see Fig. 6). In these 
experiments we used standard deviation (SD) between fixed 
point filter and its floating point prototype response as a metric. 

Since the filter optimization was performed for maximum 
error level , this level was approximately the same for both 
implementations. However, in almost all implementations DFII 
form is more advantageous in the terms of SD level. This do 
not completely agree with results of the earlier work [8], where 
a preference to the DFIIt form was given. 

Fig. 7. Word length (a) and logic elements consumption (b) for case of band-stop filter implementation using various discrete operators
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Fig. 8. The dependency between average search time (s) and found word 
length for different Monte Carlo iterations number 

An example of search time vs Monte Carlo iterations 
number and word length analysis is given in Fig. 8. Increasing 
the number of iterations of the algorithm from 2-5 to 10-20 we 
can reduce word length for found implementation averagely by 
one bit. However, the algorithm execution time increases by an 
order. The duration of search is closely related to the necessity 
of low normalized frequencies signal simulation when 0 .  

V. CONCLUSION 
We proposed an algorithm for fixed-point filter 

implementation based on adaptive discrete operator selection 
approach and Monte Carlo filter parameters tuning method, 
focusing in our paper on alternative -operator application 
technique. Our algorithm allows reducing the number of 
required logical elements significantly for FPGA 
implementation, up to 2-3 times and more depending on a task. 

In our algorithm expected effect of discrete z or -operator 
application can be predicted using one of two simple criteria. 
For most tested -filters implementations the Direct Form II 
turned out to be more preferable, that disaccords with early 

works which established the transposed Direct Form II 
superiority. 

In our further research we will examine an efficiency of 
alternative number representation formats for filter 
implementation. Also a study of the -operator application to 
FIR filters design will be accomplished. 
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