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Abstract—With the evolution of social networks, the network
structure shows dynamic nature in which nodes and edges appear
as well as disappear for various reasons. The role of a node in the
network is presented as the number of interactions it has with the
other nodes. For this purpose a network is modeled as a graph
where nodes represent network members and edges represent a
relationship among them. Several models for evolution of social
networks has been proposed till date, most widely accepted
being the Barabási-Albert [1] model that is based on preferential
attachment of nodes according to the degree distribution. This
model leads to generation of graphs that are called Scale Free
and the degree distribution of such graphs follow the power law.
Several generalizations of this model has also been proposed. In
this paper we present a new generalization of the model and
attempt to bring out its implications in real life.

I. INTRODUCTION

Our lives are surrounded with several complex phenomena
which are at times very difficult to explain or understand.
These phenomena usually encompass a lot of spheres of
our lives. One such phenomena is how certain biological,
geological, physical, astronomical, financial and social systems
show a very peculiar similarity that is they all exhibit a
so called Scale Free Property [4]. This property says that
certain features of these systems follow a common pattern. For
example in case of geology, most of the earthquakes that occur
on this planet are nominal whereas few are gigantic, in case of
financial systems most people on earth have small incomes and
a few have a monumental incomes, in case of social systems,
there are few celebrities who are extremely popular whereas
most of the other are not and this list of examples continues
on and on. As it turns out this kind of a Scale free pattern
has been known to scientists and researchers for long. Herbert
Simon [3] showed the existence of such properties way back
in the 1950s. Although this property is very common, present
literature exhibits that there is not much understanding of as
to why and how it occurs. In recent years with the advent of
new technologies like the internet, WWW, social media etc.,
a new stream of research has come up which seeks to explain
this phenomenon in several complex systems by employing
mathematical models. Here the key is to find the existence of
a graph theoretic structure that is present in these systems and
show that the Scale Free Property is present in that graph.
Researchers have shown that the presence of this property
means that the corresponding graph follows the power law
degree distribution. The most well known among such models
is the model of Barabási-Albert that describes a model based
on preferential attachment. This model ensures that as this
graph evolves by the addition of new nodes, each new node

gets attached to a set of m existing nodes where the attaching
probability of the new node is proportional to the degree of
that node already present in the graph. This model although
considered to be fairly satisfactory, is not very realistic at times
and has several drawbacks. Due to this several generalizations
of this model has been proposed that try to improvise on the
properties of the graph generated. In this paper we propose a
new model that is a generalization of the AB model and is
based on the cuts in the graph. Our model is very novel and
has no apparent links with the already existing generalization
of the Barabási-Albert (BA) model. In this paper, we introduce
our model, which we have named as the EvoCut model, and
describe its properties. We further bring out how this model is
more realistic than the already existing models.

A. The scale free property

As mentioned in the previous section, the scale free prop-
erty [4] basically means that the occurrence of very high is
small and there is an abundance of small. In the context of
networks and graphs this means that there are very few nodes
with high degree and there are a lot of nodes with small
degree. A more technical way of putting it is to say that the
degree distribution follows the power law as shown in Fig 1
i.e. p(k) ∝ k−γ where γ ∈ (2, 3]; p(k) is the number of nodes
with degree k divided by 2m (which is the total degree of
nodes). This alternatively means that on log scale the plot of
p(k) vs. k is linear.

Fig. 1. Plot of power-law degree distribution on log-log scale
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II. PRIOR WORK ON GENERALIZATION OF
ALBERT-BARAB ´ASI MODEL

In this section we present some prior models that are based
on the generalization of the Barabási-Albert model.

A. Dorogovtsev-Mendes-Samukhin (DMS) Model

Dorogovtsev, Mendes and Samukhin present a model [5]
that generalizes the BA model in the following sense, they
incorporate the initial state of the nodes in the network and
the degree (k) is dependent on the initial state (s) and time
(t). They come up with a dynamics that achieves power law
when the degree is very large i.e. p(k) ∝ k−γ when k → ∞
and γ ∈ (2,∞). The average connectivity k(s, t) ∝ (s/t)−β
as (s/t) → 0. This generalization makes the model very
unrealistic because γ ∈ (2,∞) whereas in reality γ ∈ (2, 3],
as supported by BA model.

B. Antal-Krapivsky-Redner (AKR) Model

The AKR model [6] generalizes the BA model by consid-
ering a graph in which the links are associated with a notion
of friendship (+1) or enmity (-1) and the notion of a node is
replaces by a collection of three nodes linked with either (+1)
or (-1) links, which is called a triad. The model defines a notion
of a balance which is the product of all the values of the links
in a particular triad. If this product is equal to 1 then it is called
balanced otherwise it is called imbalanced. In this model, the
authors define a dynamics that tries to maintain the balance of
the triads and describes how the degree of a link (which is the
number of triads in which it is involved) changes with time as
the network is allowed to evolve according to the dynamics.
They derive a set of differential equations that governs this
rate and solve them to get a distribution same as the power
law.

C. Sole-Pastor-Satorras-Smith-Kepler (SPSK) Model

The Solé, Pastor-Satorras, Smith, Kepler (SPSK) model
[7] uses 3 mechanisms duplicate, divergence and mutate for
the process of evolution shown in Fig 2. Using the operation
Duplicate one can copy a randomly selected node along with
its connections, using Divergence operation one can delete
some connections made after the duplicate operation and
the Mutate operation allows us to add connections once the
duplicate operation is applied. It has been shown by them
that this generalization produces the power law but leads to
unrealistic assortativity and clustering. This is a generalization
of the BA model because it allows more possible ways of
connection of a new node with the existing graph.

It is customary to note that there have been some gener-
alizations of preferential attachment model that are based on
the addition and deletion of nodes [8], [9].

III. OUR CONTRIBUTION

In this paper we present a new model that generalizes the
BA model. As compared to the previous models our model is
a natural generalization of the BA model and is more intuitive
than the previous generalizations. It uses the combinatorial
properties of the given graph and does not create unrealistic
links as in the case of SPSK model and DMS model. Our

Fig. 2. (a) Duplicate, (b) Divergence and (c) Mutate

model has two variants, one of which generates scale free
networks (as in BA model) and the other one gives rise to a
family of graphs in which the degree distribution follows the
stretched exponential distribution rather than the power law,
which is similar to the SPSK model. In the following sections
we describe in detail our proposed model and also discuss the
properties of the two variants of the model.

IV. PRELIMINARIES

We model the network as an undirected graph in which
nodes represent the network members and an undirected edge
represents a relationship between them. Initially the graph is
considered to have n0 number of nodes with a few links m0.
Our evolution process crucially uses the notion of cuts which
is an important combinatorial property of a graph. Given a
graph G = (V,E) a subset of vertices S and S̄ = V \S, a Cut
is defined as the set E(S, S̄) = {(a, b)|a ∈ S and b ∈ S̄}.
Our evolution process uses the size of the cut crucially
making it substantially different from all the prior models
that do not use the notion of cut in any way. We also define
a k-neighborhood of a particular vertex v as the number of
nodes of G which are with in a distance k from the node
v. Thus B(v, k) = {u|d(v, u) ≤ k}. We also define the set
B′(v, k) which we call the boundary of a node v as the set
of all nodes which satisfy the following

{u ∈ B(v, k)|(u, v) ∈ E(B(v, k), B(v, k)); v ∈ B(v, k)}

We also define the pulling power of a node v as probability
that a new node gets attached to an already existing node v.
In this paper we would use this term irrespective of the model
that we are looking into.

V. THE EVOCUT MODEL

In this section we introduce our model and describe in
detail its two variants. Both these variants use preferential
attachment of a different kind to select a node from the
graph, but have different strategies for attachment of the new
incoming node.
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Algorithm 1: Model A
1 G0 = (V0, E0) ; t = 0; |V0| = n0 and E0 = m0,

k = ko, Y = 0;
2 while (nt ≤ N ) do
3 Let vt be the new node at time t;
4 for v ∈Vt do
5 Compute x = |B(v, k)|;
6 Y = Y + x;
7 end
8 Pick a u randomly in which the probability of

selecting u is { |B(u,k)|
Y };

9 Et = Et

⋃
(vt, u);

10 t = t+ 1;
11 Y = 0;
12 end

Algorithm 2: Model B
1 G0 = (V0, E0) ; t = 0; |V0| = n0 and E0 = m0,

k = ko, Y = 0;
2 while (nt ≤ N ) do
3 Let vt be the new node at time t;
4 for v ∈Vt do
5 Compute x = |B(v, k)|;
6 Y = Y + x;
7 end
8 Pick a u randomly in which the probability of

selecting u is { |B(u,k)|
Y };

9 Select a node v′ randomly uniformly from the set

{z ∈ B(u, k)|(z, u′) ∈ E(B(u, k), B(u, k));u′ ∈
B(u, k)};

10 Et = Et

⋃
(vt, v

′);
11 t = t+ 1;
12 Y = 0;
13 end

VI. PROPERTIES OF THE EVOCUT MODEL

In this section we describe in detail the properties and
the reasoning behind coming up with these models. In this
model we allow the nodes to be attached one by one and the
pulling power of a particular node is defined by the size of
the cut E(B(v, k), B(v, k) which the number of edges in the
k-neighborhood of the node v where k is a parameter between
[0− (n− 1)]. The pulling power is same for both the models
A and B. The other features of the models is being mentioned
in the following subsections.

A. Model A - Deterministic Case

In this model a particular node is attached to a node
which selected randomly from a probability distribution that
is different from the one used in the BA- model. The process
starts with an initial graph G0 = (V0, E0) and goes until the
number of nodes in the graph is less than N . Every time when
a new node arrives, the for loop computes the normalizing
factor

∑

v

|E(B(v, k), B(v, k)| (1)

and the later part of the model selects a node u randomly ac-
cording to the probability distribution in which the probability
of selecting a node u is the ratio

B(u, k)
∑

w |E(B(w, k), B(w, k)| (2)

and attaches the new node with this chosen node u. Thus
this model is thus deterministic in the sense that there is no
randomness while attaching the new node with the existing
graph, once a node has been selected from the aforementioned
probability distribution.

B. Model B - Randomized Case

In this model a particular node is attached to a randomly
chosen node on the boundary of the set B(v, k). The boundary
is defined as the nodes in B(v, k) which are incident to the
edges in the set E(B(v, k), B(v, k). This model not only
uses randomness according to preferential attachment but also
uses randomness in choosing the node to which the incoming
node should be added. This step makes it different from the
choice made in Model A. As in the previous case the model
first selects a node u randomly according to the probability
distribution in which the probability of selecting a node u is
the ratio

B(u, k)
∑

w |E(B(w, k), B(w, k)| (3)

and then randomly chooses a node from the set B′(u, k) and
attach the new node with that node.

C. As a Generalization of BA Model

One can observe that in both the models mentioned above
if we fix the parameter k as 0, then we get the (BA) model.
This is simply because when k = 0, B(v, k) = v and the

set E(B(v, k), B(v, k) is equal to the degree of v and in that
case the attaching probability distribution is exactly equal to
the degree distribution of the graph at time t which is same
as the BA model. Thus, in our model, only the special case of
k = 0 results in the BA model.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

In this section we present the degree distributions that we
obtain as we let our model to evolve on a set of nodes with
certain initial condition. We let this process run till n = 500.

A. Analysis of Model A

In the following, Fig 3 and Fig 4 describe the plots that we
obtain once the degree distributions are generated for Model
A.

According to the plots that are generated we can infer the
following:

• For small values of k this model gives rise to a scale
free distribution when k is even and for larger values
of k the degree distribution follows the stretched
exponential distribution in the log-scale. This in turn
implies that in the normal scale the plot ensures that
the number of nodes with high degree is fairly large as
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Fig. 3. Degree-distributions for Model A for small k (36-41).

Fig. 4. Degree-distributions for Model A for large k (90-95).

Fig. 5. Degree-distributions for Model A for very large k ≈ n/2 (216-221).

compared to the scale free distribution which implies
that for large values of k there are several nodes with
high degree.

• The intuitive reasoning for the aforementioned result is
that for small values of k this model behaves basically
similar to the BA model. Whereas for larger values
of k we can observe that once a new node gets
attached to the already existing node the pulling power
of the already existing node does not increase and
the pulling power of the kth-neighbor increases. This
phenomenon creates some sort of an oscillation on
the increase in the degree of the certain number of
nodes which implies that this set of nodes experience
enhancement of degree simultaneously. This explains
the stretched exponential distribution in the log-scale
for larger values of k.

• We also observe in Figure 5 that for very large values
of k ≈ n/2 we obtain a degree distribution that is
significantly different from the power law distribution.
This distribution is also fairly different from the dis-
tribution that we get for smaller values of k.

B. Analysis of Model B

In the following, Fig 6 and Fig 7 describe the plots that we
obtain once the degree distributions of Model B are generated
and based on these we infer the following

• As said earlier in this model the incoming node is
attached to that node which is on the boundary of
the k-neighborhood of the node that maximizes the
objective function.

• From the plots, it is clear that for both small and large
values of k we get a power law distribution. This
observation can be explained intuitively as follows:
since the incoming node x is getting attached to a
node which is on the boundary of the k-neighborhood
of a node y, the pulling power of node y increases with
time because it is defined as the number of edges on
the boundary of the k-neighborhood of y and hence
in further iterations the node y gets enhancement in
its power.

• This makes the model a generalization of the BA
model which is quite similar to it.

• We also observe in Figure 8 that similar to the case of
Model A, for very large values of k we obtain a degree
distribution that is very different from the power law
distribution. This behavior is sort of expected in both
models because the process of finding the power of a
particular node starts after a large number of nodes had
already been added. This leads the degree distribution
to concentrate on a few nodes only.

VIII. COMPARISON WITH PRIOR MODELS

In this section we compare our models with the prior
generalizations of the BA model and also discuss how close
to reality these models can be considered.

A. Comparison with DMS model

As mentioned before, the DMS model starts with an initial
state and the degree of the node is dependent on the initial
state of the evolution process, a feature which our models also
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Fig. 6. Degree-distributions for Model B for small k (36-41)

Fig. 7. Degree-distributions for Model B for large k (90-95)

Fig. 8. Degree-distributions for Model B for very large k ≈ n/2 (216-221).

possess. The DMS model achieves the power law for large
values of the degree whereas in our case the Model B achieves
power law even for small values of the degree.

B. Comparison with AKR model

In the AKR model the authors come up with a notion of a
balance of the values present in a triad which is a collection of
three nodes and the directed links among them. The dynamics
of the model tries to maintain the balance of the triads. This
model, although a generalization of the BA model uses only
local modifications whereas our models are global in the sense
that each node looks around a k-neighborhood where k can
be fairly large. This allows our model to look at the global
influence of the nodes which is not present in the AKR model.

C. Comparison with SPSK model

In the SPSK Model, the evolution of the graph is based on
some operations done on the original graph called duplicate,
divergence and mutate. This make the model very restrictive
because a node can only get attached to the existing graph
by performing a duplicate operation which is basically the
replication of the connection of an already existing node. Our
models are not restrictive in that sense and a new node is not
forced to follow the topology of an already existing node and is
attached purely based on the pulling power of a particular node.
Despite the difference in nature of SPSK and our models we
observe that the degree distribution of this model and Model
A proposed by us is quite similar and follows the stretched
exponential distribution.

IX. REAL LIFE IMPLICATIONS OF EVOCUT

One of the important questions regarding the models of
evolution of complex networks is how realistic are they. The
BA model although satisfactory is not considered to be very
realistic. Thus there is definitely a n eed t o c ome u p with
models which not only give rise to the power law distribution
but are also realistic. In this section we justify how our models
can explain the realities of certain complex networks. In the
case of Model A, as we had observed that this model leads
to a degree distribution [10] in which there are lots of nodes
with large degrees. Although this doesn’t follow the scale
free property but explains the nature of some real political
networks. It is well known that [11] the stretched exponential
distribution describe very well the distributions of radio and
light emissions from galaxies, of country population sizes,
of daily Forex US-Mark and Franc-Mark price variations,
of Vostok temperature variations and of citations of the
most cited physicists in the world. This type of distribution
may not be considered to be explainable by the BA model
and its generalizations which tend to result in a power law
distribution, but can be explained by Model A.

In the case of Model B we notice that since the model looks at a
k-neighborhood of a particular node to compute its pulling
power this allows us to look at a larger influence of a node as
compared to the standard BA model. In fact in realistic
scenarios one can conceive of several situations in which when
a new node comes it doesn’t get attached to the node with
maximum pulling power but gets attached to a node which is at
a certain distance from the node. Consider the example of
celebrities in real life networks, when a person considers
himself as a follower of a particular celebrity then he
gets himself linked to another follower of the same
celebrity rather than directly getting linked with the celebrity,
and this follower might as well not be one of the closest to
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the celebrity i.e. one gets attached to a fan club rather than
the celebrity himself.
We can also consider the example of any hierarchical
ecosystem [12] present in an organization like judiciary,
police, banking system or a corporation in which any
customer is not allowed to connect with the highest authority
in that system but gets connected to a node that is lowest
in that hierarchy. This notion is being captured in the case
of Model B, in the sense that the k-neighborhood of a node
basically creates a hierarchy around that node considering
that node as most powerful. As the distance from the node
increases we get down in the hierarchy, and hence when a
new node comes under the influence of the k-neighborhood
of a particular node at the kth level of the hierarchy.

Fig. 9. Hierarchical influence in Corporate Structure

Consider the aforementioned Fig 9 in which the CEO
represents the node whose pulling power is being computed
and the 1-neighborhood of it consists of VP of Sales and VP of
Service, the 2-neighborhood consists of Sales Managers and
Service Managers and the 3-neighborhood consists of Sales
and Support. Thus when an new customer comes it is likely
to get in touch with the 3-neighborhood rather than the CEO.
Thus in several scenarios Model B gives a better picture of
the evolution of the network and hence is much more realistic
than the BA model.

X. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new generalization of the
Barabási-Albert (BA) model that is based on the neighborhood
properties of nodes in the evolving graph. This generalization
is substantially different from the previous generalizations of
the BA model and one of its variant gives rise to the power
law distribution and can model the growth of several real
life networks which don’t seem to be explainable by the BA
model. The other variant of our Model, despite the fact doesn’t
give the scale free property models the growth of some other
real life networks and gives rise to a stretched exponential

model. Thus we could
use this equation to mathematically prove the distribution
obtained by the two variants of EvoCut. The master equation
is usually formulated as

dNk

dN
=

Ak−1Nk−1 −AkNk

A
+ δk,1 (4)

where Nk represents the number of nodes with degree k and
N is time parameter and A =

∑
k AkNk which can also

be thought as the total rate. The value δk,1 represents the
insertion of degree 1 nodes. Ak denotes the probability of
getting attached to degree k node. In order to apply this master
equation in case of our models we need to obtain a function
f such that Nk = f(Nk−1) which can then be used to obtain
a solution to the differential equation.
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