
Survey on Deduplication Techniques
in Flash-Based Storage

Ilya Chernov, Evgeny Ivashko, Alexander Rumiantsev, Vadim Ponomarev, Anton Shabaev
Institute of Applied Mathematical Research, Karelian Research Centre of RAS

Petrozavodsk State University

Petrozavodsk, Russia

{chernov,ivashko,ar0}@krc.karelia.ru, vadim@cs.karelia.ru, ashabaev@petrsu.ru

Abstract—Data deduplication importance is growing with the
growth of data volumes. The domain of data deduplication is in
active development. Recently it was influenced by appearance of
Solid State Drive. This new type of disk has significant differences
from random access memory and hard disk drives and is widely
used now. In this paper we propose a novel taxonomy which
reflects the main issues related to deduplication in Solid State
Drive. We present a survey on deduplication techniques focusing
on flash-based storage. We also describe several Open Source
tools implementing data deduplication and briefly describe open
research problems related to data deduplication in flash-based
storage systems.

I. INTRODUCTION

Volume of data is growing exponentially. The total amount
of digital data worldwide is expected to grow from 16 ZB
in 2016 to 163 ZB in 2025 [1]. At that, several researches
(e.g., [2]) show that data redundancy in enterprise storages is
rather high: from 50% up to 95%. Pieces of duplicate data are
found on file as well as disk level, whereas both deduplication
and compression technologies address this redundancy. During
deduplication, a piece of data is checked, prior to writing, to
have an identical copy already stored, and in positive case
referencing the existing copy is used instead of writing a
new one. This reduces the traffic, increases data density, and
decreases energy consumption. Note that deduplication is a
reciprocal of replication: the former technology eliminates
redundancy while the latter exploits it it for the sake of safety,
reliability, robustness, etc.

Deduplication is an emerging technology, accelerated by
development of new storage media, and currently it gets in-
creasing attention, thanks to the widely used Solid State Drives
(SSD). In this regard, deduplication technology should address
the specifics of an SSD, which include high random read speed
(in contrast to performance degradation due to fragmentation
on a conventional hard disk drives (HDD)), write amplification
(related to the erase before write technique), memory wear-
out (with limited number of rewrites before failure), page size
reads and block size writes, and necessary garbage collection
(the necessary details on SSD architecture and specifics may
be found e.g. in [3]).

In this work we present a survey on deduplication and com-
pression research works considering SSD specifics. As a result,
we present an enhanced taxonomy, which is most relevant to
the particular subfield of flash-based storage systems. We also
briefly describe several data deduplication tools implemented

in Linux and rise several open issues in the domain of a stand-
alone device as well as an SSD equipped storage system.

The structure of the paper is as follows. Section II describes
the general deduplication process. In Section III the paper
selection and sources are characterized. Section IV contains
analysis of general survey papers on data deduplication and
presents a new taxonomy. In Sections V and VI the techniques
proposed at single (sub)device level and at storage/network
levels are described. A number of Open Source data dedupli-
cation tools implemented in Linux operating system are given
in Section VII. In Section VIII we describe several important
open issues promising for deduplication improvement. Finally,
in Section IX several concluding remarks are given.

II. GENERAL DEDUPLICATION PROCESS

Deduplication is aimed at reducing data redundancy. The
idea behind it is to store only unique data pieces using
references on existing data pieces when necessary. A general
deduplication process consists of four stages (see Fig. 1):

1) chunking refers to granularity;
2) fingerprinting refers to unicity of data;
3) searching refers to exploring existing pieces of data;
4) referencing refers to linking pieces of data to files.

In general, a deduplication process starts with splitting the
input data stream (e.g., a file) into data pieces called chunks.
This stage can be omitted in the case of file-level deduplication.
However, chunk-level deduplication shows better deduplication
ratio [4]. Size of the chunks can be either fixed or dynamic
(the latter provides higher deduplication ratio). In SSD-based
storage systems the chunk size is usually set equal to the SSD
page size (4 KB) to improve the write performance, garbage
collection, and wear leveling. Still, there is a variety of chunk
size choices considered by researches; to name a few:

• a page (for example, in [5] page-sized chunking is a
base for a novel deduplicating Flash Translation Layer
(FTL) scheme),

• several pages (for example, in [6] where different sizes
of chunks are used to compare performance),

• a block (for example, in [7] where a new deduplication
scheme called “block-level content-aware chunking” is
proposed to extend the lifetime of SSDs).

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



Fig. 1. General deduplication process

At the next stage a special algorithm produces fingerprints
of data chunks. Usually fingerprinting is based on a hash-
function like SHA-1, MD5, etc, but also other functions can be
used for higher speed, lower resource (CPU cycles and mem-
ory) consumption, and uniform distribution of fingerprints.

Hereafter, searching is used to find out if the same data
chunk already exists in the storage. It should be as fast as
possible to provide better response on write operations.

If the current data chunk is unique, it is stored in the
system; otherwise, just a reference to the existing data is saved.
It is a referencing stage.

Data chunks are aggregated into containers to provide
better read and garbage collection performance. A data stream
is usually collected from different containers and distributed

among the storage data chunks. Container approach is moti-
vated by high random read speed of SSD. However, from the
point of view of performance it is still important to reduce
the number of container reads required to restore the file. For
details on general deduplication process we refer the reader
to [4].

Note that the deduplication process might be performed
on various levels, from a sub-block level in the device up to
storage level of the cloud. Moreover, since deduplication is
mostly a computationally intensive process, the exact device
that performs deduplication depends on a suggested technique.
Deduplication might be performed, e.g.,

• in FTL (for example, in [5], [8] novel deduplicating
FTL schemes are proposed),

• in a specific hardware block (for example, in [9] a
special software defined network (SDN) controller is
used to implement in-network deduplication),

• on host (the most common way, used, for example,
in [10] to implement application-aware deduplication).

While some researches propose changes in the deduplica-
tion stages (like eliminating, introducing new, or combining
any of stages) in order to improve deduplication techniques,
the general deduplication process seems to be conventional by
the moment.

III. SCIENTIFIC PAPERS ON DEDUPLICATION

We used the search engine of Web of Knowledge to harvest
scientific papers of deduplication. The time span is 1995–2017,
though stable interest originates in 2010 with a jump in 2014
(determined by growth of interest to SSD) and slight decrease
in the recent years. Fig. 2 shows the dynamics of the number
of publications, which are considered as the most relevant
and included in this survey. One half of the papers surveyed
here was published in journals and proceedings of IEEE,
some papers in issuance of ACM. Publications are evenly
distributed between proceedings of international symposia and
conferences (60%) and scientific journals (40%).

Fig. 2. Amount of publications for 2005–2017

Fig. 3 demonstrates wordcloud gathered from abstracts of

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 26 ----------------------------------------------------------------------------



research papers on SSD-focused data redundancy management.
We note some highlights easy following from the wordcloud:

• there clearly is strong connection among deduplication
and compression techniques;

• redundancy management is among the primary aims
of the deduplication and compression methods;

• write overhead, memory footprint, and lifetime are
among the primary efficiency measures;

• read and write caching is a popular satellite technique,
especially for large storage, such as cloud and backup
devices;

• blocks and files are popular deduplication units.

Fig. 3. Wordcloud of deduplication related keywords

IV. SURVEYS ON DEDUPLICATION

There is a number of previous research papers aimed at
different aspects of deduplication. We briefly describe them in
this section to highlight their differences with this work.

A. Surveys

Recently several survey papers performed an overview of
the research on deduplication algorithms, including some SSD
specifics. In [11] a new taxonomy on data deduplication is
presented. This taxonomy is based on [12] and is further
extended. The authors consider six categories: granularity, lo-
cality, timing, indexing, technique, and scope (these categories
are expanded below); an overview of existing deduplication
systems, grouped by storage type, is presented: Backup and
Archival Storage, Primary Storage, Random Access Memory,
and SSD.

In [4] deduplication is considered as evolution of data com-
pression. The authors discuss the main applications and trends
in data deduplication and list several publicly available Open
Source projects, data sets, and traces to study deduplication;
some open problems are described.

The paper [13] considers security-related issues of data
deduplication in cloud storage systems. Basing on the pro-
posed classification, the authors describe security risks and
inside/outside attack scenarios. The modern techniques of safe
deduplication are presented; to provide safety, these techniques
use both crypto solutions and protocols. The authors highlight
four approaches to design safe deduplication systems: data
granularity, deduplication location, storage architecture, and
cloud service model. The existing taxonomy is extended using
these approaches. The existing solutions in secure dedupli-
cation are classified into four categories: message-dependent
encryption, proof of ownership, traffic obfuscation, and de-
terministic information dispersal. Each of these categories is
analyzed from the points of view of security and effectiveness,
pros and contras are described. The authors also describe open
problems in the domain of secure deduplication.

Comparing to these surveys on data deduplication, our
research is more concentrated on flash-based storage. We
propose a new taxonomy, review SSD-related research, and
highlight several open problems in the domain of deduplication
of flash-based storage.

B. Classification

There are several taxonomies on data deduplication. One
of the most cited is the one presented in [12] and extended
in [11]. The latter identifies six categories:

• granularity: refers to the method used for partitioning
data into chunks,

• locality: locality assumptions are commonly exploited
in storage systems to support caching strategies and
on-disk layout,

• timing: refers to when detection and removal of dupli-
cate data are performed, in particular, if duplicates are
eliminated before or after being stored persistently,

• indexing: provides a data structure that supports the
discovery of duplicate data,

• technique: refers to deduplication of either exact
copies or “similar” data chunks,

• scope: refers to local or distributed deduplication.

The paper [13] proposes a specific taxonomy of secure
deduplication solutions based on four categories: message-
dependent encryption, proof of ownership, traffic obfuscation,
and deterministic information dispersal. In [14] a taxonomy
based on location, time, and chunk is developed. To address the
specifics of SSD, we extended the taxonomy proposed in [11]
(see Fig. 4).

The proposed taxonomy reflects the main issues related to
deduplication in SSD.

C. Deduplication vs. ompression

Both deduplication and compression are aimed at reducing
data redundancy. In [4] deduplication is considered as evolu-
tion of compression. While traditional compression eliminates
redundancy within a file or a small group of files, deduplication
eliminates both intrafile and interfile redundancy over large

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 27 ----------------------------------------------------------------------------



Fig. 4. Taxonomy of data deduplication

datasets, which could be stored by different users and across
multiple distributed storages. Some works implement com-
pression as an additional stage of deduplication (for example,
see [5]).

We note that in general deduplication, as well as compres-
sion, is not always profitable. This means that the overhead
caused by both techniques might be more significant, than the
obtained gain. To address this important issue, we refer the
reader to deduplication effectiveness and efficiency evaluation
performed in the works [15], [16].

D. Goals of deduplication and compression

Several goals are specifically related to SSD as compared
to general deduplication goals (such as memory footprint
reduction):

• Obtain extra tangible capacity is the first goal of data
deduplication considered in research works while SSD
are still more expensive than HDD;

• Reduce the number of write operations [5], [6] is the
second goal related to performance: the fewer write
operations are performed, the lower response time
with write operations the storage has;

• Reduction of write amplification [17] is a consequence
of reducing the number of write operations: as write
amplification heavily harms SSD shortening its life-
time and decreasing performance, reduction of write
amplification is considered as one of the main features
of data deduplication on SSD.

• Improvement of write speed [18] is an another conse-
quence of reducing the number of write operations: as

some write operations are replaced by less time-costly
referencing operations, write speed increases;

• Extension of the lifetime [19] is the third consequence
of reducing the number of write operations number
and its corresponding write amplification;

• Increase reliability [20].

Specifics of SSD leads to new efficiency criteria compared
to deduplication in HDD. This requires new technologies and
methods of deduplication.

V. SINGLE DEVICE LEVEL TECHNIQUES

In the simplest case deduplication is narrowed to a single
device. This approach is convenient to study the general
deduplication process and its stages.

A. Deduplication and ompression

It is known, that SLC (Single Level Cell) and MLC/TLC
(Multi Level Cell/Three Level Cell) regimes of an SSD
cell possess diverse reliability in terms of erase/write cycles.
This diversity is utilized to perform write buffering to cache
containing blocks working in SLC mode, thus extending the
overall device lifetime. In order to perform wear leveraging,
the SLC cache is rotated over all memory blocks. To enhance
such a caching technology, an in-place delta compression
technique was suggested in [21]. By performing intra-page
delta compression (keeping the updates of the page contents in
the same page by using the so-called partial programmability
SLC mode), and lossless intra-sector data compression, the
authors claim to decrease the write stress for the intra-SSD
write cache working in SLC mode, at the price of a hardware
sophistication. A somewhat similar idea of in-place update
without block erase, based on the so-called multi-write coding
(when a single page can be written more than once, without
the need of intermediate block erasing) enhanced by the
lossless data compression technique resulting in lesser write
amplification and memory wear is discussed in [22].

In many papers the deduplication technique is suggested to
increase lifetime rather than reclaim extra capacity. The reason
for that is a possibility of deduplication cancellation due to
data update. Thus, the free capacity is conventionally used for
internal routines such as garbage collection and wear levering.
A novel FTL scheme addressing the problem of obtaining
extra free space by using a combination of deduplication and
compression techniques was suggested in [5]. A prediction
technique for compression rate applied to the so-called cold
(rarely used) data is used to obtain the limits for available extra
capacity, with respect to which the free space reclaimed by
deduplication is offered to the operating system level. A similar
compression rate based hot/cold data identification technique
is addressed in the paper [23].

The reclaimed free space might also be used to increase
redundancy. An in-block data compression method for relia-
bility increase is suggested in the works [24], [20]. A block-
level lossless compression (by a combination of a modified
move-to-front algorithm with Huffman coding) allows to use
the obtained in-block extra capacity to switch to a higher
redundancy (by increasing the size of error correction codes
(ECC) information stored in the block). A similar approach

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 28 ----------------------------------------------------------------------------



is suggested in [18]. By applying in-block lossless compres-
sion and enhanced ECC, the authors suggest to apply faster
writing, thus increasing the overall write speed without losing
reliability. Prior to compression, a compressibility estimation
is performed.

The works [17], [6] apply compression for increasing life-
time and performance, decreasing power consumption. Both
papers suggest new FTL software supporting selective com-
pression, whereas the paper [6] additionally requires a specific
hardware module for high online compression performance.
The content-aware in-block deduplication is considered in [7],
namely, the variable chunks within a fixed size block are used
to determine duplicated data, in order to increase the SSD
device lifetime.

Despite the similarity of both techniques, there still is a
possibility to obtain additional gain by a proper combination
of them. Namely, the so-called Dedup Assisted Compression
(DAC) technique was suggested [25], which allows to extend
the lifetime of SSD by lowering the required number of writes,
requiring no additional hardware modules. A study of the
available techniques and their combinations (such as lossless
compression, deduplication and performance throttling), fo-
cused solely on the lifetime extension of an SSD device, is
performed in the paper [26]. A sophisticated approach com-
bining the deduplication, compression and caching techniques,
the so-called DedupeSwift, implemented in OpenStack Swift
storage (widely used in the cloud storage systems) to reduce
the memory footprint as well as increase read performance is
designed in the work [27].

B. Fingerprinting

A known tradeoff between the accuracy of the duplicate
detection and speed is studied in many papers. Since the fin-
gerprinting is based on hash functions, the possibility of a hash
collision depends on the properties of hash function, which in
practice means that a reliable fingerprint is both performance-
and space-consuming. To overcome this difficulty, pre-hashing
(based on fast unreliable hash functions, such as CRC32)
might be applied, together with an offline deduplication of the
possibly duplicated pages [28]. As an alternative technique of
duplicate detection, the byte to byte comparison of write page
with its potential duplicate is suggested in [29]. The authors
claim that high read speed and easy comparison implies less
overhead, than the conventional fingerprinting techniques do.
A novel approach based on a specific device for keeping the
metadata, the so-called Content addressable memory, in order
to avoid fingerprinting, is suggested in [30].

Note also, that efficiency of fingerprinting depends not only
on the speed of a single lookup, but also on the properties of
workload; this means that multiple consequent lookups may
lead to high disk utilization resulting in a performance bottle-
neck. To address this issue, a buffering technique called “lazy”
deduplication is suggested in [31]. It is also suggested to use
parallel computing and general purpose graphical processing
unit (GPGPU) to facilitate the fingerprinting process. A similar
technique related to buffering and delaying the process in order
to get better deduplication rate is introduced in [32]. Namely,
the so-called containers, uniting several deduplicated blocks,
are constructed after a delay so as to increase the utilization

(in terms of the amount of data restored from the container). A
similar page-level compression-based technique was suggested
earlier in [33]. We also note the work [34] studying the
fine-grained deduplication technique. An approach to route
the containers to multiple disks (as an alternative to RAID
(Redundant Array of Independent Disks) striping) in order to
speedup the reading performance is suggested in the work [35].

C. Application- pecific echniques

Several papers address the issues of compression and
deduplication related to specific application fields. Compres-
sion algorithms and hardware (FPGA – Field-Programmable
Gate Array) implementation for astronomy data storage are
studied in [36]. High-speed SSD-based RAID storage with
integrated compression for handling image data is presented
in [9]. Deduplication techniques for Non-Linear Editing (NLE)
based on causality between operations is studied in [37]. A
word sequence-based decoding scheme based on statistical
properties of a natural language allowing to increase the
efficiency of error correction of traditional ECC schemes with
respect to text file decoding is presented in the paper [38]. An
intermediate compression layer lowering the write response
time in multimedia devices is studied in [39], exploiting the
same idea as suggested earlier in the works [40], [41]. The
paper [42] addresses the problem of highly duplicated data in
the logging mechanism of a filesystem, by suggesting a scheme
for invalidating multiple copies of the same data in a common
journaling module.

D. Other ypes

An interesting approach to deduplication management is
suggested in [10]. The authors apply code analysis techniques
(focusing on loops as main sources for duplicate data) and
block/page based deduplication in order to reduce the in-place
updated data.

The security issues of organizing data storage with dedu-
plication over unreliable provider is addressed in [43]. The
cryptography-enhanced scheme with a trusted proxy and group
authentication is applied, and a prototype is implemented on
a popular Dropbox web storage hosting.

It remains to note, that a Zynq-based platform for experi-
ments to test and validate compression algorithms is presented
in [44]

VI. STORAGE AND NETWORK LEVEL

Deduplication on several linked devices raises a variety
of new research problems. One of the most SSD-related
among them is difference in deduplication on All-Flash and
heterogeneous storages.

A. All- lash torage

Large scale storage applications require many SSD devices
to work in parallel. In many cases the devices are organized
into the RAID array, which suffers from the known problem
of reliability degradation due to frequent parity updates. In
the paper [45] the all-flash array reliability is studied under
consideration of the prevalence of long sequential writes in the

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 29 ----------------------------------------------------------------------------



storage workload. The proposed Dedup-assisted RAID (DA-
RAID), similarly to the Diff-RAID technique, differentiates
the amount of data written to each SSD in an array, thus
minimizing the probability of multiple correlated failures,
and, thanks to deduplication, allows to reduce the amount of
parity updates, thus significantly extending the SSD lifetime. A
similar idea related to parity data deduplication for SSD array
lifetime extension in an OpenStack-based cloud is presented
in [46].

Another problem of RAID-based all-flash arrays is related
to separate treatment of deduplication and replication (for
redundancy purposes), resulting in a suboptimal design of
the storage. Simultaneous treatment of these two aspects by
means of a dynamical content-aware replication management
is performed in [47]. A similar problem of deduplication
and replication coordination, in the context of HDFS-based
(Hadoop Distributed File System) all-flash distributed storage,
is addressed in [48] by means of new routing algorithms for
the HDFS protocol.

B. Heterogeneous torage

Heterogeneous storage systems utilize large and inex-
pensive HDDs as permanent storage, while using the low
latency and high bandwidth of the SSD devices for caching
purposes. However, conventional caching mechanisms induce
write stress, thus significantly shortening the lifetime of the
SSD cache. Specific policies were developed, such as D-
ARC, D-LRU, in order to fight this problem. These algorithms
utilize deduplication to decrease the number of writes during
cache replacement, thus increasing the cache endurance, as
well as increasing the cache hit ratio [49]. Another possible
solution is based on increasing the data persistence together
with cache hit ratio for the SSD cache, as studied in [50],
by means of the so-called PLC-cache technique, amplifying
the proportion of popular and long-term cached (PLC) data
in the SSD cache, resulting in read access latency decrease
together with SSD lifetime extension. A specific solution based
on dedup-aware caching algorithms and sophisticated metadata
management scheme (by combining cache data and metadata
management) is studied in [51]. Moreover, additional gain, as
suggested by the authors, might be obtained by a combination
of compression and deduplication techniques for flash caching.
Somewhat similar approach is exploited in [52], where the SSD
disk is used to speedup the deduplication process on a HDD-
based storage. The paper [53] also addresses the performance
issue of deduplication on an HDD-based storage, however, in
the Cloud storage context, and tries to segregate performance-
oriented small writes from capacity-oriented large ones.

The problem of backup and restore operations (e.g. in the
virtualized environment) in a Cloud storage, related to high
probability of backup fragmentation resulting in multiple disk
I/O operations, is addressed in the works [54], [55]. Namely,
the authors suggest to use an SSD disk as a read cache for
non-sequential unique small data chunks with high reference.
However, traditional cache replacement policies lead to fast
SSD wearout, and this problem might be solved by applying
special policies, such as keeping the long-term popular data, as
suggested in [19]. A similar solution (by creating an SSD based
cache in the HDD based storage) for improving the efficiency
of backup operation is suggested in [56].

Finally, we note a few papers addressing the deduplication
issues at an even higher level, such as the large virtual machine
hosting cloud [57] and software-defined network [8].

VII. LINUX DEDUPLICATION IMPLEMENTATIONS

Probably, the first example an approach similar to dedu-
plication in UNIX is the so called “hard link”. Hard links
give ability to have multiple names for one file, allowing to
save some disk space occupied by identical files (see Fig. 5).
The major consequence of the “one file — multiple names”
semantic is that changing file using one name affects other file
names too. Such behaviour makes hard links usable only for
a limited set of scenarios, for example, by incremental backup
software , where
any file which has not changed between two consecutive
snapshots will appear as a single data area with multiple
hard links in backup pool. Hard links can be created using
the link() function.

Fig. 5. Hard link

The so called “symbolic link” appeared later; a symbolic
link contains a text string that is automatically interpreted
and followed by the operating system as a path to another
file or directory (see Fig. 6). Symbolic links are commonly
used as pointers to the “real object location” for compatibility
purposes, but their usage for deduplication is doubtful.

Fig. 6. Symbolic link

Recently the so called “reflink” has appeared in Linux
filesystem development. Reflinks give ability to share data
blocks (extents) among multiple files. Unlike the hard links,
each file can be modified independently using copy-on-write
(Fig. 7). This approach was traditionally used for memory
management (cloning process memory on fork() calls, for
example) but with modern file systems Linux is able now to
clone also files efficiently enough.

Reflinks first appeared in the btrfs file system with
BTRFS_IOC_CLONE ioctl() operation, but recently were
included into the virtual file system layer of the Linux
kernel with FICLONE and FICLONERANGE ioctl()
operations. Another deduplication ioctl() operation is
FIDEDUPERANGE, allowing block-level out-of-band dedupli-
cation. It could be used by any userspace program: first, to
find out that some blocks in files are identical, and then to
tell the kernel to merge them using reflinks. Ioctl operations

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 30 ----------------------------------------------------------------------------



Fig. 7. Lightweight copy

mentioned above first appeared in Linux kernel 4.5
. At

the time of writing, the lightweight copy and deduplication
are supported by btrfs, xfs, and ocfs2 file systems.

At least one storage vendor, NetApp Inc (multinational
storage and data management company) have the so called
“FlexClone” and “FlexVol”, which exploit exactly the “mul-
tiple files sharing identical data blocks” approach described
above [58]. The ability to easily clone production data volumes
for development or backup purposes is obviously useful in
many scenarios, and should be present in new and currently
developed storage systems.

For all implementations described above the user or an
application must explicitly require the Linux kernel to clone
a file or merge some parts of two files. This is good for
deduplication-aware applications (or users who know about
“cp --reflink”): such application can take control over
the process and specify exactly what and when to merge (or
avoid creating duplicate data at all by using the file cloning
feature).

However, for deduplication-unaware applications some
kind of “duplication finder” is required. There are many of
them, e.g., duperemove

. Such tools can save some disk space but
they are not able to save time for data writing nor to
decrease flash memory wear-out. There is a need for some
in-line deduplication software for finding and storing duplicate
data effectively and transparently for applications and users.

Two most noticeable implementations of open-source in-
line deduplication software are OpenDedup (sdfs file sys-
tem) [59] and Virtual Data Optimizer (VDO) [60].

The OpenDedup project has developed the sdfs file system
– a clustered deduplicated file system licensed under GPLv2.
It detects duplicate blocks using some kind of hash for each
block. The project uses Java, which results in high CPU and
memory overhead and relatively bad performance. Data and
workload could be distributed across multiple servers. Data
blocks can be stored also redundantly (which is exactly the
opposite idea with respect to deduplication).

Another Linux inline deduplication implementation is
VDO. It was developed by Permabit Technology Corporation
and was not open source until 2017, when Red Hat had
acquired the assets and technology of Permabit and opened
VDO to the community. It currently has some problems
related to its closed source origin (conformance with the Linux
kernel coding standards, support for non-x86-64 platforms,

refactoring of platform layer abstractions, and other changes
requested by upstream maintainers etc). But the technology
itself is thoroughly tested, mature, and in production use
since 2014 in its previous proprietary form. With the high
demand of the Linux community for a mature open-source
inline deduplication software and the Red Hat support, we
expect VDO to be ready for integration with the Linux kernel
in the nearest future. Some performance observations for
VDO used together with DRBD (Distributed Replicated Block
Device) are available in [61]. In a testing environment VDO
reduced the replication network and storage utilization (amount
of transferred and written bytes) by about 85% while only
increasing the load (the so called “la”, load average) by about
0.8.

VIII. OPEN PROBLEMS

Despite the ongoing active development of deduplication
technology, there are still open research problems that seem
promising for significant improvement of deduplication effi-
ciency. These problems are related to both general deduplica-
tion process and specific issues of disk drives. Here we briefly
describe several of these problems directly related to the SSD
specifics.

An efficient hash function; the modern SSDs are equipped
by a processing unit, but the performance of this unit is
relatively low. Chunk hash computing using SHA-1 or MD5
consumes much CPU power. So, a lightweight hash function
could make it possible to move chunk hash computing directly
to the FTL layer of the disk. This could improve performance
of data deduplication. However, a new hash function should
still have a property of uniform mapping of data chunks to
hash values. This is necessary to reduce the probability of
collisions, which lead to data loss and file corruption. Low
probability of collision (when different data chunks produce
the same hash) is crucial. This is tightly connected to the hash
size: larger hashes are less likely to collide. However, large
hashes mean large hash table of stored data chunks, low data
density, slower search, etc.

The previous problem is related to a more general problem
of SSD development with enough resources on-board to
perform deduplication inside the disk. Besides the hash
computing, data deduplication consumes memory to store the
hash table. So, memory consumption also have to be addressed
by internal data deduplication.

Distributed storage data deduplication brings up issues
on storing the hash table of distributed chunks, which could
be a problem in the case of hot swap and dynamic change
of the storage structure. Another problem is fragmentation: a
file could be distributed among several different disks, so, it
should be appropriately recomposed.

Hybrid storage requires taking into account diverse disk
characteristics: random access memory is fast but expensive
and volatile, so it is good to store the hash table, but not
file references on chunks; SSD is fast but harmed by wear
out and write amplification, so it is good to store chunks
but not the hash table or file references to chunks if files
often change; HDD is nonvolatile and comparatively cheap
but has slow random access and is harmed by fragmentation.

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 31 ----------------------------------------------------------------------------



So, effective techniques of data deduplication in hybrid storage
are of interest.

Effective solution of these open problems requires special
mathematical models and algorithms to be developed.

IX. CONCLUSION

Since early 2000s, data deduplication plays an increasingly
important role in storage systems. As data volumes grow and
SSD are used more widely, the existing methods are adopted
to specifics of flash-based storage. It allows to reduce the
number of writes and increase the disk lifetime, provides faster
write operations for high-load information systems, and saves
storage space.

We performed a survey on data deduplication techniques,
focusing on SSD-aware techniques. We hope that the presented
enhanced taxonomy of the research works on data deduplica-
tion for this particular subfield, as well as several open research
problems related to SSD-aware data deduplication, could be
a good starting point to development of new techniques and
approaches of data deduplication in SSD-based storage.

ACKNOWLEDGMENT

This work is supported by the Ministry of Education and
Science of Russian Federation (project no. 14.580.21.009,
unique identifier RFMEFI58017X0009).

REFERENCES

[1] Seagate. Data age 2025: The evolution of data to life-critical, 2017.

[2] Dutch T. Meyer and William J. Bolosky. A study of practical
deduplication. In Proceedings of the 9th USENIX Conference on File
and Stroage Technologies, FAST’11, pages 1–1, Berkeley, CA, USA,
2011. USENIX Association.

[3] Cagdas Dirik and Bruce Jacob. The performance of pc solid-state disks
(ssds) as a function of bandwidth, concurrency, device architecture, and
system organization. SIGARCH Comput. Archit. News, 37(3):279–289,
June 2009.

[4] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua,
Min Fu, Yucheng Zhang, and Yukun Zhou. A comprehensive study of
the past, present, and future of data deduplication. Proceedings of the
IEEE, 104(9):1681–1710, September 2016.

[5] Bon-Keun Seo, Seungryoul Maeng, Joonwon Lee, and Euiseong Seo.
DRACO: A deduplicating FTL for tangible extra capacity. IEEE
computer architecture letters, 14(2):123–126, JUL-DEC 2015.

[6] Sungjin Lee, Jihoon Park, Kermin Fleming, Arvind, and Jihong
Kim. Improving performance and lifetime of solid-state drives using
hardware-accelerated compression. IEEE transactions on consumer
electronics, 57(4):1732–1739, NOV 2011.

[7] Jin-Yong Ha, Young-Sik Lee, and Jin-Soo Kim. Deduplication with
block-level content-aware chunking for solid state drives (SSDs). In
2013 IEEE 15TH international conference on high performance com-
puting and communications & 2013 IEEE international conference on
embedded and ubiquitous computing (HPCC EUC), pages 1982–1989,
New York, USA, 2013. IEEE.

[8] Yu Hua, Xue Liu, and Dan Feng. Smart in-network deduplication for
storage-aware SDN. ACM sigcomm computer communication review,
43(4):509–510, OCT 2013.

[9] Wang Shiming, Xu Zhiyong, Zhang Yao, and Fu Chengyu. PCIE
interface design for high-speed image storage system based on SSD. In
Tang, C and Chen, S and Tang, X, editor, XX international symposium
on high-power laser systems and applications 2014, volume 9255 of
Proceedings of SPIE, Bellingham, WA USA, 2015. SPIE-INT soc
optical engineering.

[10] Joon-Young Paik, Tae-Sun Chung, and Eun-Sun Cho. Application-
aware deduplication for performance improvement of flash memory.
Design automation for embedded systems, 19(1-2):161–188, MAR
2015.

[11] João Paulo and José Pereira. A survey and classification of storage
deduplication systems. ACM computing surveys, 47(1):1–30, June 2014.

[12] Nagapramod Mandagere, Pin Zhou, Mark A Smith, and Sandeep
Uttamchandani. Demystifying data deduplication. In Proceedings
of the ACM/IFIP/USENIX Middleware ’08 Conference Companion,
Companion ’08, pages 12–17, New York, NY, USA, 2008. ACM.

[13] Youngjoo Shin, Dongyoung Koo, and Junbeom Hur. A survey of secure
data deduplication schemes for cloud storage systems. ACM computing
surveys, 49(4):1–38, January 2017.

[14] E. Manogar and S. Abirami. A study on data deduplication techniques
for optimized storage. In Advanced computing (ICoAC), 2014 Sixth
International Conference on, pages 161–166. IEEE, 2014.

[15] Ruijin Zhou, Ming Liu, and Tao Li. Characterizing the efficiency of
data deduplication for big data storage management. In 2013 IEEE
International symposium on workload characterization (IISWC 2013),
International Symposium on Workload Characterization Proceedings,
pages 98–108, New York, USA, 2013. IEEE.

[16] Jonghwa Kim, Choonghyun Lee, Sangyup Lee, Ikjoon Son, Jongmoo
Choi, Sungroh Yoon, Hu-ung Lee, Sooyong Kang, Youjip Won, and Jae-
hyuk Cha. Deduplication in SSDs: Model and quantitative analysis. In
2012 IEEE 28th symposium on mass storage systems and technologies
(MSST), IEEE Symposium on Mass Storage Systems and Technologies
Proceedings-MSST, New York, USA, 2012. IEEE.

[17] Youngjo Park and Jin-Soo Kim. zFTL: Power-efficient data compression
support for NAND flash-based consumer electronics devices. IEEE
transactions on consumer electronics, 57(3):1148–1156, AUG 2011.

[18] Ningde Xie, Guiqiang Dong, and Tong Zhang. Using lossless data
compression in data storage systems: Not for saving space. IEEE
transactions on computers, 60(3):335–345, MAR 2011.

[19] Jian Liu, Yun-Peng Chai, Xiao Qin, and Yao-Hong Liu. Endurable
SSD-based read cache for improving the performance of selective
restore from deduplication systems. Journal of computer science and
technology, 33(1):58–78, JAN 2018.

[20] Juergen Freudenberger, Mohammed Rajab, Daniel Rohweder, and
Malek Safieh. A codec architecture for the compression of short data
blocks. Journal of circuits systems and computers, 27(2), FEB 2018.

[21] Xuebin Zhang, Jiangpeng Li, Hao Wang, Kai Zhao, and Tong Zhang.
Reducing solid-state storage device write stress through opportunistic
in-place delta compression. In 14TH USENIX Conference on file and
storage technologies (FAST ‘16), pages 111–124, Berkeley, USA, 2016.
USENIX ASSOC.

[22] Ashish Jagmohan, Michele Franceschini, and Luis Lastras. Write
amplification reduction in NAND flash through multi-write coding. In
MG Khatibm, X He, and M Factor, editors, 2010 IEEE 26th symposium
on mass storage systems and technologies (MSST), IEEE Symposium
on Mass Storage Systems-Proceedings, New York, USA, 2010. IEEE.

[23] Kyuwoon Kim, Sanghyuk Jung, and Yong Ho Song. Compression
ratio based hot/cold data identification for flash memory. In IEEE
International conference on consumer electronics (ICCE 2011), pages
33–34, New York, USA, 2011. IEEE.

[24] Juergen Freudenbrger, Alexander Beck, and Mohammed Rajab. A data
compression scheme for reliable data storage in non-volatile memories.
In 2015 IEEE 5th international conference on consumer electronics -
Berlin (ICCE-BERLIN), pages 139–142, Bilbao, Spain, 2015. UNIV
BASQUE COUNTRY UPV-EHU PRESS.

[25] Jisung Park, Sungjin Lee, and Jihong Kim. DAC: Dedup-assisted
compression scheme for improving lifetime of NAND storage systems.
In Proc. of the 2017 design, automation & test in Europe conference &
exhibition (DATE), Design Automation and Test in Europe Conference
and Exhibition, pages 1249–1252, New York, USA, 2017. IEEE.

[26] Sungjin Lee, Taejin Kim, Ji-Sung Park, and Jihong Kim. An integrated
approach for managing the lifetime of flash-based SSDs. In Design,
automation & test in Europe, Design Automation and Test in Europe
Conference and Exhibition, pages 1522–1525, New York, USA, 2013.
Assoc computing machinery.

[27] Jingwei Ma, Gang Wang, and Xiaoguang Liu. DedupeSwift: object-

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 32 ----------------------------------------------------------------------------



oriented storage system based on data deduplication. In Trust-
com/BigDataSE/I SPA, 2016 IEEE, pages 1069–1076. IEEE, 2016.

[28] Eunsoo Park and Dongkun Shin. Offline deduplication for solid state
disk using a lightweight hash algorithm. JSTS: journal of semiconductor
technology and science, 15(5):539–545, October 2015.

[29] Zhengguo Chen, Zhiguang Chen, Nong Xiao, and Fang Liu. Nf-dedupe:
A novel no-fingerprint deduplication scheme for flash-based ssds. In
2015 IEEE symposium on computers and communication (ISCC), pages
588–594, New York, USA, 2015. IEEE.

[30] Roman Kaplan, Leonid Yavits, Amir Morad, and Ran Ginosar. Dedupli-
cation in resistive content addressable memory based solid state drive. In
Power and Timing Modeling, Optimization and Simulation (PATMOS),
2016 26th International Workshop on, pages 100–106. IEEE, 2016.

[31] Jingwei Ma, Rebecca J. Stones, Yuxiang Ma, Jingui Wang, Junjie Ren,
Gang Wang, and Xiaoguang Liu. Lazy exact deduplication. ACM
transactions on storage, 13(2):1–26, June 2017.

[32] Jian Liu, Yunpeng Chai, Chang Yan, and Xin Wang. A delayed
container organization approach to improve restore speed for dedupli-
cation systems. IEEE transactions on parallel and distributed systems,
27(9):2477–2491, September 2016.

[33] KS Yim, K Koh, and H Bahn. A compressed page management scheme
for NAND-type flash memory. In HR Arabnia and LT Yang, editors,
VLSI’03: Proceedings of the international conference on VLSI, pages
266–271, Athens, GA USA, 2003. CSREA Press.

[34] Taejin Kim, Sungjin Lee, and Jihong Kim. FineDedup: A fine-grained
deduplication technique for extending lifetime of flash-based SSDs.
Journal of semiconductor technology and science, 17(5):648–659, OCT
2017.

[35] Chao Li, Shupeng Wang, Chunyun Xiao, Xiaoyang Zhou, and Guangjun
Wu. MMD: an approach to improve reading performance in dedupli-
cation systems. In 9th IEEE International Conference on Networking,
Architecture, and Storage (NAS), pages 93–97. IEEE, August 2014.

[36] Bo Peng, Xi Jin, Tianqi Wang, and Xueliang Du. Design of a
distributed compressor for astronomy ssd. In 2015 IEEE 23rd Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), page 98, New York, USA, 2015. IEEE.

[37] Man-Keun Seo and Seung-Ho Lim. Deduplication flash file system
with PRAM for non-linear editing. IEEE transactions on consumer
electronics, 56(3):1502–1510, AUG 2010.

[38] Yue Li, Yue Wang, Anxiao (Andrew) Jiang, and Jehoshua Bruck.
Content-assisted file decoding for nonvolatile memories. In
MB Matthews, editor, 2012 conference record of the forty sixth asilomar
conference on signals, systems and computers (ASILOMAR), Confer-
ence Record of the Asilomar Conference on Signals Systems and
Computers, pages 937–941, New York, USA, 2012. IEEE.

[39] W. T. Huang, C. T. Chen, and C. H. Chen. The real-time compression
layer for flash memory in mobile multimedia devices. In SS Kim,
JH Park, N Pissinou, TH Kim, WC Fang, D Slezak, HR Arabnia, and
D Howard, editors, MUE: 2007 International conference on multimedia
and ubiquitous engineering, proceedings, pages 171+, Los Alamitos,
CA USA, 2007. IEEE Computer soc.

[40] WT Huang, CT Chen, YS Chen, and CH Chen. A compression layer
for NAND type flash memory systems. In X He, T Hintz, M Piccardi,
Q Wu, M Huang, and D Tien, editors, Third International Conference
on Information Technology and Applications, Vol 1, Proceedings, pages
599–604, Los Alamitos, CA USA, 2005. IEEE COMPUTER SOC.

[41] M Kjelso and S Jones. Memory management in flash-memory disks
with data compression. In HG Baker, editor, Memory management,
volume 986 of Lecture notes in computer science, pages 399–413,
Berlin, Germany, 1995. Springer-Verlag Berlin.

[42] Seung-Ho Lim and Young-Sik Jeong. Journaling deduplication with
invalidation scheme for flash storage-based smart systems. Journal of
systems architecture, 60(8):684–692, September 2014.

[43] Wen Bing Chuan, Shu Qin Ren, Sye Loong Keoh, and Khin Mi Mi
Aung. Flexible yet secure de-duplication service for enterprise data
on cloud storage. In International Conference on Cloud Computing
Research and Innovation (ICCCRI), pages 37–44. IEEE, October 2015.

[44] Debao Wei, Youhua Gong, Liyan Qiao, and Libao Deng. A Hardware-
Software Co-design Experiments Platform for NAND Flash Based on

Zynq. In 2014 IEEE 20th international conference on embedded and
real-time computing systems and applications (RTCSA), New York,
USA, 2014. IEEE.

[45] Taejin Kim, Sungjin Lee, Jisung Park, and Jihong Kim. Efficient
lifetime management of SSD-based RAIDs using dedup-assisted partial
stripe writes. In 2016 5TH Non-volatile memory systems and applica-
tions symposium (NVMSA), IEEE Non-Volatile Memory Systems and
Applications Symposium, New York, USA, 2016. IEEE.

[46] Huiseong Heo, Cheongjin Ahn, and Deok-Hwan Kim. Parity data de-
duplication in all flash array-based OpenStack cloud block storage stor-
age. IEICE transactions on information and systems, E99.D(5):1384–
1387, 2016.

[47] Yimo Du, Youtao Zhang, and Nong Xiao. R-Dedup: content aware
redundancy management for SSD-based RAID systems. In 43rd
International Conference on Parallel Processing (ICPP), pages 111–
120. IEEE, September 2014.

[48] Binqi Zhang, Chen Wang, Bing Bing Zhou, and Albert Y. Zomaya.
Inline data deduplication for SSD-based distributed storage. In IEEE
21st International Conference on Parallel and Distributed Systems
(ICPADS), pages 593–600. IEEE, December 2015.

[49] Xian Chen, Wenzhi Chen, Zhongyong Lu, Peng Long, Shuiqiao Yang,
and Zonghui Wang. A duplication-aware ssd-based cache architecture
for primary storage in virtualization environment. IEEE Systems
journal, 11(4):2578–2589, DEC 2017.

[50] Jian Liu, Yunpeng Chai, Xiao Qin, and Yuan Xiao. PLC-cache:
Endurable SSD cache for deduplication-based primary storage. In
2014 30th symposium on massive storage systems and technologies
(MSST), IEEE Symposium on Mass Storage Systems and Technologies
Proceedings-MSST, New York, USA, 2014. IEEE.

[51] Wenji Li, Gregory Jean-Baptise, Juan Riveros, Giri Narasimhan, Tong
Zhang, and Ming Zhao. Cachededup: In-line deduplication for flash
caching. In 14th usenix conference on file and storage technologies
(FAST ‘16), pages 301–314, Berkeley, USA, 2016. USENIX ASSOC.

[52] Dirk Meister and Andre Brinkmann. dedupv1: Improving deduplication
throughput using solid state drives (SSD). In MG Khatibm, X He, and
M Factor, editors, 2010 IEEE 26TH symposium on mass storage systems
and technologies (MSST), IEEE Symposium on Mass Storage Systems-
Proceedings, New York, USA, 2010. IEEE.

[53] Bo Mao, Hong Jiang, Suzhen Wu, and Lei Tian. POD: performance
oriented I/O deduplication for primary storage systems in the cloud. In
IEEE 28th International Parallel and Distributed Processing Sympo-
sium, pages 767–776. IEEE, May 2014.

[54] Bo Mao, Hong Jiang, Suzhen Wu, Yinjin Fu, and Lei Tian. Read-
performance optimization for deduplication-based storage systems in
the cloud. ACM transactions on storage, 10(2), MAR 2014.

[55] Bo Mao, Hong Jiang, Suzhen Wu, Yinjin Fu, and Lei Tian. SAR: SSD
assisted restore optimization for deduplication-based storage systems
in the cloud. In IEEE 7th International Conference on Networking,
Architecture and Storage (NAS), pages 328–337. IEEE, June 2012.

[56] Longxin Lin, Kun Xiao, and Wenjie Liu. Utilizing SSD to alleviate
chunk fragmentation in de-duplicated backup systems. In Parallel
and Distributed Systems (ICPADS), 2016 IEEE 22nd International
Conference on, pages 616–624. IEEE, 2016.

[57] Xun Zhao, Yang Zhang, Yongwei Wu, Kang Chen, Jinlei Jiang, and
Keqin Li. Liquid: a scalable deduplication file system for virtual
machine images. IEEE transactions on parallel and distributed systems,
25(5):1257–1266, May 2014.

[58] M Kilvansky. A thorough introduction to flexclone volumes. NetApp,
Technical White Paper, 2004.

[59] Jeramiah Bowling. Opendedup: open-source deduplication put to the
test. Linux Journal, 2013(228):2, 2013.

[60] Data deduplication and compression with
vdo. https://access.redhat.com/documentation/en-
us/red hat enterprise linux/7/html/storage administration guide/vdo.
[Online; accessed 24-Feb-2018].

[61] Albireo virtual data optimizer (vdo) on drbd.
https://www.linbit.com/en/albireo-virtual-data-optimizer-vdo-on-drbd/.
[Online; accessed 24-Feb-2018].

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 33 ----------------------------------------------------------------------------


