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Abstract—There are numerous clustering algorithms and clus-
tering quality criteria present at the moment. According to
clustering tasks, different criteria can be used as a ground
for choosing one or another clustering model. But choosing of
clustering quality criteria is in turn not based on any formal
approach and depends only on an analyst’s intuition. We propose
a systematic approach to clustering quality estimation by analyz-
ing the structure of clustering models and extracting the factors
of clustering quality. Further, we believe that clustering quality
estimation requires estimation of knowledge or information
produced in result of clustering. However, we show that existing
information criteria can not be used as criteria for choosing
clustering models and propose a new information criterion for
clustering and examine it experimentally.

I. INTRODUCTION

There are numerous clustering algorithms and clustering

quality criteria present at the moment. According to clustering

tasks, different criteria can be used as a ground for choosing

one or another clustering model. But choosing of clustering

quality criteria is in turn not based on any formal approach and

depends only on an analyst’s intuition. Thus, our first goal is to

develop a systematic approach to clustering quality estimation

by analyzing the structure of clustering models and finding the

factors of clustering quality.

Further, we believe that the systematic approach to clus-

tering quality estimation requires estimation of knowledge or

information produced in result of clustering. Though there is

a group of information criteria present at the moment, we

will show that existing information criteria can not be used as

criteria for choosing clustering models, because 1) they need

some ideal partition to compare its informativeness with the

informativeness of resulting partitions or 2) optimal, according

to these criteria, partitions are trivial and, consequently, not

intuitively informative nor practically applicable. Therefore,

we will propose a new information criterion for clustering

which, from the one hand, need not any ideal partitions and,

from the other hand, estimate clustering models in such a way

that the most preferable models are not trivial.

According to this program, in the first section we will

describe clustering models in general in order to extract the

clustering model structure. We suppose that clustering models

are defined by 1) different measures of distance between

objects; 2) different measures of distance between clusters;

3) a predefined number of clusters and 4) different clustering

algorithms. In the second section we will extract, according

to the general structure of clustering models, a number of

clustering quality factors, consider different existing cluster-

ing criteria and analyze them with respect to the factors.

And finally, in the third section we will consider a group

of information criteria and show that existing information

measures can not be used for choosing clustering models, then

we will define a new information criterion and examine it

experimentally.

II. CLUSTERING MODEL STRUCTURE

Under clustering we consider a process of partitioning of

a set of objects X , having m-component feature set, to a
set of subsets C = {C1, ..., Ck}, where each Ci is called
“cluster”. The reason of this partitioning is that different

objects contained in the same cluster are similar according

to their features.

Some particular method of partitioning the set X to the set

of clusters C is defined by a clustering model M :

C =M(X).

We suppose, that some particular method of partitioning

the set of objects to the set of clusters is defined by the four

factors: 1) a measure of distance between objects δ(xi, xj);
2) a measure of distance between clusters Δ(Ci, Cj); 3) a
number of clusters K and 4) by an algorithm of clustering

A. Therefore, we consider the clustering model structure <
δ,Δ, A,K >:

M =< δ,Δ, A,K >.

Let us consider some options for elements of the clustering

model structure, except of the number of clusters K as it does

not require any specific consideration.

A. Measures of distance between objects

Representation of objects of the original set X , having some
m-featured description, as points of the m-dimensional space
Rm allows to define a measure of distance δ(xi, xj) between
objects xi and xj[3], that in turn allows to define cluster as
a set of pairs, such that the distance between points of these

pairs is less then some value σ:

Ci = {(xi, xj) : xi ∈ X,xj ∈ X, δ(xi, xj) < σ}.
Given objects x, y ∈ X and values xi, yi of an i-th feature of

the objects x and y, there are following options for calculating
the distance δ(x, y):

• Euclidean distance is a geometrical distance in euclidean
space:

d(x, y) =
√∑

i(xi − yi)2.
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• Squared euclidean distance assigns bigger values to ob-
jects that are more distant from each other:

d2(x, y) =
∑

i(xi − yi)2.
• Hamming distance is the sum of differences between

coordinates:

dH(x, y) =
∑

i |xi − yi|.
For the Hamming distance an impact of some single big-

ger distances is less comparing to the euclidean distance

as they are not squared.

• Chebyshev distance is useful when you need to differ-
entiate one object from another, if they have different

coordinates:

d∞(x, y) = max |xi − yi|.
B. Measures of distance between clusters

A resulting partition of the objects also depends on a method

of measuring distance Δ(Ci, Cj) between clusters Ci and Cj .
Given measure δ(x, y) of distance between objects x and y and
a number nk of objects in a cluster CK , there are following
measures of distance between clusters[1]:

• Nearest neighbor distance is the distance between two
nearest points from different clusters:

Dmin(Ci, Cj) = min{δ(x, y)|x ∈ Ci, y ∈ Cj}.
• Farthest neighbor distance is the distance between two
the most distant points from different clusters:

Dmax(Ci, Cj) = max{δ(x, y)|x ∈ Ci, y ∈ Cj}.
• Distance between centroids. The centroid μk of a cluster
Ck is defined as following:

μk =
1
nk

∑
x∈Ck

x.

Then we can define the distance between two clusters Ci
and Cj as a distance between its centroids μi and μj :

Dμ(Ci, Cj) = δ(μi, μj).

• Squared distance between centroids:
D2
μ(Ci, Cj) = δ(μi, μj)

2.

• Mean distance:
Dmean(Ci, Cj) =

1
ninj

∑
x∈Ci

∑
y∈Cj

δ(x, y).

C. Clustering algorithms

Finally, the resulting partition of the objects depends on a

clustering algorithm being used. In this research we consider

only the k-group clustering algorithms. Let us denote by
dμ(Ck) the mean distance from points of a cluster Ck to its
centroid μk:

dμ(Ck) =
1
nk

∑
xi∈Ck

||xi − μk||.
Given cluster partitioning C = {C1, ..., Ck}, there is the least
squares function estimating partition quality:

SSE(C) =
∑

k dμ(Ck) =
∑

k

∑
xi∈Ck

||xi − μk||2.
Clustering algorithms of this group aims to find by numerous

iterations a partitioning C with minimal value of SSE(C):

C = argminC{SSE(C)}.
K-means algorithm[2]:

1) Randomly choose k points as starting centroids.
2) Assign each point to a cluster with the nearest centroid.

3) Recalculate the centroids.

4) Repeat until the centroids will stop changing.

The K-means algorithm depends on starting choices of cen-

troids, therefore, some choices could lead to “bad” partitions.

There is a modification of the k-means algorithm called k-
means++[4]:
1) Randomly choose k starting centroids.
2) Calculate for each point a distance to the nearest cen-

troid.

3) Choose new centroids with respect to the calculated

distances.

4) Continue as in the k-means algorithm.

The advantage of this algorithm is choosing more appropriate

points as the starting centroids.

There is a variation of k-means named k-medoids[5].
Medoid is an object of the original set chosen as a centroid.

K-medoids:

1) Randomly choose k objects as starting centroids.

2) Assign each object to a cluster with the nearest centroid.

3) Recalculate the medoids.

4) Repeat until the medoids stop changing.

This algorithm in combination with the Hamming distance is

more resistant to noises in datasets than k-means.
Another variation of k-means is k-medians[6], where me-

dians are calculated and chosen as centroids instead of mean

values. A median of a cluster is an object with the median

coordinates with respect to coordinates of other objects of the

cluster. K-medians:

1)
Randomly choose k points as starting centroids.

2)
Assign each object to a cluster with the nearest centroid.

3)
Recalculate the medians and choose them as new cen-

troids.

4) Repeat until the centroids stop changing.

Further we will consider different existing criteria of eval-

uating clustering quality.

III. CLUSTERING QUALITY CRITERIA

Under a clustering quality criterion we understand a func-

tion defined on a set of partitions of a set of objects, according

to which it is possible to choose one partition to another. Under

optimal clustering we mean partitioning that has maximal or

minimal, depends on the criterion, value of the function. At the

moment, choosing of clustering quality criteria is not restricted

by any formal system and depends on analyst’s experience and

intuition[1].

Clustering quality criteria can be divided into two groups.

If for calculating of a criterion you use only the set of

objects and the resulting partition itself, then it is an internal
criterion[2][7]. Otherwise, if the result of clustering is com-

pared with some ideal partition, then it is an external criterion.
According to our task, only internal criteria are considered.

As internal criteria of clustering quality are based only on

the original data set and the resulting partition, they should
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depend on the clustering model structure described in the

previous section. We will suggest a list of clustering quality

factors, based on the clustering model structure. It appears,

that improving one part of the structure leads to decreasing

characteristics of others parts[2], therefore, clustering quality

criteria must account all parts of the clustering model structure.

Thus, we will consider existing clustering quality criteria and

analyze it according to this conclusion.

A. Factors of clustering quality

According to the clustering models structure, we consider

the following factors of clustering quality:

• A number of clusters K and its derivatives (K-factor).
The factor is accounted by a criterion only if it is a

coefficient of a criterion, but it is useful to list:

– a number of points nk in some cluster Ck;
– a number of pairs of points pk of a cluster Ck:

pk = nk(nk − 1)/2;
– a number of within-group pairs pw for all clusters:

pw =
∑

k pk =
1
2 (
∑

k n
2
k −N);

– a number of between-group pairs pb of points which
do not belong to the same cluster:

pb =
∑

k<k′ = nknk′ .

– a total number of pairs pt for all points:
pt =

N(N−1)
2 .

• Within-group factor (WG-factor). Options are:
– within-group scatter matrix WGk, defined for each

cluster Ck:

WGk = X
t
kXk,

where Xk is the matrix formed by the centered

vectors vk = xi − μk for all xi ∈ Ck. Also it is
useful to define the total within group scatter matrix

WG as

WG =
∑

kWGk;

– within-group dispersion WGSSk of a cluster Ck,
which is a sum of squared distances between points

and a centroid of Ck:

WGSSk =
∑

x∈Ck
||xi − μk||2.

Also it is useful to define the total within-group dis-

persionWGSS as a sum of within-group dispersions
for all clusters:

WGSS =
∑

kWGSSk;

– the sum SW of the pw distances between all the pairs
of points inside each cluster:

SW =
∑

k

∑
xi,xj∈Ck,i<j

δ(xi, xj);

– the maximal within cluster distance dmax(Ck) for
Ck:

dmax(Ck) = maxxi,xj∈Ck,i �=j ||xi − xj ||
and the maximal within cluster distance dmax for all

clusters:

dmax = max(dmax(Ck);

– the sum EW of distances from the points of each

cluster Ck to its centroid μk:

EW =
∑

k dμ(Ck).

• Between-group factor (BG-factor). Options are:
– between group scatter matrix BGk, defined for each

cluster k:

BGk = B
tB,

where B is the matrix formed by the vectors v =
μk−μ, being reproduced nk times. Also it is useful
to define a total scatter matrix T :

T = XtX ,

where X is the matrix formed by the vectors v =
xi − μ for all xi ∈ X;

– between-group dispersion BGSS, which is a

weighted sum of squared distances between centroids

of all clusters and a centroid of all points μ:

BGSS =
∑

k nk||μk − μ||2;
– the sum SB of between cluster distances:

SB =
∑

k<k′
∑

i∈Ck,j∈Ck′ ,i<j δ(xi, xj);

– the minimal between cluster distance:
Dmin = min(Dmin(Ck, Ck′);

– the maximal distance between clusters centroids:
Dmaxμ = maxk<k′(Dμ(Ck, Ck′);

We considered a number of existing internal criteria[7]. The

results of analysis are represented in the Table I

Summing up, the only appropriate criteria are the Calinski-

Harabasz and the PBM indexes. We chose Calinski-Harabasz

(CH) index for further usage.

IV. INFORMATION CRITERIA

As partitioning of the set of objects X to the set of clusters

C can be considered as probability distribution, different

information-theoretical characteristics can be applied to this

partitioning to estimate an amount of information, produced

in result of clustering.

A. Existing information characteristics

There are following characteristics in information theory at

the moment[8]:

• Self-information for some value xi of a discrete random
variable X with probability distribution P (xi):

I(xi) = − logP (xi).
• Entropy of a discrete random variable X:

H(X) = −∑
i P (xi) logP (xi).

• Conditional entropy of discrete random variables X and

Y with probability distributions P (xi) and P (yj) and
joint probability distribution P (xi|yj):

aSmin is the sum of the pw smallest distances from all the pt pairs of
points, Smax — the sum of the pw largest distances from all the pt pairs of
points
bs+ is the number of times δ(x, x′) < δ(y, y′), where x, x′ ∈ Ci, y ∈

Ck, y
′ ∈ Ck′ , s

− is the number if times where the opposite situation occurs.
cFormulae are not listed due to complexity of its representation.
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TABLE I INTERNAL CRITERIA ANALYSIS

Criterion Formula WG-factor BG-factor K-factor
Ball-Hall index = 1

K

∑
k dμ(Ck) + - -

The Banfeld-Raftery index =
∑
k nk log(

Tr(WGk)
nk

) + - -

The C-index = SW−Smin
Smax−Smin

a + + -

The Calinski-Harabasz index = N−K
K−1

BGSS
WGSS

+ + +

The Davies-Bouldin index = 1
K

∑
kmaxk′ �=k(

dμ(Ck)+dμ(Ck′
Dμ(Ck,Ck′ ) ) + + -

The Det-Ratio index =
det(T )
det(WG)

+ - -

The Dunn index = Dmin
dmax

+ + -

The Baker-Hubert Gamma index = s+−s−
s++s−

b + + -

The GDI index =
mink �=k′ Δ(Ck,Ck′ )

max δ(Ck)
+ + -

The G plus index = 2s−
pt(pt−1) + + -

The K2|W |-index = K2 det(WG) + - +

The Log Det Ratio index = N log(
det(T )
det(WG)

) + - -

The Log SS Ratio index = log( BGSS
WGSS

) + + -

The McClain-Rao index = pb
pw

SW
SB

+ + -

The PBM index = ( 1
K

∑
xi∈N δ(xi,μ)

EW
Dmaxμ)2 + + +

The Point-Biserial index = (SW
pw

− SB
pb

)
√
pwpb
pt

+ + -

The Ray-Turi index = 1
N

WGSS
mink<k′ (D2

μ(Ck,C
′
k
))

+ + -

The Scott-Symons index =
∑
k nk log(det(WGk

nk
)) + - -

The SD index c + + -
The Silhouette index c + + -

The Tau index = s+−s−√
pbpw(

pt(pt−1)
2

)
+ + -

The Tr(W) index = WGSS + - -

The Tr(W−1B) index = Tr(WG−1BG) + + -

The Wemmert-Gancarski index = 1
N

∑
kmax(0, nk − ∑

xi∈N
||xi−μk||

mink �=k′ ||xi−μk||) + + -

The Xie-Beni index = 1
N

WGSS
Dmin(Ck,Ck′ )2 + + -

H(Y |X) = −∑
i

∑
j P (xi)P (yj |xi) logP (yj |xi).

• Relative entropy (Kullback–Leibler divergence) of dis-
crete random variables X and Y with n values:

DKL(X||Y ) =
∑

i P (xi) log
P (xi)
P (yi)

.

There is a group of information criteria amongst external

criteria as well. The reason of external information criteria

is to compare an amount of information produced in result of

clustering with an amount of information contained in an ideal

partitioning. These criteria are Mutual information I(X,Y ) of
two discrete random variables X and Y :

I(X,Y ) = H(Y )−H(Y |X);
and adjusted mutual information[9].

The idea of adjusted mutual information is to adjust mutual

information of two random variables with respect to a proba-

bility of its joint partitions. Given N points and two partitions

U and V , the number of points ai = |Ui| for Ui ⊆ U, i = 1...R
and bj = |Vj | for Vj ∈ V, j = 1...C, the total number of ways
to jointly assign N points into two partitions U and V is Ω:

Ω = (N !)2∏
i ai!

∏
j bj !

.

Each joint partition of U and V can be represented as a

contingency table M :

M = [nij ]
i=1...R
j=1...C .

Given some contingency table M , there are w different ways
of assigning the data points, that will result in this particular

M :

w = N !∏
i

∏
j nij !

.

Thus, the probability P (M |a, b) of M with respect to a set

M of all possible contingency tables is specified by

P (M |a, b) = w
W .

Given mutual information I(M) for the contingency table
M ,

I(M) =
∑

i

∑
j
nij

N log
Nṅij

aibj
,

the average mutual information of all possible joint partitions

of random variables X and Y is expected mutual information
E(I(M)|a, b):
E(I(X,Y )) = E(I(M)|a, b) =∑

M∈M I(M)P (M |a, b).
Then adjusted mutual information AI(X,Y ) is defined as
follows:

AI(X,Y ) = I(X,Y )−E(I(X,Y ))
max(H(X),H(Y ))−E(I(X,Y )) .
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Though external information criteria do not fit to our goals

as they need some predefined ideal partitioning, the idea of

adjusting an amount of information contained in some partition

with respect to its probability will be useful.

B. An analysis of the existing information characteristics

First, we are going to show that conditional entropy

H(Y |X) in general case can not be used as information
criterion for clustering. We denote a number of elements of

cluster Ck under condition xi as nik:

nik = |Xi ∩ Ck|,.
where Xi is a set of objects that satisfy the condition xi. As
for non-fuzzy clustering each xi ∈ X is assigned to only one

cluster Ck, for each i and k holds that nik = 1, therefore, for
each C and X the conditional entropy H(C|X) of non-fuzzy
clustering is zero:

H(C|X) = −∑
xi∈X

∑
k

1
N logN 1 = 0.

Second, we are going to use the number of points N as base

of logarithmic function of information criteria in order to get

normalized values. Besides of other advantages of normalized

variants, it will be easier to show with them that existing

information criteria can not be used for choosing clustering

models. We can do so as base of the logarithmic function in

the definitions of the criteria are not restricted.

Summing up, we have following information characteristics,

applicable to results of clustering:

• Clustering informativeness C:

H(C) = −∑
k
nk

N logN
nk

N .

• Clustering informativeness C relative to the original set

X:

DKL(C||X) =
∑

k
nk

N logN
nk
N
1
N

=
∑

k
nk

N logN nk.

Now we are going to show that these information criteria

can not be used for choosing clustering models. For this we

will compare values of Calinski-Harabasz index (KH) with

values of information characteristics H(C) and DKL(C||X)
with respect to different numbers of clusters n from 1 to 10.

We will use Fisher’s Iris flowers as dataset and k-means as
clustering algorithm. The results of comparing are in the Table

II:

TABLE II EXISTING INFORMATION CRITERIA
COMPARING

K CH H(C) DKL(C||X)
1 n/a n/a 1
2 513 0,13 0,87
3 560 0,22 0,78
4 529 0,27 0,73
5 494 0,3 0,7
6 475 0,35 0,65
7 451 0,38 0,62
8 441 0,4 0,6
9 409 0,41 0,59
10 391 0,44 0,56

If we use information criterion H(C) for choosing number
of clusters n, we should choose n = 10, or if we use DKL

— n = 1. We generalize this result as following:

• H(C) = 1⇔ ∀i|Ci| = 1,
• DKL(C||X) = 1⇔ C = X .

In other words, if we use information characteristic H(C) for
choosing the number of clusters, then the optimal number of

clusters equals to the number of objects, otherwise, if we use

information characteristic DKL(C||X), then the optimal parti-
tion is the set X itself. Both these options do not correspond to

the objective structure of data nor values of clustering quality

criteria.

C. A new information criterion

Therefore, we propose a new information criterion for

choosing clustering models. The idea of this criterion is similar

to the idea of adjusted mutual information, but it does not

need predefined ideal partition. This criterion is a conditional

entropy with respect to the set of possible partitions Part(X)
of the set X .

We define X as a set of all possible transformations of the

set X . The number of all possible transformations is defined
as follows:

|X | = |X||X|.

Then for each partition Parti(X) we define probability
P (Parti(X)) with respect to the set of all possible trans-
formations X . Given |X| = n, |Xi| = ni, |Parti(X)| = k,
and a number kj of all subsets Xi with the same number of

elements ni, the number of transformations |Parti(X)| for
the partition Parti(X) is defined by the formula

|Parti(X)| = n!
n1!...nk!

n!
k!(n−k)!

k!
k1!...km! ,

therefore, the probability P (Parti(X)) is defined as follow-
ing:

P (Parti(X)) =
|Parti(X)|

|X | ,

Now we can define weighted entropy P (Part(X))H(X)
and mean weighted entropy H(X|Part(X)) of the set X with

respect to the set of all possible partitions Part(X):

H(X|Part(X)) =∑
i P (Parti(X))Hi(X).

Beside of this numerical measure, it is possible to define a

binary characteristic H+:

H+ = 1⇔ P (Part(X))H(X) ≥ H(X|Part(X))
and a measure of difference d(H(X), H(X|Part(X)) of
entropy H(X) from the mean value H(X|Part(X)):
d(H(X), H(X|Part(X)) = |H(X)−H(X|Part(X))|.
Let us test the proposed measures as the criteria for choosing

clustering models by comparing it with Calinski-Harabasz

index like we do with characteristics H(X) and DKL(C||X|).
We have to take a random data set with less number of

elements to avoid overcomplicated calculations. Let it be a

random sample of data from Fisher’s flowers data set with
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TABLE III CLUSTERING RESULTS

n x1 x2 x3 x4 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 5.0 3.2 1.2 0.2 1 0 0 3 0 1 1 7 7
2 5.8 2.7 4.1 1.0 0 2 2 2 5 5 5 5 2
3 6.9 3.2 5.7 2.3 0 1 3 1 3 2 3 3 0
4 6.1 2.6 5.6 1.4 0 1 1 4 1 3 0 0 3
5 7.1 3.0 5.9 2.1 0 1 3 1 3 2 7 6 6
6 4.4 3.2 1.3 0.2 1 0 0 0 4 4 4 4 4
7 5.2 3.4 1.4 0.2 1 0 0 3 0 6 6 1 1
8 4.4 3.2 1.3 0.2 1 0 0 0 4 4 4 4 4
9 5.7 3.6 3.5 1.0 0 2 2 2 2 0 2 2 5
10 5.2 3.4 1.4 0.2 1 0 0 3 0 6 6 1 1

TABLE IV THE NEW INFORMATION CRITERIA COMPARING

K CH H(X) P (Part(X))H(X) d(H(X), H(X|Part(X)) H+

2 39 0.552827 0.000001 0.321273 1
3 81 0.527096 0.000096 0.295542 1
4 101 0.492621 0.000938 0.261067 1
5 187 0.286272 0.010907 0.054718 1
6 262 0.263548 0.050209 0.031994 1
7 328 0.143136 0.027269 -0.088417 0
8 1 0.013763 0.120411 -0.111142 0
9 1 0.013763 0.120411 -0.111142 0
10 1 0.120411 0.013763 -0.111142 0

10 elements. The data set and results of the clustering are

represented in the able III. The results of criteria

calculation are in the able IV.

Summing up, the mean weighted entropy of the set with

10 elements is H(X|Part(X)) = 0.231554, the parti-

tion with K = 6 has the maximal weighted entropy

P (Part(X))H(X) = 0.050209, the partitions withK = 2...6
are informative with respect to the mean value. The value

of the criterion P (Part(X))H(X) slightly differs from the

Calinski-Harabasz index: according to Calinski-Harabasz we

should choose K = 7, but according to our information
criterion we should choose K = 6. We suppose, the final
decision depends on priorities.

V. CONCLUSION

Summing up, we described the general structure of the clus-

tering models and considered some options for its elements.

Then we extracted factors of clustering quality according to the

general structure, analyzed different existing internal criteria

of clustering quality with respect to these factors and chose

a criterion that accounts all elements of the clustering mod-

els structure. After that we considered different information

characteristics and analyzed it with respect to its applicability

as the criterion for choosing clustering models. We proved

that none of them is applicable and proposed a new criterion.

Finally, we examined it experimentally and got successful

result.

At the current point, the practical applicability of the

proposed criterion is limited as the number of possible trans-

formations of a given set grows extremely fast, but we believe

that this limitation can be overcome in further researches.
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