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Abstract—There are numerous clustering algorithms and clus-
tering quality criteria present at the moment. According to
clustering tasks, different criteria can be used as a ground
for choosing one or another clustering model. But choosing of
clustering quality criteria is in turn not based on any formal
approach and depends only on an analyst’s intuition. We propose
a systematic approach to clustering quality estimation by analyz-
ing the structure of clustering models and extracting the factors
of clustering quality. Further, we believe that clustering quality
estimation requires estimation of knowledge or information
produced in result of clustering. However, we show that existing
information criteria can not be used as criteria for choosing
clustering models and propose a new information criterion for
clustering and examine it experimentally.

I. INTRODUCTION

There are numerous clustering algorithms and clustering
quality criteria present at the moment. According to clustering
tasks, different criteria can be used as a ground for choosing
one or another clustering model. But choosing of clustering
quality criteria is in turn not based on any formal approach and
depends only on an analyst’s intuition. Thus, our first goal is to
develop a systematic approach to clustering quality estimation
by analyzing the structure of clustering models and finding the
factors of clustering quality.

Further, we believe that the systematic approach to clus-
tering quality estimation requires estimation of knowledge or
information produced in result of clustering. Though there is
a group of information criteria present at the moment, we
will show that existing information criteria can not be used as
criteria for choosing clustering models, because 1) they need
some ideal partition to compare its informativeness with the
informativeness of resulting partitions or 2) optimal, according
to these criteria, partitions are trivial and, consequently, not
intuitively informative nor practically applicable. Therefore,
we will propose a new information criterion for clustering
which, from the one hand, need not any ideal partitions and,
from the other hand, estimate clustering models in such a way
that the most preferable models are not trivial.

According to this program, in the first section we will
describe clustering models in general in order to extract the
clustering model structure. We suppose that clustering models
are defined by 1) different measures of distance between
objects; 2) different measures of distance between clusters;
3) a predefined number of clusters and 4) different clustering
algorithms. In the second section we will extract, according
to the general structure of clustering models, a number of
clustering quality factors, consider different existing cluster-

ing criteria and analyze them with respect to the factors.
And finally, in the third section we will consider a group
of information criteria and show that existing information
measures can not be used for choosing clustering models, then
we will define a new information criterion and examine it
experimentally.

II. CLUSTERING MODEL STRUCTURE

Under clustering we consider a process of partitioning of
a set of objects X, having m-component feature set, to a
set of subsets C' = {C1,...,C\}, where each C; is called
“cluster”. The reason of this partitioning is that different
objects contained in the same cluster are similar according
to their features.

Some particular method of partitioning the set X to the set
of clusters C' is defined by a clustering model M:

C = M(X).

We suppose, that some particular method of partitioning
the set of objects to the set of clusters is defined by the four
factors: 1) a measure of distance between objects 6(x;,x;);
2) a measure of distance between clusters A(C;, C;); 3) a
number of clusters K and 4) by an algorithm of clustering
A. Therefore, we consider the clustering model structure <
0, A A K >:

M=<§AA K >.

Let us consider some options for elements of the clustering
model structure, except of the number of clusters K as it does
not require any specific consideration.

A. Measures of distance between objects

Representation of objects of the original set X, having some
m-featured description, as points of the m-dimensional space
R™ allows to define a measure of distance (z;, ;) between
objects x; and x;[3], that in turn allows to define cluster as
a set of pairs, such that the distance between points of these
pairs is less then some value o:

Ci ={(zi,zj) 1 x; € X,zj € X,6(x;,zj) < o}.

Given objects x, y € X and values x;, y; of an i-th feature of
the objects x and vy, there are following options for calculating
the distance 0(z,y):

e Euclidean distance is a geometrical distance in euclidean

space:
d(z,y) =/ > (@i — yi)?
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o Squared euclidean distance assigns bigger values to ob-
jects that are more distant from each other:

do(z,y) = 30, (xi — yi)*.

o Hamming distance is the sum of differences between
coordinates:

dr (v, y) = >, v — yil.
For the Hamming distance an impact of some single big-
ger distances is less comparing to the euclidean distance
as they are not squared.

o Chebyshev distance is useful when you need to differ-
entiate one object from another, if they have different
coordinates:

doo(x?y) = max |$i - yz|
B. Measures of distance between clusters

A resulting partition of the objects also depends on a method
of measuring distance A(C;, C;) between clusters C; and C;.
Given measure d(x, y) of distance between objects = and y and
a number ny of objects in a cluster Cx, there are following
measures of distance between clusters[1]:

o Nearest neighbor distance is the distance between two
nearest points from different clusters:

Dpin(Ci, C;) = min{d(z, y)|z € C;,y € Cj}.
o Farthest neighbor distance is the distance between two
the most distant points from different clusters:
Drax(C5, Cj) = max{d(z,y)|x € C;,y € Cj}.
o Distance between centroids. The centroid py of a cluster
Cy, is defined as following:

1

HEk = n Zﬂieck €.
Then we can define the distance between two clusters C;
and C; as a distance between its centroids 1i; and ji;:

o Squared distance between centroids:
D2(Ci, C5) = 0(pui, pg)?.
o Mean distance:

Dinean(Ci, Cj) = ﬁ Zzeci ZyeCj 5(z,y).

C. Clustering algorithms

Finally, the resulting partition of the objects depends on a
clustering algorithm being used. In this research we consider
only the k-group clustering algorithms. Let us denote by
d,(Cy) the mean distance from points of a cluster C, to its
centroid fux:

du(Ch) = 72 Yo co, 1w — el

Given cluster partitioning C' = {C4, ..., C}; }, there is the least
squares function estimating partition quality:

SSE(C) = 325, du(Cr) = 324 Xoaec, 1w — pal*.

Clustering algorithms of this group aims to find by numerous
iterations a partitioning C' with minimal value of SSE(C):

C =argminc{SSE(C)}.

K-means algorithm[2]:
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1) Randomly choose k points as starting centroids.

2) Assign each point to a cluster with the nearest centroid.
3) Recalculate the centroids.

4) Repeat until the centroids will stop changing.

The K-means algorithm depends on starting choices of cen-
troids, therefore, some choices could lead to “bad” partitions.
There is a modification of the k-means algorithm called k-
means++[4]:
1) Randomly choose k starting centroids.
2) Calculate for each point a distance to the nearest cen-
troid.
3) Choose new centroids with respect to the calculated
distances.
4) Continue as in the k-means algorithm.

The advantage of this algorithm is choosing more appropriate
points as the starting centroids.

There is a variation of k-means named k-medoids[5].
Medoid is an object of the original set chosen as a centroid.
K-medoids:

1) Randomly choose k objects as starting centroids.

2) Assign each object to a cluster with the nearest centroid.

3) Recalculate the medoids.

4) Repeat until the medoids stop changing.

This algorithm in combination with the Hamming distance is
more resistant to noises in datasets than k-means.

Another variation of k-means is k-medians[6], where me-
dians are calculated and chosen as centroids instead of mean
values. A median of a cluster is an object with the median
coordinates with respect to coordinates of other objects of the
cluster. K-medians:

Randomly choose k points as starting centroids.
D Assign each object to a cluster with the nearest centroid.
2) Recalculate the medians and choose them as new cen-
3 troids.
4) Repeat until the centroids stop changing.

Further we will consider different existing criteria of eval-
uating clustering quality.

III. CLUSTERING QUALITY CRITERIA

Under a clustering quality criterion we understand a func-
tion defined on a set of partitions of a set of objects, according
to which it is possible to choose one partition to another. Under
optimal clustering we mean partitioning that has maximal or
minimal, depends on the criterion, value of the function. At the
moment, choosing of clustering quality criteria is not restricted
by any formal system and depends on analyst’s experience and
intuition[1].

Clustering quality criteria can be divided into two groups.
If for calculating of a criterion you use only the set of
objects and the resulting partition itself, then it is an internal
criterion[2][7]. Otherwise, if the result of clustering is com-
pared with some ideal partition, then it is an external criterion.
According to our task, only internal criteria are considered.

As internal criteria of clustering quality are based only on
the original data set and the resulting partition, they should
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depend on the clustering model structure described in the
previous section. We will suggest a list of clustering quality
factors, based on the clustering model structure. It appears,
that improving one part of the structure leads to decreasing
characteristics of others parts[2], therefore, clustering quality
criteria must account all parts of the clustering model structure.
Thus, we will consider existing clustering quality criteria and
analyze it according to this conclusion.

A. Factors of clustering quality

According to the clustering models structure, we consider
the following factors of clustering quality:

o A number of clusters K and its derivatives (K -factor).
The factor is accounted by a criterion only if it is a
coefficient of a criterion, but it is useful to list:

a number of points n in some cluster Cy;
a number of pairs of points p of a cluster C:

pr = ng(ng —1)/2;
a number of within-group pairs p,, for all clusters:

Pw =Pk = %(ani - N);
a number of between-group pairs p; of points which
do not belong to the same cluster:

Po = D papy = Tk
a total number of pairs p; for all points:

N(N—-1
bt = (2 )

o Within-group factor (W G-factor). Options are:

— within-group scatter matrix WGy, defined for each
cluster C};:
WG, = XL Xy,
where X} is the matrix formed by the centered
vectors v = x; — py for all x; € C. Also it is

useful to define the total within group scatter matrix
WG as

within-group dispersion WGSSy, of a cluster CY,

which is a sum of squared distances between points
and a centroid of C}:

WGSSk =3 ,cc, | e 7.
Also it is useful to define the total within-group dis-
persion WG S'S as a sum of within-group dispersions
for all clusters:

WGSS =Y, WGSS;

the sum Syy of the p,, distances between all the pairs
of points inside each cluster:

Sw =2k in@jeck,i<]’ 6(xi, ;)
the maximal within cluster distance dp,ax(Cy) for
Cki

|zi —

dmax(ck) = max.’l;i,"ﬂj €Cy,i#] th — Ty H
and the maximal within cluster distance d,,, for all
clusters:

dmax = max(dmax(ckz);
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— the sum Eyy of distances from the points of each
cluster C}, to its centroid fu:

Ew =3, d.(Cy).
o Between-group factor (BG-factor). Options are:

between group scatter matrix BGy, defined for each
cluster k:

BG) = B'B,
where B is the matrix formed by the vectors v =
i — b, being reproduced ny, times. Also it is useful
to define a total scatter matrix 7"

T=X'X,

where X is the matrix formed by the vectors v
z; — p for all z; € X;
between-group dispersion BGSS, which is a
weighted sum of squared distances between centroids
of all clusters and a centroid of all points u:

BGSS =33 nlluk — pll*;

the sum Sp of between cluster distances:
SB = D haks 2aieCy jeCy ici O (Tir T5);

the minimal between cluster distance:

Dmin = min(Dmin(Ck7 Ok’);
the maximal distance between clusters centroids:

Dmax,u = MaXg<k’ (D/L(Cka Ck’);
We considered a number of existing internal criteria[7]. The

results of analysis are represented in the Table I

Summing up, the only appropriate criteria are the Calinski-
Harabasz and the PBM indexes. We chose Calinski-Harabasz
(CH) index for further usage.

IV. INFORMATION CRITERIA

As partitioning of the set of objects X to the set of clusters
C can be considered as probability distribution, different
information-theoretical characteristics can be applied to this
partitioning to estimate an amount of information, produced
in result of clustering.

A. Existing information characteristics

There are following characteristics in information theory at
the moment[8]:

o Self-information for some value z; of a discrete random

variable X with probability distribution P(x;):
I(z;) = —log P(z;).
e Entropy of a discrete random variable X:
H(X) = - ¥, P(a;)log P(x).

e Conditional entropy of discrete random variables X and
Y with probability distributions P(x;) and P(y;) and
joint probability distribution P(z;|y;):

2 Smin 18 the sum of the p,, smallest distances from all the p; pairs of
points, Smax — the sum of the p,, largest distances from all the p; pairs of
points

bst is the number of times &(z, ') < &(y,y’), where z,2’ € Cy,y €
Cr,y" € C, s~ is the number if times where the opposite situation occurs.

“Formulae are not listed due to complexity of its representation.
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TABLE I. INTERNAL CRITERIA ANALYSIS

[ Criterion Formula | WG-factor | BG-factor | K-factor |
Ball-Hall index = %>, du(Cy) - -
. _ Tr(WGL)
The Banfeld-Raftery index => LNk log(T) + - -
The C-index _ S?W*fénirfu N .
The Calinski-Harabasz index = ];](__}1( V@%‘Z‘Z + +
The Davies-Bouldin index = % D Maxys £ k(%) + + -
1 (Cr,Cp
The Det-Ratio index = djf(ti% + - -
The Dunn index = Fuin + + -
The Baker-Hubert Gamma index = 21;2: b + + -
i A(Cy,C

The GDI index = Tk ST + + -

. _ 25 -
The G plus index FACTED) + +
The K 2[W [-index = K2 det(WG) T +
The Log_Det_Ratio index =N log((ij:‘(tiégg)) + -
The Log_SS Ratio index = log( 5,%%%) + + -
The McClain-Rao index =& W + + -

S TLICTT)

The PBM il’ldCX - (% %ﬂ/“ max /,1.) + + +
The Point-Biserial index = (iW — %)7w + -

— — 1 WGSS
The Ray-Turi index ~ N miny_./ (D2 (C,Cp)) + + -
The Scott-Symons index => LNk log(det(WTf’“)) + - -
The SD index ¢ + + -
The Silhouette index ¢ + + -
The Tau index = % + + -

pypw (PEEE—)
The Tr(W) index = WGSS + - -
The Tr(W ~IB) index =Tr(WG~'BQG) + + -
The Wemmert-Gancarski index = % Ypmax(0,ng — 3, cn minkl‘zm‘;‘wuk\l) + + -
The Xie-Beni index = % % + + -
min R
— _ i=1...R
HY|X) = =323, Pai)P(yjlzi) log P(y;|z;). M = [ng]5Zy7 ¢

e Relative entropy (Kullback-Leibler divergence) of dis-
crete random variables X and Y with n values:

Dir(X||Y) = ¥, P(x:)log 5o

There is a group of information criteria amongst external
criteria as well. The reason of external information criteria
is to compare an amount of information produced in result of
clustering with an amount of information contained in an ideal
partitioning. These criteria are Mutual information I(X,Y) of
two discrete random variables X and Y':

[(X,Y) = H(Y) - HY|X):

and adjusted mutual information[9].

The idea of adjusted mutual information is to adjust mutual
information of two random variables with respect to a proba-
bility of its joint partitions. Given /N points and two partitions
U and V, the number of points a; = |U;| for U; CU,i = 1...R
and b; = |V;| for V; € V,j = 1...C, the total number of ways
to jointly assign N points into two partitions U and V is 2

o

Each joint partition of U and V can be represented as a
contingency table M:

22

Given some contingency table M, there are w different ways
of assigning the data points, that will result in this particular
M:

— N!
w= I, ]._.[j ni;l”
Thus, the probability P(M|a,b) of M with respect to a set
M of all possible contingency tables is specified by

P(Mla,b) = .

Given mutual information I(M) for the contingency table
M7

n

i Nny;i
A log 4

aibj ’

I(M) :Zizj‘

the average mutual information of all possible joint partitions
of random variables X and Y is expected mutual information
E(I(M)|a,b):

E(I(X,Y)) = E(I(M)]a,b) = > yrepq 1(M)P(M]a, b).

Then adjusted mutual information AI(X,Y) is defined as
follows:

I(X,Y)—E(I(X,Y))
maz(H(X),HY)-E(I(X,Y))"

AI(X,Y) =
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Though external information criteria do not fit to our goals
as they need some predefined ideal partitioning, the idea of
adjusting an amount of information contained in some partition
with respect to its probability will be useful.

B. An analysis of the existing information characteristics

First, we are going to show that conditional entropy
H(Y|X) in general case can not be used as information
criterion for clustering. We denote a number of elements of
cluster C), under condition x; as n;:

N = |Xi n Ck|,.

where X; is a set of objects that satisfy the condition x;. As
for non-fuzzy clustering each x; € X is assigned to only one
cluster C,, for each 7 and k holds that n;, = 1, therefore, for
each C and X the conditional entropy H(C|X) of non-fuzzy
clustering is zero:

H(C|X) = - ZwiEX Zk % logy 1=0.

Second, we are going to use the number of points IV as base
of logarithmic function of information criteria in order to get
normalized values. Besides of other advantages of normalized
variants, it will be easier to show with them that existing
information criteria can not be used for choosing clustering
models. We can do so as base of the logarithmic function in
the definitions of the criteria are not restricted.

Summing up, we have following information characteristics,
applicable to results of clustering:

o Clustering informativeness C"

H(C) = =32, 3 logy -
o Clustering informativeness C' relative to the original set
X:
Dir(ClIX) = 225§ logy 1= = 225 ¥ logw .
Now we are going to show that these information criteria
can not be used for choosing clustering models. For this we
will compare values of Calinski-Harabasz index (KH) with
values of information characteristics H(C) and D1, (C||X)
with respect to different numbers of clusters n from 1 to 10.
We will use Fisher’s Iris flowers as dataset and k-means as

clustering algorithm. The results of comparing are in the Table
II:

3
o~

i

TABLE II. EXISTING INFORMATION CRITERIA

COMPARING
K | CH | HQC) | Drr(C[|X)
1 n/a n/a 1

2 513 0,13 0,87

3 560 0,22 0,78

4 529 0,27 0,73

5 494 0,3 0,7

6 475 0,35 0,65

7 451 0,38 0,62

8 441 0,4 0,6

9 409 0,41 0,59

10 | 391 0,44 0,56
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If we use information criterion H (C') for choosing number
of clusters n, we should choose n = 10, or if we use Dy,
— n = 1. We generalize this result as following:

. DKL(CHX) =1 C=X.

In other words, if we use information characteristic H(C') for
choosing the number of clusters, then the optimal number of
clusters equals to the number of objects, otherwise, if we use
information characteristic D r,(C||X), then the optimal parti-
tion is the set X itself. Both these options do not correspond to
the objective structure of data nor values of clustering quality
criteria.

C. A new information criterion

Therefore, we propose a new information criterion for
choosing clustering models. The idea of this criterion is similar
to the idea of adjusted mutual information, but it does not
need predefined ideal partition. This criterion is a conditional
entropy with respect to the set of possible partitions Part(X)
of the set X.

We define X" as a set of all possible transformations of the
set X. The number of all possible transformations is defined
as follows:

1) = 1X]X1.

Then for each partition Part;(X) we define probability
P(Part;(X)) with respect to the set of all possible trans-
formations X. Given |X| = n,|X;| = n;,|Part;(X)| = k,
and a number k; of all subsets X; with the same number of
elements n;, the number of transformations |Part;(X)| for
the partition Part;(X) is defined by the formula

|Part;(X)| = nl!nlnkl k!(:flk)! TR

therefore, the probability P(Part;(X)) is defined as follow-
ing:
P(Part;(X)) = 7|P“T§§|(X)‘
Now we can define weighted entropy P(Part(X))H(X)
and mean weighted entropy H (X |Part(X)) of the set X with
respect to the set of all possible partitions Part(X):

H(X|Part(X)) = 3, P(Part;(X))H;(X).

bl

Beside of this numerical measure, it is possible to define a
binary characteristic H*:

H* =1 P(Part(X))H(X) > H(X|Part(X))

and a measure of difference d(H(X), H(X|Part(X)) of
entropy H(X) from the mean value H(X|Part(X)):

A(H(X), H(X|Part(X)) = |H(X) — H(X|Part(X))|.

Let us test the proposed measures as the criteria for choosing
clustering models by comparing it with Calinski-Harabasz
index like we do with characteristics H(X) and Dy, (C||X|).
We have to take a random data set with less number of
elements to avoid overcomplicated calculations. Let it be a
random sample of data from Fisher’s flowers data set with
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TABLE III. CLUSTERING RESULTS

[(n M@ [@ [a3 [2a [Co[C3 [Ca[C5 [T [Cr[Cs[Co[ Cuol
T [[50 3212021 JO [0 |3 0 [1 |1 [7 [7
2 (58 27 41100 |2 |2 |2 |5 |5 [5 [5 |2
3 169 3257230 |1 |3 |1 |3 |2 [3 [3 |0
T (612656140 |1 |1 |4 |1 [3 |0 |0 |3
5 1713059210 |1 |3 |1 |3 |2 |7 |6 |6
6 |44 (3213021 [0 |0 |0 |4 |4 [4 [4 |4
7 [[52(34 141021 |0 [0 |3 [0 [6 |6 |1 |1
§ |44 (3213021 [0 |0 |0 |4 |4 [4 [4 |4
9 |57 3635100 [2 |2 |2 |2 |0 [2 [2 [5
10 [[52 |34 | 14021 |0 [0 |3 [0 |6 |6 |1 |1

TABLE IV. THE NEW INFORMATION CRITERIA COMPARING
K [ CH | H(X) | P(Part(XVH(X) | d(H(X), H(X|Part(X)) | HT
2 [ 39 | 0.552827 | 0.000001 0321273 I
3 | 81 | 0527096 | 0.000096 0.295542 1
4 | 101 | 0492621 | 0.000938 0.261067 1
5 | 187 | 0.286272 | 0.010907 0.054718 1
6 | 262 | 0263548 | 0.050209 0.031994 1
7 | 328 | 0143136 | 0.027269 -0.088417 0
8 |1 | 0013763 | 0.120411 0111142 0
9 |1 | 0013763 | 0.120411 0111142 0
10 1 0.120411 0.013763 -0.111142 0

10 elements. The data set and results of the clustering are
represented in the Table III. The results of criteria
calculation are in the Table IV.

Summing up, the mean weighted entropy of the set with
10 elements is H(X|Part(X)) 0.231554, the parti-
tion with K 6 has the maximal weighted entropy
P(Part(X))H(X) = 0.050209, the partitions with K = 2...6
are informative with respect to the mean value. The value
of the criterion P(Part(X))H(X) slightly differs from the
Calinski-Harabasz index: according to Calinski-Harabasz we
should choose K = 7, but according to our information
criterion we should choose K = 6. We suppose, the final
decision depends on priorities.

V. CONCLUSION

Summing up, we described the general structure of the clus-
tering models and considered some options for its elements.
Then we extracted factors of clustering quality according to the
general structure, analyzed different existing internal criteria
of clustering quality with respect to these factors and chose
a criterion that accounts all elements of the clustering mod-
els structure. After that we considered different information
characteristics and analyzed it with respect to its applicability
as the criterion for choosing clustering models. We proved
that none of them is applicable and proposed a new criterion.
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Finally, we examined it experimentally and got successful
result.

At the current point, the practical applicability of the
proposed criterion is limited as the number of possible trans-
formations of a given set grows extremely fast, but we believe
that this limitation can be overcome in further researches.
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