
Infrastructure Multi-Layer Model for Smart Spaces
Middleware Development

Sergey A. Marchenkov

 Petrozavodsk State University 
(PetrSU) Petrozavodsk, Russia

marchenk@cs.karelia.ru

Abstract—The most recent advances in Internet of Things
(IoT) are aimed at the development of software platforms defined
as middleware. A smart space makes fusion of the physical and
information worlds enhancing a IoT environment by enabling
information sharing for a variety of local digital devices and
global resources from the Internet. The growing number of
application smart spaces requires a middleware that provides
opportunities for the development of context-aware applications
based on multi-agent approach. The paper presents a perspective
on how to design a software infrastructure of semantic-oriented
middleware for smart spaces deployment in IoT environments.
This paper introduces the middleware infrastructure multi-
layer model. The paper also involves an analysis of middleware
requirements for development and deployment of smart spaces
in IoT environments and the implementation of the requirements
in the proposed model. As a reference case study the CuteSIB
semantic information broker implementation of the Smart-M3
platform is considered.

I. INTRODUCTION

The most recent advances in Internet of Things (IoT)
are aimed at the development of software platforms defined
as middleware [1], [2]. The key features of a middleware
are dedicated to the integration of heterogeneous computing
devices and software components, as well as to support the
interaction between various services and applications. The
ever-growing number of IoT applications and the IoT future
directions impose additional requirements on a middleware
related to intelligent reasoning and simplifying the application
development process.

The smart spaces paradigm integrates technologies from
IoT and the Semantic Web concepts, creating a certain class
of ubiquitous computing environments, typically associated
with a physical spatial-restricted place [3]. These environments
make fusion of the physical and information worlds enhancing
a IoT environment by enabling information sharing for a
variety of local digital devices and global resources from the
Internet [4]. The growing number of application smart spaces
in many different domains, such as collaborative work [5],
[6], mobile healthcare [7], museums and cultural heritage [8],
[9], requires a middleware that provides opportunities for the
development of context-aware applications based on multi-
agent approach.

The semantic-oriented perspective is one among the other
perspectives from which IoT can be viewed [10]. A semantic-
oriented middleware is in general based on the standards and
technologies of the Semantic Web, which provide data integra-
tion, an easy knowledge exchange, and intelligent reasoning

in smart space. Furthermore, the Semantic Web technologies
resolve the problems of interoperability and integration within
heterogeneous world of ubiquitously interconnected objects
and systems.

Most of the middleware requirements cover its software
infrastructure as a whole. A software infrastructure is deployed
in IoT computing environments including the host devices with
middleware, software components of an application, network
equipment, and system software, which provide operation and
network communication. The design of software infrastructure
is the important step in creating and further maintenance of
applications for an IoT environment.

The paper presents a perspective on how to design a
software infrastructure of semantic-oriented middleware for
smart spaces deployment in IoT environments. One of the
contributions of this paper is the middleware infrastructure
multi-layer model. This model serves as a means for obtain-
ing detailed information about the main layers of semantic-
oriented middleware infrastructure. The model is the initial
step in the design of such middleware and hence simplifies the
middleware development process. The purpose and structural
composition of each layer as well as the interconnectivity
between them are considered. The paper also involves an
analysis of middleware requirements for development and
deployment of smart spaces in IoT environments and the im-
plementation of the requirements in the proposed model. As a
reference case study the CuteSIB semantic information broker
implementation of the Smart-M3 platform is considered. The
proposed solutions have a generic character and they can serve
for designing such a class of middleware for smart spaces.

The rest of the paper is organized as follows. Section II
proposes the infrastructure multi-layer model of semantic-
oriented middleware for development and deployment of smart
spaces in IoT environments. Section III describes the middle-
ware requirements in accordance with their implementation
in the proposed multi-layer model. Section IV considers the
CuteSIB semantic information broker as a reference case study.
Section V concludes the paper.

II. INFRASTRUCTURE MULTI-LAYER MODEL

The smart spaces paradigm aims at constructing software
infrastructure of semantic-oriented middleware that follow the
IoT and Semantic Web visions [3]: (1) digital convergence
among many surrounding heterogeneous physical/digital ob-
jects, (2) services are defined in the context of the interaction of

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



multiple participants (objects and humans) in information shar-
ing environment (smart space), and (3) services are accessible
in a uniform semantic way. Semantic-oriented middleware
provides opportunities for the development of service-oriented
application systems based on multi-agent approach.

As a rule in such systems, the main element of infor-
mation sharing environment (IoT environment) is a seman-
tic information broker that provides shared knowledge base
and organizes information-driven interaction and supports a
variety of semantic interoperable access primitives, including
ontology-oriented ones [11], [4]. Access primitives provide
the opportunity for the interaction of heterogeneous objects
based on the processing and analysis of shared information
represented by ontologies. Based on ontologically-oriented
primitives, semantic reasoning is supported, which allows to
transform the integrated low-level data into high-level knowl-
edge to perform the solutions of the arising problems as well
as to ensure the self-organization of the participants [12].

The participants are independent software agents that are
run on various computing devices of the system (mobile
devices, server computers, desktop computers, single-board
computers, wireless network routers, etc). Interaction between
such agents is indirect and occurs by a publish/subscribe model
through a semantic information broker. The construction of
services in smart space is realized as an event-driven and
information-driven distributed computing process based on the
indirect interaction of software agents [13]. The autonomous
activity of software agents in the processes of constructing and
delivering services can be performed efficiently through their
self-organization.

A smart space service inherits the definition of an IoT
service proposed in [14], [15]. An IoT service is defined as a
type of service enabling interactions with the physical objects
while a smart space service also enables interactions with the
digital objects. Thus, a smart space service is an application
function of a service-oriented system that is executed between
the service and the service provider in order to enable the
interaction with physical and digital objects, providing the
necessary pieces of information to solve the arising problems
and/or providing control actions to such objects.

The software infrastructure of semantic-oriented middle-
ware is responsible for the organization of the processes of
constructing and delivering services in the application sys-
tems. It is deployed in computing environments including the
host devices, network equipment, and system software, which
provide operation and network communication. To describe
software infrastructure of semantic-oriented middleware the
three layers were defined: middleware base, middleware infras-
tructure, and application systems infrastructure (see Fig. 1).

Middleware base layer contains the main software modules
of middleware: shared knowledge base, storage for data or
metadata about agents, agent management, agent discovery
mechanism and modules that implement protocols. This layer
allows agents to register in the smart space and find other
agents to communicate with them using protocols supported by
the platform. Middleware infrastructure layer contains agents
and services to extend functions of middleware base layer
and provides a functionality for specific domain or application
systems. Application systems infrastructure contains agents

Fig. 1. Infrastructure multi-layer model of semantic-oriented middleware

and services that implement smart space applications.

Features of each layer can be used to meet the semantic-
oriented middleware requirements. There are several survey
works on a middleware for IoT and their requirements such
as [16], [10], [1]. Based on these surveys the requirements
for the semantic-oriented middleware as well as for other
middleware can be categorized as both functional and non-
functional. Functional requirements cover the functions pro-
vided by semantic platform and non-functional requirements
describe the qualities of the platform. The corresponding
requirements are summarized in Table I.

III. MIDDLEWARE REQUIREMENTS

In this section, the above requirements and their imple-
mentation with respect to the infrastructure multi-layer model
of semantic-oriented middleware are considered. Most of the
requirements are described as a result of the relationship of the
model layers and are shown by the corresponding schemes,
while some of them affect only one of the layers and do not
require them.

A. Functional requirements

1) Machine-computable logic: Semantic-oriented middle-
ware for smart spaces make use of the W3C standard for en-
coding semantics of stored data as class and property axioms in
a description logic (machine-computable logic) in RDF/XML.
This is done with OWL built upon RDF, RDF Schema,
and XML Schema. Machine-computable logic is a logical
system specifying instances, their relationships (properties or
predicates), and the sets (classes) to which they belong.

2) Inference: Semantic inference can be characterized by
discovering new relationships based on the data and some
additional information in the form of a set of rules. This
process makes use of specific reasoning platform – the resource
description framework, or RDF – in order perform the analysis.

3) Knowledge discovery: Knowledge discovery is defined
as ”the non-trivial extraction of implicit, unknown, and po-
tentially useful information from the data” [17]. This process
is the key component of performing enhanced information
retrieval in large semantic databases.

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 354 ----------------------------------------------------------------------------



TABLE I. SUMMARY OF REQUIREMENTS FOR SEMANTIC-ORIENTED

MIDDLEWARE

Requirement Description and significance
Functional requirements

Machine-
computable
logic

W3C standard for encoding semantics of stored data as class and
property axioms in a description logic in RDF/XML. OWL built
upon RDF, RDF Schema, and XML Schema.

Inference Discovering new relationships based on the data and some addi-
tional information in the form of a set of rules. RDF – in order
perform the analysis.

Knowledge
discovery

The non-trivial extraction of implicit, unknown, and potentially
useful information from the data. Performing enhanced information
retrieval in large semantic databases.

Data
federation

The integration of data from multiple, disparate sources into a
single, concerted view. The interface to access heterogeneous
sources, making remote data appear as if it resides in a single
local database.

Non-functional requirements

Extensibility Plug-ins or modules when new functions need to be added.
Inclusion/exclusion of certain plug-ins or modules in compilation
phase or in runtime.

Connectivity
and
accessibility

Any component/participant of information sharing environment
can access it anytime. Middleware should enable various com-
ponents/participants to automatically discover each other.

Dependability Middleware should remain operational during an application pro-
cess, even in the presence of failures. It helps in achieving
application dependability.

Semantic in-
teroperability

Support simultaneous work with a set of heterogeneous appli-
cations/services without additional effort. Information exchange
between the ever-growing and changing set of participants.

Security Three key concepts: integrity, confidentiality and availability.
Context-awareness may disclose personal information. Organizing,
controlling, and delimiting access to information stored in smart
space.

Portability and
adaptability

The expansion of multiple computing devices. Independence from
network protocol, programming language, and operating system.
Correspondence to changes in IoT environment.

End user
usability and
simplicity

Middleware architecture should be easy to elaborate, evolve and
understand by third-party developers. Complicated installation and
setup procedures should be avoided.

Engaging the
development
community

A middleware should be constantly maintained and expanded.
Requirement is provided within a community of developers and
researchers.

4) Data federation: Data federation is the integration of
data from multiple, disparate sources into a single, concerted
view. Semantic-oriented middleware provides the ability to im-
plement the interface to access heterogeneous sources, making
remote data appear as if it resides in a single local database.

B. Non-functional requirements

1) Extensibility: One of the main requirement is exten-
sibility of a smart space. A semantic-oriented middleware
architecture should be plug-ins or modules based to offer
high extensibility when new functions need to be added. The
architecture allows inclusion/exclusion of certain plug-ins or
modules in compilation phase or in runtime. It affords to
customize the middleware functionality for given information
sharing environment.

Extensibility can be implemented on middleware base and
middleware infrastructure layers. On middleware base layer,
extensibility is the use of modules and plug-ins. Extensibility
on middleware base layer, in most cases, is oriented to the
implementation of various application systems. On middleware
infrastructure layer, extensibility is the use of special agents
or services. This layer extends the functionality of semantic-
oriented middleware using features from middleware base
layer. A middleware infrastructure agents/services also can
make actions specific for some domains and simplify the
implementation of the application system.

Fig. 2. Implementation of extensibility requirement based on the infrastruc-
ture multi-layer model of semantic-oriented middleware

The example of extensibility is shown in Fig. 2. Mid-
dleware base layer supports various communication protocols
using modules (plug-ins). On middleware infrastructure layer,
Proxy-agent can be deployed to provide access to middleware
base layer modules based on specific protocol that is not
supported on this layer.

2) Connectivity and accessibility: Next requirement is con-
nectivity and accessibility. A semantic-oriented middleware
needs connectivity and accessibility, which means that any
component/participant of information sharing environment can
access it anytime. Moreover, a middleware should enable
various components/participants to automatically discover each
other.

This requirement is necessary to ensure communication
between agents. A semantic-oriented middleware can support
agent discovery. One agent can find some other agent and
communicate with it using direct or indirect communication
mechanism. Indirect communication provides by middleware
base layer or by middleware infrastructure layer. Direct com-
munication is carried by agents. In this way, Sa middleware
can be used for storing information about agents protocols and
other parameters needed for communication.

This requirement is also the main requirement for users
who does not know what smart space is. A middleware should
support connection of different devices. A middleware and
personal software agents should support auto connection and
disconnection to/from smart space when user change locations.
Some devices (low performance, with different protocol etc.)
cannot be connected directly. In this case proxy-agents running
on middleware infrastructure (by analogy with extensibility
requirement) layer could be used to represent devices as agent
in the smart space

3) Dependability: The important requirement is depend-
ability of semantic-oriented middleware. A middleware should
remain operational during an application process, even in the
presence of failures. Every component in a semantic-oriented
middleware should be dependable to achieve overall depend-
ability, which includes devices, communication, technologies,
data, and implementation of middleware layers.

Application systems are constructed due to indirect/direct
interaction of agents via information storage of middleware
base layer. Volatile nature of information sharing environment
devices and communications is the cause of failures between

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 355 ----------------------------------------------------------------------------



agents during processing requests or failures in middleware
base layer. The way the operation processing is performed
and supported in middleware base layer affects on operation
efficiency during agents interaction. If some operations are not
properly processed it results in interaction problems and errors
in applications.

Dependable interactions between agents and dependable
deploy of infrastructure layers in information sharing en-
vironment can be ensured: by improving operations pro-
cessing scheme of middleware base layer, by enforcing the
layers of semantic-oriented middleware with fault tolerance
mechanisms. Plug-in based architecture of middleware base
layer allows to configure operation processing flow by ac-
tivating/deactivating different operation handlers and extends
operations of a protocol to access smart space according to
actual needs of an environment. Fault tolerance mechanisms
can extend software infrastructure of middleware layers with
restart/reconnect and operation control functionality and intro-
duce special services for persistent storage of critical data.

4) Semantic interoperability: A middleware for smart
spaces should support simultaneous work with a set of het-
erogeneous applications/services without additional effort from
the application or service developer. Semantic interoperability
should allow for information exchange between the ever-
growing and changing set of participants (application and ser-
vices) in IoT environment. To enable semantic interoperability,
a semantic-oriented middleware can use ontologies to represent
data of multiple domains and their relationships.

The requirement of semantic interoperability can be based
on the use of ontologies, see Fig. 3. Agents in smart spaces
can use different ontologies to represent data and different
rules for generating new knowledge based on stored data. It is
not possible for all agents to have special software tools and
resources to work with ontologies. In other words, reasoning,
mapping, or other actions on stored data can be performed on
middleware base layer or middleware infrastructure layer. For
example, in order to represent data, application agents AA 1
and AA 2 use ontologies ont 1 and ont 2, respectively.
Mapping service on middleware infrastructure layer tracks
updates in the storage and translates data based on mappings
(ont 1 and ont 2). As a result, these agents can communicate
without additional actions to translate data according to their
ontologies.

On middleware base layer, a special module (e.g., reason-
ing/analyzing module) can be added to analyze data storage
and infer new knowledge or translate data from one representa-
tion to another based on rules. Rules on middleware base layer
is applicable for various application systems. On middleware
infrastructure layer, special services or agents can perform
rule-based actions for a specific application system. For in-
stance, Reasoning service, acting on a middleware information
storage, can be utilized to derive higher level abstractions from
the sensor data published by Sensor-agent.

5) Security: Security is important to the operation of smart
spaces. A security mechanism in semantic-oriented middle-
ware should ensure three key concepts: integrity, confiden-
tiality and availability. Context-awareness in middleware may
disclose personal information (e.g., private phone number,
home address, the current location of an object or a person).

Fig. 3. Implementation of semantic interoperability requirement based on
the infrastructure multi-layer model of semantic-oriented middleware

In order to preserve the owner’s privacy, a middleware needs
to ensure security requirement, thereby organizing, controlling,
and delimiting access to information stored in smart space.

The security requirement defines critical features of
semantic-oriented middleware that should be implemented to
secure smart spaces resources. The security requirement is
imposed upon the following smart space security components
proposed in [3]: (1) shared resources, (2) smart space access,
and (3) communication.

Security of shared resources is ensured by agents of ap-
plication systems, each of which makes own decisions on its
resources, determining which locally available knowledge to
place in information storage for sharing with others agents.

Security of smart space access is based on mechanism for
controlling access to storage, providing agents of application
systems with exclusive access to information [18]. Such ac-
cess control depends on security meta-information placed in
storage. Exclusive access can be on RDF triples level. In this
case, meta-information is additional RDF triples that specify
which data are protected and which agent is their owner. This
mechanism can be implemented on middleware base layer as a
separate security module. Security module can restrict agents
in access to a given set of triplets by performing reasoning
over meta-information.

In order to establish secure communication between agents
and middleware, agent identity and cryptographic keys can
be implemented with the Host Identity Protocol (HIP) [19],
[20]. The HIP exchange authenticates a agent-to-middleware
communication session based on cryptographic identifiers and
algorithms, thereby ensuring confidentiality and integrity of
messages.

6) Portability and adaptability: The portability and adapt-
ability is an important requirement of semantic-oriented mid-
dleware, specially due to the expansion of multiple computing
devices (PC, tablets, smartphones, routers, etc.). Various com-
puting devices can be hosts for components of middleware,
including Linux and Windows based systems, as well as
embedded systems. A middleware for smart spaces should
provide independence from network protocol, programming
language, and operating system. A middleware needs to be
adaptive so that it can evolve to correspond to changes in

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 356 ----------------------------------------------------------------------------



information sharing environment.

On the one hand, operating systems and hardware het-
erogeneity implies that a middleware itself must be portable
across different hardware and operating systems technologies.
On the other hand, various dynamic changes in information
sharing environment imply that a middleware itself must adapt
to altered circumstances, including varying computational and
network loads, to keep applications/services operating.

To ensure portability of application systems infrastructure,
a desirable middleware must provide developers with an ab-
straction layer that masks the complex underlying mechanisms
and instead exposes a set of useful APIs to middleware layers.
This is possible through the use of the standard protocol to
access smart space (Smart Space Access Protocol, SSAP),
that have been already implemented on different programming
languages [21].

Portability of middleware base layer can be achieved on im-
plementation stage by using C/C++ cross-platform languages
and Qt framework. In turn, in order to ensure adaptability, mid-
dleware base layer can provide inclusion/exclusion of certain
modules in compilation phase or at runtime to customize the
middleware functionality for given host device and a certain
information sharing environment. For example, a wireless
router as middleware host device have limited resources and
communications to store/access large amounts of data.

7) End user usability and simplicity: A middleware archi-
tecture should be easy to elaborate, evolve and understand by
third-party developers. Deployment of middleware components
should not require expert knowledge or support, since an mid-
dleware is typically deployed by an ordinary user. Complicated
installation and setup procedures should be avoided.

8) Engaging the development community: A middleware
for smart spaces should be constantly maintained and ex-
panded. This requirement is provided within a community of
developers and researchers.

Engaging the development community is an important
requirement, since it is not always possible to create and
maintain all elements of semantic-oriented middleware. This
requirement is associated with extensibility and portabil-
ity/adaptability requirements. New functionality can be im-
plemented by third-party developers as open source software
on middleware base layer and on infrastructure layers. It is
also possible to implement pre-configured infrastructures (a
set of agents/services) for a well-known application system.
This infrastructures can be supported by the community and
used to deploy the required applications.

IV. REFERENCE CASE STUDY

CuteSIB is the software implementation for such a cen-
tral element of an M3 smart space as Semantic Information
Broker (SIB) [4]. CuteSIB follow the M3 architecture (multi-
device, multi-vendor, multi-domain) for creating smart spaces,
which integrates technologies from IoT and the Semantic Web
concepts. CuteSIB is adopted as the reference case study
for the infrastructure multi-layer model of semantic-oriented
middleware proposed in Section II.

The CuteSIB project aims to implement middleware base
layer with features to create middleware infrastructure and

Fig. 4. The plug-ins based architecture of CuteSIB

application system infrastructure layers. SIB stores information
using RDF-model (RDF-triples) and provides a blackboard
service for agents interaction. There are several SIB implemen-
tations [22], [23]. The CuteSIB project aims to implementa-
tion extensibility, connectivity and accessibility, dependability,
portability and adaptability, end user usability and simplic-
ity, and engaging the development community non-functional
requirements with supporting semantic interoperability. The
security mechanism is developing in other project and can
be included into CuteSIB later as a security modules. The
functional requirements are implemented through the use of
W3C standard for encoding semantics of stored data and OWL
built upon RDF, RDF Schema, and XML Schema.

The implementation of CuteSIB is based on the Qt frame-
work in order to support a wide spectrum of Qt-based devices.
The plug-ins based architecture achieves higher extensibility
due to the modular approach, see Fig. 4. In the CuteSIB, the
middleware base layer consists of five modules: (1) access
points, (2) protocol handlers, (3) SIB core, (4) operation
handlers, and (5) triplestore.

The access points bind to particular network (transport)
protocol, receive agents requests and send responses. Protocol
handlers implement application protocols. Protocol handlers
work in combination with access points. Different combination
allows to satisfy requirements (end user usability and sim-
plicity, extensibility, connectivity and accessibility). Operation
handlers implement operations that are needed for protocol
logic. For example, the main protocol in the Smart-M3 plat-
form is SSAP. Base implementation of SSAP is based on
TCP and XML. In this case, the access point implements
TCP/IP protocol and processes all routine with clients. The
protocol handler implements the SSAP protocol. The access
point sends to protocol handler notifications (client connected
or disconnected) and requests. The protocol handler processing
requests creates responses and sends responses to access point.

The access points for various network protocols (e.g., TCP,
HTTP or UDP) are plug-ins. In current implementation of
CuteSIB there are four access point plug-ins. They can be
loaded/unloaded from the main CuteSIB program as dynamic
libraries. TCP access point provides TCP access and is used
as main access point to communicate with CuteSIB. UDP

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 357 ----------------------------------------------------------------------------



access point provides UDP access. HTTP access point handles
HTTP SPARQL request (GET/POST). With HTTP Access
Point CuteSIB can be accessed as a SPARQL-endpoint (e.g.
DBPedia) with query request support (update and subscrip-
tion are not supported). There is no need to implement a
special Protocol Handler to process HTTP SPARQL request.
HTTP access point translates HTTP to/from SSAP format and
communicates with SSAP/XML Protocol Handler. Discovery
access point is used to discovery CuteSIB with broadcast
requests. UDP discovery protocol handler prepares information
about CuteSIB and sends it back for request.

Operation handlers implement logic of CuteSIB operations.
CuteSIB supports operations from SSAP protocol. Operations
are implemented with tree operation handlers. Basic operation
handler is for basic operations under triples (insert, remove,
update, and query), persistent operations handler is for persis-
tent operations (such as subscription), and SPARQL handler
is for advanced search queries. These operations are mapped
with SSAP operation and the SSAP operations are forwarded
to appropriate handler for processing. Supported operations are
not limited with SSAP operations, new operations (for example
to support other protocol) can be added with implementation of
new operation handler. For example, there is a binary protocol
that similar with SSAP [21]. The one of the advantages of
binary protocol is in smaller messages size. CuteSIB can
support this binary protocol with implementation of the new
protocol handler. To receive/send messages TCP access point
can be used. Additional operations that are supported by
binary protocol will be implemented with the new operation
handlers. Operation handlers work with triplestore. Triplestore
is represented by Redland libraries and wrapped with Qt
classes to simplify access.

The CuteSIB core contains some auxiliary submodules and
implements commands processing. Command is an action that
should be done by module. CuteSIB modules use commands
to send actions to other modules. Modules are independent
from each other and send command to scheduler from core
module. Scheduler sends command to destination module (if
it set) or to the module that responsible for processing such
command. Responsible modules are set through a mapping,
used by scheduler in runtime to find modules for commands.
It is possible to add some new module and set the mapping
for this module.

Example of using command with processing of SSAP
message is shown in Fig. 5. Agent sends bytes of SSAP/XML
message to TCP access point. TCP access point receives a
full message and sends it to SSAP/XML protocol handler.
SSAP/XML protocol handler creates a command-request based
on received SSAP message for inserting data and send it to
scheduler. SSAP/XML protocol handler does not know about
how data will be processed and stored. Scheduler based on
command-request properties and mapping selects operation
handler and sends command-request to it. Operation handler
performs all needed actions with data to store it (insert to smart
space) and sends a command-response.

In CuteSIB core, the data is represented in the unified
form of triples. Each protocol handler translates received data
from agent request to this format and sends commands to
CuteSIB core. Commands are sent to the appropriate operation
handler. The response for command is sent when the command

is processed. Based on response, protocol handler creates a
response for agent in the appropriate format and sends response
to an agent through an access point.

As described above, CuteSIB can be extended with addi-
tional modules to support new protocols and internal opera-
tions. Middleware base layer does not fully cover all proposed
requirements. The ”end user usability and simplicity” and
”connectivity and accessibility” can be covered by imple-
menting services on middleware infrastructure layer and these
requirements depend from application system. The security is
important, but also depend from application system. Secure
access to CuteSIB can be done by using an access point with
secure socket (SSL). For private smart spaces the secure access
can be not so important but access rights to get/insert data
should be supported.

CuteSIB covers semantic interoperability in following way.
CuteSIB stores data with RDF model. Data can be easily
integrated with data from public SPARQL-endpoints (such as
DBpedia) and other RDF storages. These data can be provided
by services on middleware infrastructure level. Development
libraries for Smart-M3 agent provide such functionality (CKPI,
SmartSlog DPI). Internal module of CuteSIB can provide infer-
encing, knowledge discovery, and data federation by watching
for triplestore and using general rules. Instead of internal
module, middleware infrastructure services can use specific
rules for application domain. In this case, changing middle-
ware infrastructure services gives a new way for inferencing
knowledge. In addition, there is no binding to particular infer-
encing mechanism and rule sets. Finally, the coverage of the
requirements for the implementation of CuteSIB middleware
is presented in Table II.

There are several works with performance evaluation of
CuteSIB. In [22], the set of experiments showing the per-
formance of basic operation (insert, update, query), persistent
operations (subscription), and SPARQL queries was carried
out. The update test was related to the insertion of a block of n
triples (with n ranging from 100 to 2000). In this test, CuteSIB
showed the result of about 80 ms to insert 2000 triples. The
query test was related to retrieve a block of n triples with (with
n ranging from 100 to 1000) an RDF query. In this test, In this
test, CuteSIB showed the result of about 0.25 s to retrieve 1000
triples. The subscription test took into account time to receive
the notification for the update of a triple with a total storage of
5000 triples. In this case, CuteSIB showed the result of about
0.6 ms. However, the results of SPARQL query test showed
that CuteSIB performance, especially with the larger dataset
composed by 50k triples, are not acceptable (more than 10 s
or even network timeout). These experiments partially satisfy
the non-functional requirements for CuteSIB in some way.

In [24], the CuteSIB performance for operation in an
information sharing environment with many heterogeneous

Fig. 5. SSAP message processing

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 358 ----------------------------------------------------------------------------



TABLE II. SUMMARY OF REQUIREMENTS AND THEIR SOLUTIONS IN

CUTESIB MIDDLEWARE

Requirement Provided solutions
Functional requirements

Machine-computable
logic

Description logic in RDF/XML. OWL built upon RDF,
RDF Schema, and XML Schema.

Inference Reasoning module in middleware base layer based on rules.
RDF model.

Knowledge discovery SPARQL-endpoint. SPARQL CONSTRUCT and SELECT
queries. RDF model.

Data federation SPARQL-endpoint. SPARQL CONSTRUCT and SELECT
queries. RDF model.

Non-functional requirements

Extensibility The plug-ins based architecture.

Connectivity and ac-
cessibility

Discovery access point is used to discovery CuteSIB with
broadcast requests. Services on middleware infrastructure
layer and depend from application system.

Dependability Restart/reconnect and operation control functionality and
introduce special services for persistent storage of critical
data.

Semantic
interoperability

SSAP protocol. RDF model.

Security Secure access can be done by using an access point with
secure socket (SSL).

Portability and adapt-
ability

The implementation is based on the Qt framework. The
plug-ins based architecture.

End user usability and
simplicity

CKPI, SmartSlog DPI.

Engaging the develop-
ment community

Open source software and pre-configured infrastructures (a
set of agents/services) for a well-known application system.

participating devices was evaluated. This evaluation was aimed
at quantitative determination of the scalability bounds when
the number of devices is growing and reaching the stress
workload of the CueSIB host device. This experiments showed
the high level of satisfaction of connectivity, interoperability
and dependability requirements, when CuteSIB resists stress
workload and continues the operation after the workload
reduction.

In [25], the applicability of a wireless router for being
a CuteSIB host device was examined experimentally. The
experiments carried out in this work confirmed that capacity
of a wireless router is satisfactory for deployment of smart
spaces to support collaborative activity of participants. This
experiments are related to the portability requirement.

V. CONCLUSION

The paper presented a perspective on how to design a
software infrastructure of semantic-oriented middleware for
smart spaces deployment in IoT environments. This paper
introduced the middleware infrastructure multi-layer model.
The paper analysed of the middleware requirements for devel-
opment and deployment of smart spaces in IoT environments
and the implementation of the requirements in the proposed
model. As a reference case study, the CuteSIB semantic
information broker implementation of the Smart-M3 platform
was considered. The proposed model have a generic character
and it can serve for designing such a class of middleware for
smart spaces.

ACKNOWLEDGMENT

The research study is supported by the Ministry of Educa-
tion and Science of Russia within project # 2.5124.2017/8.9
of the basic part of state research assignment for 2017–2019.
The work is implemented within the Government Program
of Flagship University Development for Petrozavodsk State
University in 2017–2021.

REFERENCES

[1] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng,
“IoT middleware: A survey on issues and enabling technologies,” IEEE
Internet of Things Journal, vol. 4, no. 1, pp. 1–20, Feb 2017.

[2] P. Bonte, F. Ongenae, F. De Backere, J. Schaballie, D. Arndt, S. Ver-
stichel, E. Mannens, R. Van de Walle, and F. De Turck, “The MASSIF
platform: a modular and semantic platform for the development of
flexible IoT services,” Knowledge and Information Systems, vol. 51,
no. 1, pp. 89–126, Apr 2017.

[3] D. Korzun, S. Balandin, and A. Gurtov, “Deployment of Smart Spaces
in Internet of Things: Overview of the design challenges,” in Internet
of Things, Smart Spaces, and Next Generation Networking, ser. Lecture
Notes in Computer Science, S. Balandin, S. Andreev, and Y. Kouch-
eryavy, Eds., vol. 8121. Springer, Aug. 2013, pp. 48–59.

[4] D. G. Korzun, S. I. Balandin, A. M. Kashevnik, A. V. Smirnov, and A. V.
Gurtov, “Smart spaces-based application development: M3 architecture,
design principles, use cases, and evaluation,” International Journal of
Embedded and Real-Time Communication Systems (IJERTCS), vol. 8,
no. 2, pp. 66–100, 2017.

[5] S. A. Marchenkov, A. S. Vdovenko, and D. G. Korzun, “Enhancing
the opportunities of collaborative work in an intelligent room using
e-tourism services,” Trudy SPIIRAN, vol. 50, pp. 165–189, 2017.

[6] D. Korzun, I. Galov, A. Kashevnik, and S. Balandin, “Virtual shared
workspace for smart spaces and M3-based case study,” in Proc. 15th
Conf. of Open Innovations Association FRUCT, S. Balandin and U. Tri-
fonova, Eds. ITMO University, Apr. 2014, pp. 60–68.

[7] Y. V. Zavyalova, D. G. Korzun, A. Y. Meigal, and A. V. Borodin,
“Towards the development of smart spaces-based socio-cyber-medicine
systems,” International Journal of Embedded and Real-Time Commu-
nication Systems (IJERTCS). Special Issue on Big Data Analytics and
Intelligent Environments in Internet of Things, vol. 8, no. 1, pp. 45–63,
2017.

[8] A. Smirnov, A. Kashevnik, A. Ponomarev, N. Teslya, M. Shcheko-
tov, and S. Balandin, “Smart space-based tourist recommendation
system,” in Proc. 14th Int’l Conf. Next Generation Wired/Wireless
Networking and 7th Conf. on Internet of Things and Smart Spaces
(NEW2AN/ruSMART 2014), LNCS 8638, S. Balandin, S. Andreev, and
Y. Koucheryavy, Eds. Springer, Aug. 2014, pp. 40–51.

[9] D. Korzun, S. Marchenkov, A. Vdovenko, and O. Petrina, “A semantic
approach to designing information services for smart museums,” Inter-
national Journal of Embedded and Real-Time Communication Systems
(IJERTCS), vol. 7, no. 2, pp. 15–34, 2016.

[10] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke,
“Middleware for Internet of Things: A survey,” IEEE Internet of Things
Journal, vol. 3, no. 1, pp. 70–95, Feb. 2016.

[11] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3 information
sharing platform,” in Proc. IEEE Symp. Computers and Communica-
tions (ISCC’10). IEEE Computer Society, Jun. 2010, pp. 1041–1046.

[12] P. Barnaghi, W. Wang, C. Henson, and K. Taylor, “Semantics for the
Internet of Things: early progress and back to the future,” International
Journal on Semantic Web and Information Systems (IJSWIS), vol. 8,
no. 1, pp. 1–121, 2012.

[13] D. Korzun, “Service formalism and architectural abstractions for smart
space applications,” in Proc. 10th Central & Eastern European Software
Engineering Conference in Russia (CEE-SECR 2014). ACM, Oct.
2014, pp. 19:1–19:7.

[14] F. H. Mohammed and R. Esmail, “Survey on IoT services: Classifica-
tions and applications,” International Journal of Science and Research
(IJSR), vol. 4, no. 1, pp. 2124–2127, 2015.

[15] S. De, P. Barnaghi, M. Bauer, and S. Meissner, “Service modelling for
the Internet of Things,” in 2011 Federated Conference on Computer
Science and Information Systems (FedCSIS). IEEE, Sept 2011, pp.
949–955.

[16] S. Bandyopadhyay, M. Sengupta, S. Maiti, and S. Dutta, “Role of
middleware for Internet of Things: A study,” International Journal of
Computer Science & Engineering Survey (IJCSES), vol. 2, no. 3, pp.
94–105, August 2011.

[17] S. Kalarani and G. V. Uma, “Integration of semantic web and knowledge
discovery for enhanced information retrieval,” International Journal of
Computer Applications, vol. 1, no. 1, pp. 99–103, 2010.

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 359 ----------------------------------------------------------------------------



[18] A. D’Elia, D. Manzaroli, J. Honkola, and T. S. Cinotti, “Access control
at triple level: Specification and enforcement of a simple RDF model to
support concurrent applications in smart environments,” in Proc. 11th
Int’l Conf. Next Generation Wired/Wireless Networking (NEW2AN’11)
and 4th Conf. Smart Spaces (ruSMART’11). Springer-Verlag, 2011,
pp. 63–74.

[19] D. Korzun, I. Nikolaevskiy, and A. Gurtov, “Service intelligence and
communication security for ambient assisted living,” International Jour-
nal of Embedded and Real-Time Communication Systems (IJERTCS),
vol. 6, no. 1, pp. 76–99, 2015.

[20] A. Gurtov, M. Komu, and R. Moskowitz, “Host Identity Protocol (HIP):
Identifier/locator split for host mobility and multihoming,” Internet
Protocol Journal, vol. 12, no. 1, pp. 27–32, Mar. 2009.

[21] J. Kiljander, F. Morandi, and J.-P. Soininen, “Knowledge sharing
protocol for smart spaces,” International Journal of Advanced Computer
Science and Applications (IJACSA), vol. 3, pp. 100–110, 2012.

[22] F. Viola, A. D’Elia, D. Korzun, I. Galov, A. Kashevnik, and S. Ba-
landin, “The M3 architecture for smart spaces: Overview of semantic

information broker implementations,” in Proc. of the 19th Conference
of Open Innovations Association FRUCT, S. Balandin and T. Tyutina,
Eds. IEEE, Nov. 2016, pp. 264–272.

[23] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller, “A survey of
commercial frameworks for the Internet of Things,” in Proc. IEEE 20th
Conf. on Emerging Technologies & Factory Automation (ETFA 2015).
IEEE, Sep. 2015, pp. 1–8.

[24] A. S. Vdovenko, D. G. Korzun, and I. V. Galov, “Simulation per-
formance evaluation of Smart-M3 applications for Internet of Things
environments,” in Intelligent Data Acquisition and Advanced Comput-
ing Systems: Technology and Applications (IDAACS), 2017 9th IEEE
International Conference on, vol. 2. IEEE, 2017, pp. 994–999.

[25] S. Marchenkov, D. Korzun, A. Shabaev, and A. Voronin, “On appli-
cability of wireless routers to deployment of smart spaces in Internet
of Things environments,” in Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS), vol. 2.
IEEE, Sep 2017, pp. 1000–1005.

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 360 ----------------------------------------------------------------------------




