PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

Code Generation for Multiprocessor Distributed
Computing Systems

Victor Volkov, Vera Ivanova, Alexey Syschikov
Saint Petersburg State University of Aerospace Instrumentation
Saint Petersburg, Russia

{victor.volkov, vera.ivanova, alexey.syschikov}@guap.ru

Abstract—Distributed computing systems is a well-known
instrument to rise system performance and avoid bottlenecks of
shared memory architectures. In some cases, distributed
architectures are used in embedded systems: to simplify every
single embedded processor, decrease power consumption, increase
system tolerance and predictability, etc. However, when working
with such systems, software developers face all kinds of
complications related to distributed systems programming:
workload distribution, communications implementation,
computations synchronization etc. For embedded distributed
systems it’s impossibility to use distributed programming
approaches like MPI: they are too “heavy” for embedded systems.
We propose the extended application of VIPE visual programming
technology that covers a software development for distributed
multi-processor systems. VPL program structure and extensible
code generation backend allows to automate most aspects of
distributed programming and apply a single VPL programs both
to shared memory and distributed systems without additional
programming effort.

I. INTRODUCTION

Distributed computing systems are complex multifunctional
systems, which consist of several computing nodes (processors,
modules or machines) connected with network communication
channels. An effective programming of the multiprocessor
distributed computing systems is a great challenge for
developers. Such systems are oriented to solve a broad range of
tasks: astronomy research [1], modeling of natural processes
[2], solving resource-intensive tasks, telecommunications [3],
mobile devices [4], networks [5] and so on. Many vendors such
as NVIDIA [6] and Apple [7] participate in development of
tools that are oriented to the distributed computing systems.

Distributed computing systems can be divided into
centralized (a dispatching computing node is responsible for
management of the system) and decentralized (the computing
nodes are the autonomous modules interacting through a data
exchange). Decentralized systems have recently gained a
popularity due to the rapid growing of computer networks
coverage and speed.

Our goal was to supply software developers for distributed
systems with a programming technology that will allow the
rapid development of distributed applications, ease the work
with distributed computing configuration and management, and
shield the developer from coding of networking interactions and
synchronizations.

We base the work on the visual IDE VIPE to enable its
programs to work on multiprocessor distributed platform that is
combined into a single embedded system. To achieve this goal,
we implemented an algorithm for task distribution over multiple
processors, designed the mechanism of data exchange between
processors and developed the set of rules for high-level code
generation for each hardware platform.

II. VIPEIDE

The concept of VIPE (Visual Integrated Parallel
Environment) [8] is based on the visual programming language
VPL. VIPE is intended for the development of high-
performance coarse-grained programs for parallel embedded
systems. It allows creating domain-specific languages (DSL)
for a particular domain at hand [9]. In addition, environment
supports the OpenVX [10] framework, OpenCV and
programming of microcontrollers of Atmel family [11].

The visual programming environment VIPE was developed
to design programs (Fig. 1). It is the main interface of visual
programming approach. IDE VIPE provides the technology and
the tools for designing parallel algorithms, programming and
debugging of multi-core embedded platforms, including
heterogeneous ones.

=

Fig. 1. VIPE IDE

A program scheme developed in VIPE IDE consists of
various operators and links between them. The VPL language
is used as the base language to create new domain-specific
languages. VPL is based on the AGP model (Asynchronous
Growing Processes) for dynamic parallel computations [12].

ISSN 2305-7254

PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

VPL is an “action language” [13] that can be executed as
part of a model and translated into other languages. The AGP
model defines the syntax of language, the semantics of language
objects, and the design of control blocks. The formal model has
a set of important capabilities such as formal verification,
debugging and portability.

The structure of the code generated by base code generator
for the visual programming language implies the existence of
data processing operators, computation control operators, data-
objects and data exchange links. Link is translated to a structure
that stores intermediate data between operators during the
program execution.

III. CODE GENERATION FOR DISTRIBUTED SYSTEM

To execute a program developed in VIPE on a
multiprocessor distributed computing system it is necessary to
deal with several tasks of the allocating the program operators
to processors, transferring data between them and generating
functions of sending and receiving data.

VIPE contains a code generator module that is responsible
for code generation. The main task of code generator is to
translate VIPE program to a coarse-grained C-code, which will
be executed on a specific hardware platform of a computing
node of a distributed computing system.

A. Allocation of program operators

First of all, an allocation for all operators on the processors
of a distributed system should be defined.

We used cyclic Round-robin algorithm to allocate operators
on processors. Round-robin algorithm was selected because it
is simple and it can evenly distribute the workload among all
processors. Also at the development stages it is useful to test the
correctness of data transfers between all processors and correct
generation of data exchange functions.

In practice, Round-robin algorithm is ineffective for
distributed systems and in further releases this algorithm will be
replaced with the set of adequate ones.

After that, the code will be distributed to separate files for
each processor. These files will be separately compiled into the
binary files for each computing device of a distributed system

(Fig. 2).

CVLoadlmageVal(&link_1174, “\image.jpg”);
SendLink(&link_1174, 2);
ReceiveLink(&link_1174, 1);
CVlIplimageToMatVal(&link_1174, &link_1161);
SendLink(&link_1161, 1);
ReceiveLink(&link_1162, 2);
CVMatTolplimageVal(&link_1162, &link_1163);
SendLink(&link_1163, 2); n
ReceiveLink(&link_1163, 1);
CVSavelmage(&link_1163, “\result.jpg™);

CloseSocket();
ReceiveLink(&link_1174, 1);

CVLoadImageVal(&link_1174, “\\image.jpg”);

SendLink(&link 1174, 2); CVIplimageToMatVal(&link_1174, &link_1161);
ReceiveLink(&link_1162, 2); SendLink(&link_1161, 1);
CVMatTolplimageVal(&link_1162, &link_1163);| | ReceiveLink(&link 1163, 1);
SendLink(&link 1163, 2);
CloseSocket();

CVSavelmage(&link_1163, “\\result.jpg”);
CloseSocket();

Fig. 2 Code generator logic for the distributed system

The code generator allocates the operators on the processors
by assigning a processor's number for the code snippet with an
operator call, which was previously defined by round robin

359

algorithm. After that, each row of generated code will be put in
a file that should be compiled into binary for each processor.

B. Data exchange between operators

Generated code is designed for decentralized multiprocessor
distributed computing systems. Each node of the system is
independent with direct interaction between nodes without
using any centralized dispatching system.

Such peer-to-peer architecture is demonstrated on the Fig.
3. The presented links are “logical” and specify peer-to-peer
data exchange: physically these links may be organized, for
example, via one or more routers.

"
<

Fig. 3 Peer-to-peer architecture

It is necessary to transfer data correctly between operators
that are located on different processors. The VPL program
where each operator is marked with the processor’s number is
shown on Fig. 4.

2

Create
kernel
matrix

]

1 1 2

L, L
Show
image
multiproc
(Iplimage)

i 2

Load
image
(Iplimage)

, PResize A] | cvFilter2D §
" (Iplimage) | SPI | " (Iplimage) i

2
L
Show
image
" multiproc
(Iplimage)

Fig. 4 Sample VPL program

If a pair of operators are connected with a link and are placed
on different processors, it is necessary to organize data transfer
between these processors.

Unlike the client-server architecture, each node in terms of
data exchange must simultaneously perform the role of the
server and the client.

There was developed a simple API for inter-processor
communication (Fig. 5). It is a set of functions, which includes
the initialization and the shutdown of a server; it also contains
functions for sending and receiving data.

int InitSocket(int processor);

int SendLink(DataLink *link, int processor);
int ReceiveLink(DataLink *link, int processor);
int CloseSocket();

Fig. 5 Communication API functions

PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

The communication API isolates code generator from
software implementation of the network interfaces and drivers
in a particular system and allows changing the functionality of
data exchange depending on the specifics of the hardware and
software platform. This adaptation can be done even by users
of the platform without modifying the tools.

In the current implementation, data exchange is performed
synchronously. The reason for this is based on the necessity of
developing the prototype that will be applicable to any
distributed platform, including ones with single-threaded
execution and bare metal execution. Such platforms may not be
able to provide asynchronous communications.

Socket interface using TCP protocol was chosen for a
prototype implementation of communication between
processes. It ensures correct data transferring and supported by
most operating systems.

C. Integration of data exchange functions in code

Data transfer between processors is carried out by calling
API functions. However, the logic of generation of
sending/receiving functions should be clearly defined in order
to provide correct execution of the distributed program.
Consider a trivial fragment of the VPL program (Fig. 6) where
two linked nodes are allocated on different processors, thus it is
necessary to transfer data between the processors.

1 2
L L
Load 4
i Resize
—
(I[.I)Inl-lrz:agl;e)] (Iplimage)

Fig. 6 VPL program fragment

Generated code for two processes is presented on Fig. 7.

I I
CVLoadlmageVal(&link_1, ...); ReceiveLink(&link 1, 1);
SendLink(&link_1, 2); CVResizeVal(&link_841, &link_1246);

Fig. 7 Generated code for communication functions between operators

The SendLink function takes two arguments: the address of
the link variable that stores the data produced after “Load”
operator execution, and the number of target processor which
means the destination of data transfer.

The same is for the ReceiveLink function: we need to pass
the address of the link that will containing the input data for
operator “Resize” and the number of processor from which we
should receive data.

Target processor must know the number of the processor
that sends the data, because there may be situations where
several processors are trying to send data to the same processor.
In such cases, absence of the number checking may lead to an
incorrect data transfer.

After the processor 2 (Fig. 6) has received the data from the
processor 1, operator “Resize” will be executed on processor 2.

The code generator developed for multiprocessor
distributed computing systems allows generating code for any
number of processors within the platform. Fig. 8 shows VPL
program that applies blur filter on image with two format

conversions. The program is mapped on a distributed system
with three processors.

1 2 3 1 2
Load Iplimage . - viMat Save
image (12368, to 41161 (Bc'\frﬂf:&; (1162, to 1163, Image

(IplImage) = int | cv::Mat ' int | 1'1'54 " int ' Iplimage = int | (Iplimage)

6 803 798 20

Fig. 8 Allocation of operators on three processors

The fragments of generated code (insignificant code
fragments are removed) is presented on Fig. 9.

CVLoadImageVal(&link 1174, "'image.jpg");
SendLink(&link 1174, 2);

RecerveLmk(&link 1162, 3);
CVMatTolpllmageVal(&link 1162, &link 1163);
SendLink(&link 1163, 2);

ClozeSocket();

1.

ReceiveLmk(&link 1174, 1);
CVIplmageToMatVal(&link 1174, &hnk 1161),
SendLink(&link 1161, 3);

ReceiveLink(&link 1163, 1);
CVSavelmageVal(&link 1163, "\result.jpg");
CloseSocket();

III.

ReceiveLink(&link 1174, 1);
CVIplmageToMatVal(&link 1174, &hnk 1161),
SendLink(&link 1161, 3);

ReceiveLink(&link 1163, 1);
CVsavelmageVal(&link 1163, "\result.jpg");
ClozeSocket();

Fig. 9 A code generated for three processes

Logic of code generation for three or more processors is the
same as for two processors. The code generator checks the link
between the operators and generates a pair of exchange
functions for sending and receiving side.

Code generator was tested and successfully generated code
for a distributed computing system consisting of up to sixteen
processors.

D. Locks and parallel execution

Presented programming technology for the distributed
computing systems is designed for a wide variety of systems,
including systems with a very limited performance capacity
(embedded systems with a message passing). Such systems can
function without an operating system (OS) or with a real-time
operating system (RTOS) carrying a minimal set of services and
lacking multitasking in order to spare resources. Such systems
may lack a capacity to implement asynchronous data exchange.
So a synchronous exchange has been chosen as a basic
exchange mechanism, because it has the minimal set of
requirements to the system software.

During the prototype development we had passed through
application of several methods of exchange routines generation.
We think it’s reasonable to present them and they should be
briefly presented in this paper to demonstrate revealed
inconsistences.

Within the first approach, in the code generator sending and
receiving functions were generated independently of each other.

PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

Send functions were generated immediately after the data was
produced on the source processor. Receive functions were
generated right before the execution of the operator that needs
these data on the target processor.

The example that was considered above (Fig. 8) is the
simplest one due to its linearity. So the generation of sending
and receiving functions independently of each other
successfully coped with its task. However, if scheme has two or
more entry points (Fig. 10) such generation of exchange
functions may lead to the inability to execute the program.

3

2 L
Load
i Detect
image 937__ sSpl . 756, 4 i
(Iplimage) © int | 750 | int | ke‘fggglts)
932 iy
2
Eaad 1 £
0a i
i Detect
image 938 Spl | 595 \ ! 4
(Ipiimage) int’ 589 int ™1 keypoints [—
935 B2 1033

Fig. 10 Fragment of the scheme with two entry points

The code generator processes each scheme operator,
checking the presence of input or output links. If there is an
input link, receiving function must be generated before the
calling of operator function. The processing of output links goes
the same way: if there is an output link, connecting the operator
with a node on another processer, sending function must be
generated after the calling of operator function.

It can be seen that the processing of operators taking place
in code generator occurs in the same order in which these
operators are executed.

Let’s consider the fragment of code generated for two
processors (Fig. 11).

1 11
CVLoadImage(&link 1, ...); CVLoadlmage(&link 2, ...);
SendLink(&link 2, 2); SendLink(&link 1, 1);
ReceiveLink(&link 1, 2); ReceiveLink(&link 2, 1);

Fig. 11 Result of an independent generation of exchange functions

After the operators 932 and 935 (Fig. 10) are executed, data
exchange functions for adjacent operators are generated,
because these operators are linked with operators that are placed
on another processor.

Running such code will lead to the programs locking and
inability to continue execution. Both processors will be trying
to send data to each other. Further execution of both programs
will be impossible because both processors will be waiting
when another processor receive the data. It is the situation of a
mutual locking (deadlock).

The second approach solved the deadlock problem with a
synchronous generation of Send/Receive function pair. Now the
rule of generation is as follows: send function must be generated
after the execution of an operator and the correspondent

361

Receive function should be placed into the current line of the
code of the target processor.

Consider Fig. 10 again. Within the second approach, the
generated code will look like this (Fig. 12):

I I
CVLoadlmage(&link 1, ...); ReceiveLink(&link 1, 1);
SendLink(&link_1, 2); CVLoadImage(&link 2, ...);
ReceiveLink(&link 2, 2); SendLink(&link 2, 1);

Fig. 12 A code generated after calling an operator

Program will finish its work correctly, however, it can be
seen that an execution of operator with id=935 (Fig. 10) on a
second processor will not start until data from first processor is
received, even though this data does not affect the operation of
this operator at all. So this approach may lead to a sequential
execution of a distributed parallel program.

The last but not least approach allows avoiding locking
issues and sequential execution of a program. A pair of
exchange functions is generated before an execution of operator
only if the operator has input links, connected with an operator
on a different processor. Consider a code generated by these
rules (Fig. 13):

I 1I
CVLoadlmage(&link 1, ...); CVLoadlmage(&link 1, ...);
SendLink(&link 1, 2); ReceiveLink(&link 1, 1);
ReceiveLink(&link 2, 2); Splitter(&link 1, ...);
Splitter(&link 1, ...); SendLink(&link 1, 2);

Fig. 13 A generated code for current realization

Both operators cvLoadlmage on Fig. 13 do not generate a
pair of exchange functions, because they have no input links.
The following operators (Splitter) generate a pair of exchange
functions, because there are input links, connecting operators
on different processors. Thus, the nodes will be executed in
parallel only when they are not limited by data dependencies.

It is worth mentioning that algorithm for generation of data
exchange functions is not yet optimal and will be further
refined. Besides, when using asynchronous exchange and
dealing with its features, the methods of code generation can be
modified both for optimization and to avoid potential problems.

E. Generation of complex programs

When VPL program has a complex structures and consists
of hierarchically structured sections, it is necessary to pass the
data inside these sections. Fig. 14 shows a program with one
section:

i 1

Load
image [
(Iplimage)

Save
A Image o \
“ processing 3 Image

] (Iplimage)

1 2 1 2

Load
image
(Iplimage)

.
Iplimage cvi:Mat Save
W oo g U o 80 (1pheccey B image
cviiMat ce Iplimage PN (Iplimage)

Fig. 14 VPL program with one section

PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

Fig. 15 shows a code generated for a main section and Fig.
16 shows a code generated for a nested section.

nt main()
1

InitSocket(1);

DataLink link_1288 = {NULL, 0, 0};
DataLink link_1289 = {NULL, 0, 0};
CVLoadImageVal(&link_1289. " Vunput jpg");
complex 1264(&link 1289 &hink 1288);
FreeLink(&link 1289);

int main()
{

InitSocket(2);

DataLink link_1288 = {NULL, 0, 0};
DataLink link_1289 = {NULL, 0, 0}
complex_1264(&link_1289 &link 1288);
FreeLink(&link 1289);

FreeLink(&link 1288);

CVSavelmageVal(&link_1288, " ‘iresult jpg"): CloseSocket():
FreeLink(&link 1288); return 0;
CloseSocket(); }

return 0;

}

Fig. 15 Main section code for each processor

int complex_1264(DataLink* inl1, Datalink® out21) int complex_1264(DataLink* in11, DataLink* out21)
£

{

DataLink link_1284 = {NULL, 0, 0};
DataLink link_1285 = {NULL, 0, 0};
DataLink link_1295 = {NULL, 0, 0};
DataLink link_1301 = {NULL. 0,0}
DataLink link_1302 = {NULL, 0, 0};

DataLink link_1284 = {NULL, 0, 0}
DataLink link_1285 = {NULL, 0, 0}
DataLink link_1295 = {NULL, 0, 0};
DataLink link_1301 = {NULL, 0, 0}
DataLink lik_1302 = {NULL, 0, 0};

The call of the loop body function occurs on all processors.
Number of iterations has to be passed to all processors. Next,
there will be generated a loop construction in which the function
of the For body is called. The following code will be generated
for all processors (Fig. 18):

N=GetControlValue(&link 9);
for 1=0;1<N;it++) {

for 3(&link 15,1);
}

Fig. 18 A code generated for loop operator For

As the number of iterations has been broadcasted to all
processors, all processors are already aware of it. All remaining
generation rules are the same as for other nested sections. A
code, generated for loop body is shown on Fig. 19:

virtual_p_in(in11, &lmk_1295);
CVIpltmageToMatVal(&link 1295, &link_1284);
FreeLink(&link_1295);

SendLink(&link_1284, 2)

FreeLink(&link_1284);

RecetveLink(&link 1285, 2);
CVMatTolplimageVal(&link_1285, &link_1301):
FreeLink(&link_1285);

SendLink(&link_1301, 2)

ReceiveLink{out21, 2);

FreeLink(&link_1302); FreeLink(&link 1302);
FreeLink(&link_1301); FreeLink(&link_1301):
return 0; return 0;

¥ ¥

FreeLink(&link_1295);

ReceiveLink(&link 1284, 1);
CVBlurMatVal(&link_1284, &link_1285, 3);
FreeLink(&link_1284).

SendLink(&link_1285, 1);

FreeLink(&link 1285);

ReceiveLink(&link_1301. 1);
CVResizeVal(&link 1301, &link 1302, 0.5, 0.5,
CV_INTER_NN);

SendLink(&link_1302, 1);

Fig. 16 Nested section code for each processor

The rules for code generation of a program with nested
sections for multiprocessor distributed computing system are as
follows:

e Section body and its function call are generated for all
processors (even if there are no operators in the section
allocated to this processor).

e Data exchange between processors is performed inside
the section.

e When linked operators should be executed on the same
processor, data exchange is performed via memory.

e When linked operators should be executed on different
processors, data exchange is performed via generation of
a pair of exchange functions.

Apart from code generation for simple programs, support
for loops and conditional operators was added to code
generator. Fig. 17 shows program scheme for computing the
factorial.

18 L2 for —@ print

result

2§ ¥ * [printresult
c
iy - 4t
) 4
2 8

Fig. 17 VPL program for computing factorial

int for_3(Datalink® Vin 209, int counter)

DataLink link_211 = {NULL, 0, 0};
DataLink link_221 = {NULL, 0, 0};
Datalink link_222 = {NULL, 0, 0};
DatalLink link_226 = {NULL, 0, 0};
DataLink link 227 = {NULL, 0, 0}
link 221.5ize=4;

link_221 Data = (char®)malloc(4):

int for_3(DataLink® Vin 209, int counter)

DataLink link_211 = {NULL, 0, 0};
DataLink link_222 = {NULL, 0, 0};
DataLink link_226 = {NULL, 0, 0};
DataLink link_227 = {NULL, 0, 0};
link_226.5ize=4;

link_226 Data = (char®*)malloc(4);
SetControlValue(2, &link_226):

memepy(link 221 Data, (char*)(&counter), link 221.3ize);
ReceiveLink(&link 226, 2);

USum(&link 221, &link 226, &link 222);
FreeLink(&link 221);

FreeLink{&link_226);

SendLink(&link_222, 2);

FreeLink(&link 227);

SendLink{&link 226, 1);
FreeLink(&link_226);
virtual_p_in(Vin_209, &link 211);
ReceiveLink(&link 222, 1);
UMul(&link 211, &link 222, &link_227);
virtual r out(&link 227, Vin_209);
FreeLink(&link 227);
FreeLink{&link_211); FreeLink(&link _211);
FreeLink(&link_222); FreeLink(&link_222);

refurn 0; return 0

¥ i
Fig. 19 A code generated for operator For body

The generation algorithm for loop operator While is mostly
the same as for loop operator For.

The generation of conditional operators If and Switch also
has a similar algorithm. Sample VPL program that contain If
statement demonstrated on Fig. 20:

2]
¥
>IC
Y _L/
1l I
1| b?prlntl 2 | Fﬁpnnf

Fig. 20 VPL program with If operator

e Conditional operator’s branches, executing when
condition equals “true” and “false”, are always
generated for all processors (Fig. 21, Fig. 22).

mtif 3 true() mtif 3 true()
DataLink link 33 = {NULL, 0, 0}:
link 33.Size=4;

link 33.Data = (char*)malloc(4);
SetControlValue(1, &link_33):

DataLink link 33 = {NULL, 0, 0};
ReceiveLink(&link 33, 1);
dInt2(&link 33, "%i[31]");
FreeLink(&link 33):

SendLink(&link 33, 2); return 0;
FreeLink(&link 33): }

return 0:

i

Fig. 21 Branch “true” of conditional operator If

PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

int if 3_false() mtif 3 false()

{

DataLink link 39 = {NULL, 0, 0}:
ReceiveLink(&link 39, 1):
dInt2(&link_39. "%i[36]");
FreeLink(&link 39);

{

DataLink link 39 = {NULL, 0. 0};
link 39.Size=4;

link_39.Data = (char*)malloc(4);
SetControlValue(2, &link 39);

SendLink(&link_39, 2): return 0:
FreeLink(&link 39): }

return 0:

¥

Fig. 22 Branch “false” of conditional operator If

Condition is always broadcasted for all processors (Fig.
23).

SendLink(&link_23, 2); ReceiveLink(&link_23, 1)
conditionVar = GetControlValue(&link 23); conditionVar = GetControlValue(&link 23);

Fig. 23 A code generated for condition broadcasting

e [fstatement is generated for all processors (Fig. 24).

if ((conditionVar)!=0)
if 3 true();

else

if 3 false();

Fig. 24 A generated code for If statement

Fig. 25 shows a code generated for main function of a
program from Fig. 20:

int main() int main()
InitSocket(1);

int conditionVar = 0;

DataLink link 21= {NULL, 0, 0}:

DataLink link 22 = {NULL. 0, 0}:

DataLink link 23 = {NULL. 0, 0}:

link 22.Size=4;

link 22.Data = (char*)malloc(4);

SetControl Value(1, &link 22):
ReceiveLink(&link 21, 2):
IGreaterThen(&link 21, &link 22, &link 23):
FreeLink(&link 21);

FreeLink(&link 22);

SendLink(&link 23, 2);

InitSocket(2);

int conditionVar = 0;
DataLink link 21= {NULL, 0, 0}:
DataLink link 23 = {NULL, 0, 0};
link_21.Size =4;

link_21.Data = (char*)malloc(4):
SetControlValue(2, &link 21);
SendLink(&link 21, 1);
FreeLink(&link_21);
ReceiveLink(&link 23, 1)
conditionVar = GetControl Value(&link_23);
FreeLink(&link_23):

if ((conditionVar)!=0)

conditionVar = GetControlValue(&link_23); if 3 true():;
FreeLink(&link 23); clse

if ((conditionVar)!=0) if 3 false():
if 3 true(): CloseSocket():
else return 0;

if 3 false(): }
CloseSocket():

return 0:

i

Fig. 25 A code generated for main section in scheme containing operator If

Switch operator is generated in a similar manner, apart from
a greater number of conditional branches. Condition is also
broadcasted for all processors, and functions for each condition
body is generated and executed on all processors.

Iv.

The presented research of code generation approach and
software prototype for a software development for distributed
multiprocessor computing systems show promising results.

CONCLUSION

It brings the ability to apply once developed programs to
both shared memory and distributed systems without program
redesign. It shields developer from the duty to manually

363

program interconnection routines, take care of workload
distribution (in the mean of code writing), warn about
synchronization and locks.

Further research and development will cover aspects of data
interconnection optimization, application of existing VIPE
analysis tools to analyze workload distribution efficiency,
develop and allow to use more data interchange routines,
including asynchronous functions and group interaction
routines.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Ministry of Education and Science of the Russian
Federation within the project part of the federal assignment
under contract N 8.4048.2017/4.6 from 31.05.2017.

REFERENCES

[1] Korpela, E., Werthimer, D., Anderson, D., Cobb, J., and Lebofsky, M.
(2001). SETI@ HOME—massively distributed computing for
SETI. Computing in science and engineering, 3(1), 78-83.

V. V. Krzhizhanovskaya, V. V. Korkhov, M. A. Zatevakin and Y.E.
Gorbachev "Parallel distributed computing in modeling of the
nanomaterials production technologies." Parallel Computing
Technologies (PAVT'2008): Proceedings of international scientific
conference (St. Petersburg, 28 Jantl Feb 2008). Publ.: YUSU,
Chelyabinsk. 2008.

O. Huw, C. Edwards, and D. Hutchison. "The role of distributed
computing in telecommunications: experiences and analyses." (1998):
106-110.1

S. Balandin, M. Gillet, “Embedded Network in Mobile Devices”,
International Journal of Embedded and Real-Time Communication
Systems (IJERTCS), vol. 1, Ne 1, 2010, pp 22-36

Co-Modeling of Embedded Networks Using SystemC and SDL /
V.Olenev, A.Rabin, A.Stepanov, I.Lavrovskaya, S. Balandin, M.
Gillet // International Journal of Embedded and Real-Time
Communication Systems (JERTCS) — Tampere. 2011. —#2(1) — C. 24-

[2]

B3]

(4]

[3]

49
[6] NVidia official website, NVIDIA CUDA Technology Dramatically
Advances The Pace Of Scientific Research, = Web:

http://www.nvidia.com/object/io 1229516081227 .html

Apple official documentation, Quick and Easy Distributed Processing,

Web: https://documentation.apple.com/en/

appleqmaster/distributedprocessingsetupguide/

A. Syschikov, Y. Sheynin, B. Sedov, V. Ivanova. “Domain-Specific

Programming Environment for Heterogeneous Multicore Embedded

Systems”. International Journal of Embedded and Real-Time

Communication Systems (IJERTCS), vol. 5, . 4, 2014. pp. 1-23

Ivanova, Vera, et al. "Domain-specific languages for embedded

systems portable software development." Open Innovations

Association (FRUCT16), 2014 16th Conference of. IEEE, 2014

Syschikov, Alexey, et al. "Visual development environment for

OpenVX". Open Innovations Association (FRUCT20), 2016 20th

Conference of. IEEE, 2016

[11] Sedov, Boris, et al. "Domain-specific approach to software
development for microcontrollers" Open Innovations Association
(FRUCT17), 2015 17th Conference of. IEEE, 2015

[12] Ivanov, V., Y. Sheynin, and A. Syschikov. "Programming model for
coarse-grained distributed heterogeneous architecture." XI
International Symposium on Problems of Redundancy in Information
and Control Systems: Proceedings, SUAI 2007

[13] Y.E. Sheynin, A.Y. Syschikov, “Task-level Parallel Programming
Language for Space and Aeronautical Applications”, European
conference for aerospace sciences (EUCASS), Moscow, 2005.

(7

[8]

[9]

[10]

