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Abstract—The development of smart spaces for Internet of

Things (IoT) environments meets the scalability challenge since
many participants are involved into the distributed computation.
In particular, many sensors continuously provide data, many
reasoners analyze the sensed data to construct services, and
many mobile clients regularly join and leave the smart space
to consume the services. The network interaction is information-
driven, using a semantic information broker, which implements
a passive strategy for subscription. The strategy leads to perfor-
mance bottleneck. We continue our study of the active control
strategy, when a part of subscription processing is delegated to
the subscribers. The client multiplicatively decreases its check
interval, if subscription notifications are lost, and additively
increases the interval, otherwise. We study the role of strategy
parameters: the client can select their values preliminary and
keep fixed, or the client can change them dynamically depending
on the recent situation. With the aim we provide mathematical
model which represents important performance metrics as a
function of strategy parameters. Analytical result are validated
by experimental evaluation. Additionally, our simulation exper-
iments evaluate the scalability in dependence on the number of
participants.

I. INTRODUCTION

The evolving concept of Internet of Things (IoT) increases
the role of distributed processing of the data from multiple het-
erogenous sources by multiple dynamic participants [1]. The
smart spaces suit of technologies is used for creating a certain
class of intelligent service-oriented environments [2], [3]. A
shared view on information is provided to all participants via a
semantic information broker (SIB). They interact by producing,
processing, and consuming this shared information with focus
on its semantics.

A core operation for this information-driven interaction
is subscription [4]. The operation implements a persistent
query for SIB to notify regularly about updates to all matched
subscribers [5], [6]. When all processing for matching updates
with any subscriber is delegated to SIB this passive strategy
suffers from low performance, especially in large-scale IoT
settings. In this paper, we continue our research on active
control by mobile smart space participants for subscription [7].
A subscriber regularly checks for updates, in addition to
passive responses from SIB.

Following the strategy, the client multiplicatively decreases
its check interval, if subscription notifications are lost, and
additively increases the interval, otherwise. This adaptive
strategy was early experimented in [7] as a generalization of
the TCP algorithm additive–increase/multiplicative–decrease
(AIMD) [8]. Its convergence properties were studied in [9].

The dynamic changes the client performs depend on prede-
fined strategy parameters (e.g., the multiplication level). This
paper studies the role of strategy parameters: the client can
select their values preliminary and keep fixed, or the client can
change them dynamically depending on the recent situation.
The study problem is to understand what parameters values
for current situation lead to the better performance for entire
system without significant losses for the client. For that pur-
pose, we develop mathematical models to analytically estimate
the dependency of performance on the strategy parameters. We
choose a criteria by which the estimates should correspond to
the upper bound of the experimental values.

For experimental evaluation, we consider a large-scale class
of smart space applications, which now appears in many prac-
tical domains, e.g., see [4] and references therein. Participants
are classified into the following groups: 1) sensors, 2) rea-
soners, and 3) mobile clients. We focus on the subscription
performance for the latter group when every client uses active
subscription control. Such a client adapts its check interval for
requesting the SIB on updates. Evaluation of the performance
scalability in these large-scale settings can be found in [10].

The rest of the paper is organized as follows. Section III
defines the studied class of large-scale smart space applica-
tions. Section IV provides analytical performance estimates
of active control at the individual level of the mobile client.
Section V complements the theoretical study with simulation
experiments. Section VI concludes the paper.

II. RELATED WORK

The problem of adaptation to data losses and development
of its solutions for network performance improvement form a
topical research direction in distributed systems. A particular
reference area is Transmission Control Protocol (TCP). The
protocol uses several algorithms for congestion control. Each
aims at control of the sending rate by manipulating the
congestion window that limits the number of outstanding unac-
knowledged bytes of data [8], [11]. A popular TCP algorithm
is additive–increase/multiplicative–decrease (AIMD) [12]. The
congestion window is increased by one maximal segment size
per round resulting in linear increase. When the TCP transfer
encounters congestion (packet losses are detected), the window
is decreased. This algorithm cannot straightforwardly be used
for notification losses in smart spaces. There is no congestion
window for notifications, and agents implements active checks
for content updates to detect losses. Nevertheless, many TCP
algorithms are well established and used in other network
performance problems [13]. Importantly that configuring the
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Fig. 1. A smart space application with nsns sensors (data production), nrsn

reasoners (service construction), and ncln mobile clients (service delivery)

TCP algorithms parameters based on mathematical modeling
represents a promising approach in this area [14].

Another topical research and development direction con-
siders performance of wireless connections in different con-
ditions. In work [15], the author describes a backoff pro-
tocol to take into account the selfish user behavior and to
implement a technique of an arbiter. The protocol improves
the overall performance in the case of selfishness of end
stations. In addition, the author suggests reputation metric
functions to use in controlling the behavior of the stations. In
work [16], the authors study the reliability and timeliness for
publish/subscribe services over Wide Area Network (WAN).
They use gossiping to retrieve missing packets in the case of
incomplete information as well as network coding to reduce
the number of retransmissions and, consequently, the latency.

In our previous work [7] on the problem of notification
loss in a smart space, we study the subscription operation
when the notification delivery to a client is subject to losses.
We considered different assumptions on the notification loss
distribution in wireless networked environments. We intro-
duced several control strategies, including our proposal of the
adaptive strategy where the client adapts its check interval
to the observable loss rate, i.e., for TCP-like control. In
other revious work [17], we analyzed the adaptive strategy
of active control on the convergence property: the speed to
reach the steady state when the notification loss distribution
is fixed. Our analytical and experimental evaluation showed
that the convergence speed is reasonable for such an IoT-
enabled application domain as digital services in collaborative
work environments. This study continues these previous works,
and we focus on the problem of parameters selection and
recalculation for the adaptive strategy.

III. LARGE-SCALE SMART SPACE APPLICATION

The section describes experimental environment designed
to research typical IoT smart space sensor based application.
An IoT environment can include many devices from the
Internet edges. Sizes of several hundred and thousand of
devices are now typical, although even two or slightly more

devices can form a small IoT environment. In general, multi-
party networked interaction of heterogeneous devices (in small,
medium, or large IoT environments) still needs more effective
solutions [4]. In this study, we introduce an application model
for a wide class of smart space applications deployable in IoT
environments [18]–[20].

The following groups of participants are involved: 1) sen-
sors, 2) reasoners, and 3) mobile clients, as depicted in Fig. 1.
Sensors produce data flows, which lead to regular updates in
the smart space. That is, a sensor represents a persistent data
source. Reasoners detect appropriate updates and make data
mining to deduce knowledge, which is then delivered to the
users as a service. That is, a reasoner represents a primary
service constructor. Mobile clients detect service construction
activity of the reasoners and deliver the services to the end-
users (e.g., visualization). That is, a client running on the
personal mobile device represents an access&consumption
service point to the end-user. The size of each group can be
relatively large, (e.g., up to several thousand of sensors).

The previous study has demonstrated the outperformance
of CuteSIB compared with other SIB implementations [21].
Nevertheless, the passive strategy for subscription still suffers
from low performance. Earlier we showed that regular active
requests from a mobile client improve the performance by
reducing workload on SIB [22]. We focus on parameters of this
active control, when the client follows the adaptive strategy to
rationally adapt the check interval to recent update rates.

In the considered case, each sensor regularly updates its
data value in SIB. The individual update rate is λsns > 0
(update requests per second, s−1). The total number of sen-
sors nsns defines the primary size parameter for application
scalability. For simplicity we assume that the time between
two consecutive updates is selected uniformly at random. The
sensed data are shared in the smart space to represent source
information provided by all the sensors using the following
triples (nsns in total):

〈DATA, snsIDu, du〉 , u = 1, 2, . . . , nsns, (1)

where DATA shows that the triple represents sensed data,
snsIDu is unique identifier of the sensor u, and d is the latest
data value sensed by u.

Each reasoner corresponds one-to-one to a service s.
The number of the reasoners nrsn is comparatively small
(nrsn � nsns) since a reasoner analyzes data produced by
many sensors. Using its identifier rsnIDs the reasoner s
determines the appropriate set of sensors u by computing
their identifiers snsIDu. The sets are non-overlapped since
the model assumption is that each service has own set of
source data. Reasoner s subscribes to its set of the sensed
data (using snsIDu). Whenever a sensor makes an update,
the reasoner is notified to construct the service. Reasoner s
reads the updated triples from the smart space, makes local
processing, and shares the result in the smart space using the
following triples (nrsn in total):

〈SERV, rsnIDs, ds〉 , s = 1, 2, . . . , nrsn, (2)

where SERV shows that the triple represents service data,
rnsIDs is unique identifier of reasoner s (service), and d is the
information inferred by s from the source sensed data. Note
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that reasoner s implements semantic linking (not explicitly
represented in the smart space) between triples (1) and (2)
by computing snsIDu locally.

Each mobile client is interested in any service s from
the set constructed by the nrsn reasoners. The worst-case
model assumption is that a mobile client has to be able to
access all the services. Service delivery is implemented using
subscription to all triples in (2): a client is notified when a
service s has been constructed. We divide the clients onto two
groups: a) passive strategy for subscription notifications and
b) active control strategy when the client periodically checks
the service. There are nsbcln and nqrcln clients in total. In our
application model, we assume the size relation

nrsn � nsbcln + nqrcln � nsns. (3)

This model assumption makes ncln = nsbcln + nqrcln the primary
size parameter for subscription scalability. The environment
described is used to develop analytical model of the adaptive
strategy for active subscription control.

IV. PERFORMANCE OF ACTIVE CONTROL

Following our previous work [7], we consider the adaptive
strategy of active subscription control. It implements “adap-
tation to losses” when the client reduces its check interval if
losses are observed and increases the check interval, otherwise.
In fact, the adaptive strategy is a generalization of the TCP al-
gorithm of additive–increase/multiplicative–decrease (AIMD).

Generalized AIMD-like adaptive strategy has the following
form. Let i = 1, 2 . . . be a sequence of the checks done by the
client, ti be the time period between consecutive checks i− 1
and i, and ki be the number of losses during ti. At the end
of ti the client makes decision about the next ti+1 period using
ti+1 = f(ti, ki). In the simplest case, we straightforwardly
apply the AIMD algorithm as follows.

ti+1 =

{
ti/α, ki > 0
ti + δ ki = 0,

(4)

where α > 1 stands for decrease and δ > 0 for increase values
of check interval length. Fig. 2 illustrates a typical evolution
defined by (4).

Now we make a formal statement of the mathematical
model, which describes behavior of ti period. From this
model we derive upper estimates of the expected length of
check interval before a multiplicative decrease, the number
of consecutive growths and losses metric for different types
of a loss flow. Denote Xn the sequence of multiplicative
decreases, i.e., Xn = tj if tj+1 = tj/α for some j. A
multiplicative decrease happens after each Xn. Consider the
aggregated periods

Sn =
m∑
i=j

ti,

where j = i such that ti = Xn and m = i such that
ti = Xn+1. Let us assume that the sequence {Sn}n≤0
forms a renewal process with an absolutely continuous renewal
function F (x) and E[Sn] = 1/λ∗ [23]. Then the sequence
{Xn}n≥0 possesses the Markovian property. The following
presentation holds (in accordance with [24], [25]).

(
Xn+1 +

Xn

α

)(
Xn+1 − Xn

α

)
1

2δ
= Sn . (5)

Then

X2
n+1 −

X2
n

α2
= 2δSn .

Now let us denote Yn = X2
n. Then (5) is transformed to

Yn+1 =
Yn

α2
+ 2δSn . (6)

According to [25], formula (6) is a particular case of
stochastic linear difference equation with the stationary so-
lution

Y ∗n = 2δ
∞∑

k=0

1

α2k
Sn−1−k .

Under the assumptions above, starting from arbitrary window
size Y0, the sequence Yn converges almost sure to the station-
ary solution, i.e.,

P
{

lim
n→∞ |Yn − Y ∗n | = 0

}
= 1.

To calculate expectation for the stationary solution we derive

E[Y ∗n ] = 2δ

∞∑
k=0

1

α2k
E[Sn−1−k] =

2δ

λ∗

∞∑
k=0

1

α2k
.

Then for E[Y ∗n ] holds

E[Y ∗n ] = 2
α2δE[Sn]

α2 − 1

and using Goelder’s inequality [26] one can obtain

T = E[X∗n] ≤ α

√
2δ

λ∗(α2 − 1)
, (7)

where T is the expected length of ti before a multiplicative
decrease.

Now we derive an upper bound for another important
performance metricK that counts the average number of losses

Xn+1

α

Xn+1

Xn

j m i

ti

δ

Fig. 2. Evolution of ti in active control by (4).
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at Xn interval. We consider three different types of a loss flow
sensed by a single client.

1) Poisson flow with parameter λ. This model interprets
that the losses visible at client side are provided
by the different low intensity sources independently.
Then superposition of such flows could be approxi-
mated by Poison flow with rate λ. In the case one
can derive that

K ≈ λT ≤ λ

√
2δ

λ∗(α2 − 1)
.

2) Bulk loss flow. This model assumes that delivery
notification losses form bulk flow with arbitrary size
n. The bulk size is described by the discrete distri-
bution {pn}∞n=0 and bulk events form renewal flow{Sn}. Although loss events do not form bulks, this
assumption does not reduce precision and generality
of our analysis since losses happen at each Xn in-
terval with probability 1 and intervals between losses
within single Xn period are of no interest here. To
compute K we denote

μ =

∞∑
n=0

pn,

then K = μ and could be estimated from the
observations.

3) Bernoulli losses. We assume that the notification
losses happen independently with probability p.
Therefore the expectation of losses in the sequence
of N notification requests is Np and since a client
keeps individual update rate λcl the expectation of
the request number on Xn interval is λclT and hence
K ≈ λclTp.
Active strategy under consideration assumes that a
client receives information about lost notifications
only after request. If notifications were not received
by the client during maximum request waiting time
tmax and time is expired then all current notifications
are considered as lost. Therefore if Xn period is
longer than the maximum request waiting time then
the client observes bulk notification losses. Therefore
to remain within Bernoulli loss model and to avoid
bulk losses the analyst is recommended to tune pa-
rameters α and δ so that T is not much greater tmax.

The number of consecutive growths is another important
metric for the performance of adaptive strategy (4). The
average number N is estimated as

N =
1

δ
E

[
X∗n(α− 1)

α

]
≤ α

√
2δ(α+ 1)

λ∗(α− 1)
. (8)

For the binary reduction case α = 2 in (4) the following
estimation is possible:

N =
1

δ
E

[
X∗n
2

]
≤ α√

2δλ∗(α2 − 1)
.

V. EXPERIMENTAL EVALUATION

Our simulation testbed consists of a set of desktop comput-
ers. Each allows simulating many participants (small devices

Table I. COMPUTERS TO ALLOCATE THE SIB AND SIMULATED
PARTICIPANTS

Hosting Workload Characteristics
SIB network connections with

all participants
CPU Intel Core i3, CPU 1.90 GHz,
RAM 4Gb, wired connection with
100 Mbps, Ubuntu 15.10

Sensors nsns ≤ 104 parallel pro-
cesses

CPU Intel Dual Core, CPU 2.60
GHz, RAM 2Gb, wired connection
with 100 Mbps, XUbuntu 16.04

Reasoners nrsn ≤ 102 parallel pro-
cesses and passive sub-
scriptions

CPU Intel Core i5, CPU 1.70 GHz,
RAM 6Gb, wireless connection
with 21 Mbps, Ubuntu 15.10

Clients ncln = nsbcln + nqrcln ≤
103 parallel processes
and active subscriptions

CPU Intel Core i5, CPU 2.50 GHz,
RAM 3Gb, wireless connection
with 21 Mbps, XUbuntu 16.04

Reference
sensor,
reasoner,
and client

3 parallel processes CPU Intel Core i5, CPU 2.50 GHz,
RAM 3Gb, wireless connection
with 21 Mbps, XUbuntu 16.04

and their agents). A desktop computer hosts many parallel
processes such that a process simulate the activity of a single
participant (from one of the three groups). We use five modest-
capacity computers to allocate the SIB, nsns sensors, n

sb
cln+n

qr
cln

clients, and nrsn reasoners. The testbed specification is sum-
marized in Table I. Local wireless network is used except for
the computer running reasoners (wired connection is used). In
practice, reasoners typically need powerful machines equipped
high-capacity communication channel, therefore our simula-
tion testbed follow this feature. We experimented with CuteSIB
version 0.5.0 (sourceforge.net/projects/smart-m3/), which is
implemented using C++ and Qt.

All simulated participants (sensors, reasoners, and clients)
are implemented using Python 2.7. The Smart-M3 PythonKPI
library is used for SIB access primitives. In size relation (3),
we fixed the case when

nrsn ≤ 102, nsbcln = 0, nqrcln ≤ 103, nsns ≤ 104.

That is, the proportion nrsn : ncln : nsns = 1 : 10 : 102

is kept. The large number of sensors feeds the smart space
with raw data. A small number of reasoners covers the whole
data set. Each reasoner constructs its own service by tracking
updates and processing the raw data, i.e., one service uses
many sensors. The number of mobile clients is in the middle,
i.e., one service targets several end-users.

The sum rate of operations for all three group (sensors,
reasoners, clients) is 10 op/s (operations per second). We
selected one reference participant from each of three groups for
the evaluation. The reference sensor has individual rate based
on random delay from 0 to 3 seconds (uniform distribution).
For each experiment, 100 consecutive measurements are made.
The reference client is used for performance evaluation. Other
mobile clients generate background workload. The adaptive
strategy for active control (4) uses t0 = 3 s. Its parameters α
and δ were varied to study their influence on the performance.

We compare the analytical estimates derived in Section IV
with the simulation results. Using the experimental mea-
surements we calculate sequence Sn and then predicted and
experimental values of Xn expectation, where

• Tpred is calculated by (7),

• Texp is the average of X
∗
n,

• Npred is calculated by (8),
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Table II. COMPARISON TABLE OF ESTIMATIONS AND EXPERIMENTAL VALUES FOR DIFFERENT ACTIVE STRATEGY PARAMETERS

Strategy
parameters

Evaluated values
E[Sn] Tpred Texp Npred Nexp λcln KPoisson flow Kbulk loss KBernoulli Ktot Rexp

δ = 0.5, α = 1.5 13 4.84 4.13 4.84 2.74 0.29 0.37 1.00 0.32 0.23 9
δ = 1, α = 1.5 10.36 6.11 4.79 3.05 1.55 0.25 0.57 1.00 0.42 0.28 1
δ = 2, α = 1.5 9.2 8.14 5.60 2.03 0.94 0.21 1.07 1.21 0.69 0.4 4
δ = 3, α = 1.5 9.2 8.14 5.60 0.99 0.32 0.21 3.34 2.64 1.34 0.4 4
δ = 0.5, α = 2 14.96 4.47 4.02 4.47 3.85 0.32 0.28 1.00 0.28 0.19 13
δ = 1, α = 2 9.74 5.1 4.16 2.55 2.10 0.32 0.52 1.00 0.50 0.31 27
δ = 2, α = 2 6.50 5.89 4.17 1.47 1.04 0.31 0.91 1.00 0.85 0.46 41
δ = 3, α = 2 9.2 8.14 5.60 1.15 0.77 0.21 2.63 2.22 1.21 0.4 4
δ = 0.5, α = 4 4.86 2.28 1.92 2.28 2.79 0.77 0.58 1.21 0.61 0.35 40
δ = 1, α = 4 4.84 3.21 1.94 1.61 2.82 0.77 0.82 1.22 0.69 0.28 32
δ = 2, α = 4 5.96 5.04 3.76 1.26 1.37 0.40 1.60 1.89 1.02 0.51 14
δ = 3, α = 4 5.00 5.66 3.84 0.94 0.94 0.39 1.82 1.61 1.16 0.53 16

Fig. 3. Adaptive strategy for α = 2 and δ = 0.5 with t0 = 3 s.

• Nexp is the average of Xi,

• K the average number of losses before an interval
decrease (for different loss distributions),

• λcln is the rate of client requests checking for updates,

• Ktot is the proportion of update losses during the
entire evolution interval,

• Rexp is the percent of requests with no update detec-
tion (redundant requests).

Basic experimental results summarized in Table II. They
indicate good satisfaction with the analytical upper bounds
which correlate with our criteria for analytical estimates. K
metric that smaller or equal to 1 indicates that selected pa-
rameters are suitable with current situation. Ktot should strive
to zero, but with current strategy behavior it’s not possible,
because increases are infinite until loss event happens. Rexp

and λcln should be as small as possible without harm in the
form of additional losses. In particular, Fig. 3 shows that
values α = 2, δ = 0.5 provide a reasonable balance between
redundant requests and update losses.

Fig. 4 shows experimental measurement of the average
number of losses K (before an interval decrease) for different
values of δ and for fixed α = 2. The adaptive strategy behaves
reasonably for different δ. Metric Kbulk loss is totally equal
to experimental values because of the calculation method, it
can be used in situations when we have information about
previous observation. Metrics KBernoulli and KPoisson flow are

close to Kbulk loss at values such as δ = 0.5, 1, 2. The observed
behavior is due to the rate of sensor λsns = 1.5, which is
much bigger or comparable with values of δ mentioned above.
When interval increases further and decreases smaller than
sensor rate, it is in-effective leading to bigger losses, e.g., for
values of δ = 3, 4, 5, 6. The adaptive strategy needs to make
several rounds to stabilize interval value but on small number
of rounds.

The client request rate λcln defines how many requests was
made per time unit. Fig. 5 demonstrates behavior of λcln for
different values of δ and α as well as interdependence of
losses percent at all intervals. Higher rate leads to smaller
percent of losses. It is at the expense of frequent requests
with small delays between them. Note that at same time too
big δ and α values lead to worse losses percent. The case
α = 2 provides balanced values of the metrics, i.e., the binary
reduction (halving) is preferable in the active control.

Fig. 4. Comparison of different types of losses for α = 2.

Fig. 5. Client request rate λcln for different values of δ and α.

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 348 ----------------------------------------------------------------------------



Fig. 6. Length of interval ti before a decrease by analytical estimations and
experiments for different values of δ and α.

Fig. 7. The number of consecutive growthsN by estimations and experiments
for different values of δ and α.

Fig. 6 shows comparison of the interval length estimations
with experimental results for different values of δ and α. In
this case, we observe the same situation as with the K metrics:
When δ > 3 for λsns = 1.5 then the analytical estimations give
much bigger values that experimental.

Fig. 7 shows comparison of estimation Npred and exper-
imental Nexp values of the number of consecutive growths
N . As we can see the estimation provides a high bound
for experimental values in most of cases. It can be used to
determine the average length of interval before a decrease.

In sum, the achieved measurement results can be used
to set up the strategy parameters in order to provide better
performance. The results point out that the adaptive strategy
needs to be customized during its operation to react on changes
of rates in system. This customization can be achieved by
appropriate modification of of α and δ with use of previous
observation and knowing estimations for K metrics. As we
can see from the experiments, values α = 2, δ = 0.5 provide
a satisfactory balance between extra requests and update losses
at λsns = 1.5.

VI. CONCLUSION

This paper continues our study of the active strategy
implemented by a client in the Large-Scale Smart Spaces. We
proposed adaptive AIMD-like algorithm to control notification
check interval. We derive analytical estimates of the impor-
tant performance metrics of the strategy. Namely, we obtain
estimations for the expected length of check interval before a
multiplicative decrease, the number of consecutive growths and
losses metric for different types of a loss flow. The estimates
obtained have simple closed representation, which makes them

easily applicable. Also, we provide experimental evaluation
of smart space application operation in the Large-Scale IoT
environment that provides interaction of many sensors, rea-
soners and clients. Our simulation experiments showed that the
analytical estimates could be applied for tunning parameters
of the active strategy. Experimental evaluation demonstrated
the active strategy could improve efficiency of notification
delivery. Dynamic control of strategy parameters can lead
to better performance and it can be achieved with use of
estimations and predicting situations in system.
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