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Abstract—Recent advances in measurement technology have
enabled us to measure various omic layers, such as genome,
transcriptome, proteome, and metabolome layers. The demand
for data analysis to determine the network structure of the
interaction between molecular species is increasing. The Gaus-
sian graphical model is one method of estimating the network
structure. However, biological omics data sets tend to include
missing values, which is conventionally handled by preprocessing.
We propose a novel method by which to estimate the network
structure together with missing values by combining a sparse
graphical model and matrix factorization. The proposed method
was validated by artificial data sets and was applied to a signal
transduction data set as a test run.

I. INTRODUCTION

Life phenomena involve molecular interactions in vari-
ous layers, such as genome, transcriptome, proteome, and
metabolome layers. Recent advances in measurement tech-
nology have enabled us to measure various omic layers, and
the demand for data analysis is increasing. It is necessary
to determine the network structure of the interaction between
molecular species from the data.

The approaches to analyze such data sets are roughly clas-
sified into the knowledge based and the data driven method.
The knowledge based method reconstructs the network struc-
ture from data base, which stores information on molecular
interactions, and it is useful if database is available and reliable
for the life phenomena of interest[1]. On the other hand, if
database is not available or reliable, the data driven method is
demanded. One of the main methods is information theoretical
approach, which is roughly described as examining statistical
independence or conditional independence between molecular
species, and has been applied to data sets of various layers,
such as transcriptome and metabolome [2], [3]. Whereas the
information theoretic approach can be widely applied, because
it is not necessary to assume specific probabilistic distributions,
the following disadvantages may occur: it requires high com-
putational costs and large samples size, and the construction
of estimation model integrating prior knowledge is not easy.
However, if we assume Gaussianity, the disadvantages can
be diminished in stead of loss of generality with respect to
probabilistic distributions.

The Gaussian graphical model [4] is adopted for estimating
the network structure. Let Xi, i = 1, . . . ,m be random
variables that obey a Gaussian distribution with mean μ and
covariance matrix Σ, where Xi corresponds to the measure-
ment data of molecular species i. In the Gaussian graphical
model, the edge appearance of a network between nodes i and

j is determined by the conditional independence of Xi and Xj

given {Xk|k �= i, j, } under the assumption of Gaussianity. In
addition, let σ be the concentration matrix. Then, we have

Xi⊥Xj |Xk∈ν\i,j ⇔ σij = 0

where ν = {1, . . . ,m} and ν \ i, j denotes a set in which i, j
is removed from ν. If Σ is not degenerated, then σ = Σ−1.
Thus, if Sij �= 0, the edge appears between nodes i and j, and
so we infer that there is an interaction between the molecular
species corresponding to nodes i and j.

In biological data acquisition, obtaining large-sample-size
data sets is difficult because of experimental costs and lim-
itations. Thus, it is desirable to process data sets for which
n < m. Furthermore, even if n > m, if n is close to
m, determining the network structure using a straightforward
method, such as the estimation of the inverse covariance matrix
from data sets, is difficult because off-diagonal entries rarely
become 0, due to the large variance of the estimator of σij .
However, if the concentration matrix has numerous 0 entries,
i.e., if the concentration matrix is sparse, we can estimate it
effectively by L1 norm regularization, even when n < m.
The framework is referred to as a sparse graphical model or
graphical lasso [5] and has been applied biological data sets[6],
[7], [8].

Biological data sets, such as omics measurements, fre-
quently have missing values. Conventionally, these missing
values are excluded from data sets through preprocessing of
each variable or sample. Alternatively, missing values are
replaced with the mean value of the variable. However, es-
timating the concentration matrix and missing values together
would yield a more accurate estimation of network structure,
because there are relationships between the missing values and
the concentration matrix. We herein propose a novel estimation
method using a sparse graphical model, which simultaneously
estimates missing values. In the proposed method, a partial
correlation matrix is used instead of a concentration matrix.
The partial correlation matrix is obtained by normalizing the

concentration matrix for each entry as −σij√
σiiσjj

.

The rest of this paper is organized as follows. In section
2, we will formulate the problem settings and describe an al-
gorithm. The algorithm has some heuristics, thus, we examine
the efficacy of the algorithm by a numerical experiment for
cases where the exact network structure is known, and apply
the algorithm to a biological data set. The numerical results
will be given in section 3. In section 4, we describe conclusion.
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II. METHODS

A. Estimation model

A sample vector x ∈ �m is identically and independently
generated from the Gaussian distribution Nm(μ,Σ), which
has mean μ and covariance matrix Σ, and the data sets
(x1, . . . ,xn) are acquired. For simplicity, we set μ = 0
without loss of generality. The partial correlation coefficient
between xi and xj is denoted by ρij , and the regression
coefficient when xi regresses to {xj |j �= i} is denoted by
bij . Using the relationships between ρij and bij , such that

bij = ρ
ij
√

σjj

σii , ρij is obtained by the minimization problem

min
ρ

⎧⎪⎨
⎪⎩
∑
i,j

⎛
⎝xij −

∑
k �=j

ρjk
√
σkk

σjj
xik

⎞
⎠

2
⎫⎪⎬
⎪⎭ , (1)

where {σij} is the concentration matrix of x. As such, the
partial correlation matrix {ρij} is sparse, i.e., the elements of
{ρij} have many 0s, we can replace the minimization problem
of Eq. 1 with

min
ρ

⎧⎪⎨
⎪⎩
∑
i,j

⎛
⎝xij −

∑
k �=j

ρjk
√
σkk

σjj
xik

⎞
⎠

2

+ γ
∑
i>j

|ρij |

⎫⎪⎬
⎪⎭ (2)

by adding the regularization term of the L1 penalty [9] for ρij

[5], [6]. The hyperparameter γ regulates the sparsity of {ρij}.
As γ increases, {ρij} becomes more sparse. In the case of
m > n, obtaining {ρij} by the inverse of covariance matrix
or Eq. 1 is difficult. However, Eq. 2 can be solved under
the assumption of sparsity for {ρij}. Generally, interactions
between molecular species in biology are sparse rather than
dense, because one molecular species appears to interact with
at most tens of other molecular species, whereas the total
number of molecular species is in the thousands.

We assume that the data matrix X , which consists of the
data set (x1, . . . ,xn), includes the missing values generated
at rate rmiss. Each element of the data matrix is discriminated
as an observed or missing value

xij =

{
yij for i, j ∈ D (observed)

zij for i, j ∈ D̄ (missed),

where D represents the index set of elements of observed
values. Here, X is reproduced as the product of two matrices
as

X = PQT

where the sizes of P and Q are n × k,m × k, respectively.
Here, P and Q are estimated by minimizing the sum of the
squared errors between the observed values and the elements
of the matrix product:

min
p,q

∑
i,j∈D

1

2

(
yij −

∑
h

pihqjh

)2

. (3)

The missing value is estimated as

zij =
∑
h

pihqjh

for i, j ∈ D̄. The estimation technique of the missing value is
based on matrix factorization applied to a collaboration filter
[10].

The dimensionality of k is determined by the rank of X .
As such, X has strong correlations between variables, and
the distribution of x is biased to the subspace, so that X
tends to have small singular values. In practice, generally,
data matrices of biological data usually have small singular
values, because the molecular species form clusters, which
have similar measurement values. Thus, we consider that X
can be approximated by a low-rank matrix in biological data
analysis.

We propose a novel method for estimating a sparse par-
tial correlation matrix with missing values by combining a
sparse graphical model and matrix factorization. The proposed
method corresponds to approximately solving the following
minimization problem:

min
p,q,ρ

{∑
i,j∈D

1

2

(
yij −

∑
h

pihqjh

)2

+
β

2

∑
i,j

⎛
⎝xij −

∑
k �=j

ρjk
√
σkk

σjj
xik

⎞
⎠

2

+ γ
∑
i>j

|ρij |
}

subject to xij =
∑
h

pihqjh for i, j ∈ D̄. (4)

The second and third terms of Eq. 4 are interpreted as
regularization terms that depend on ρ for Eq. 3.

B. Interpretation as a probabilistic model

The proposed method can be interpreted as the maximum
a posteriori (MAP) estimation by a probabilistic model. The
posterior distribution of ρ,p, q, z given observed data y is

p(ρ,p, q, z|y) = p(ρ|p, q,x)p(p, q|y)p(z). (5)

By Bayes theorem,

p(p, q|y) ∝ p(y|p, q)p(p, q)
∝ p(y|p, q)

∝
∏

i,j∈D
exp

[
− 1

2σ2y
(yij −

∑
h

pihqjh)
2

]

where p(p, q) = constant. We set σ2y = 1 without loss of
generality. Moreover,

p(ρ|p, q,x) ∝ p(x|ρ,p, q)p(ρ).
The likelihood function is approximated by

p(x|ρ,p, q) ≈∏n,m
i>j p(xij |{xik}k �=j , {ρjk}k �=j)

∝∏n,m
i>j exp

[
− 1

2V1

(
xij −

∑
k �=j ρ

jk
√

σkk

σjj xik

)2
]
.

The prior distribution is set as

p(ρij) =
1

2γij
exp[−γ|ρij |]

p(z) =
∏

i,j∈D̄
δ

(
zij −

∑
h

pihqjh

)
.
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Thus, by Eq. 6,

p(ρ,p, q, z|y) ≈ 1

Z
exp

[
−1
2

∑
i,j∈D

(yij −
∑
h

pihqjh)
2

− 1

2V1

n,m∑
i>j

⎛
⎝xij −

∑
k �=j

ρjk
√
σkk

σjj
xik

⎞
⎠

2

− γ
n,m∑
i>j

|ρij |
]

·
∏

i,j∈D̄
δ

(
zij −

∑
h

pihqjh

)
(6)

is obtained, where Z is the normalization constant. The MAP
estimation of Eq. 6 corresponds to the minimization problem
of Eq. 4.

C. Algorithm

The minimization problem of Eq. 4 is rewritten as

min
p,q,ρ

{∑
i,j∈D

1

2

(
yij −

∑
h

pihqjh

)2

+
β

2

∑
i,j

⎛
⎝xij −

∑
k �=j

ρjk
√
σkk

σjj
xik

⎞
⎠

2

+ γ
∑
i>j

|ρij |
}

+
∑

i,j∈D̄
λi,j

(
xij −

∑
h

pihqjh

)
(7)

by the Lagrange multiplier. The minimization problem of Eq.
7 is divided into two subproblems. By fixing ρ of Eq. 7, we
define

f(p, q;ρ) =

∑
i,j∈D

1

2

(
yij −

∑
h

pihqjh

)2

+
β

2

∑
i,j

⎛
⎝xij −

∑
k �=j

ρjk
√
σkk

σjj
xik

⎞
⎠

2

. (8)

By fixing p, q, we define

g(ρ;p, q) =

1

2

∑
i,j

⎛
⎝xij −

∑
k �=j

ρjk
√
σkk

σjj
xik

⎞
⎠

2

+ γ
∑
i>j

|ρij |. (9)

The minimization problem of Eq. 7 is replaced by the follow-
ing two minimization subproblems:

min
p,q

f(p, q;ρ), (10)

min
ρ

g(ρ;p, q), (11)

which are solved numerically in alternate shifts like EM
algorithm until convergence or upper limit number of iteration.
By differentiating the objective function of the minimization
problem given by Eq. 7 with respect to λij , we obtain

zij =
∑
h

pihqjh, (12)

and substitute the values into Eq.8.

The minimization subproblem given by Eq.10 is numer-
ically solved by the stochastic gradient method due to local
minima. We define

εij =
1

2

(
yij −

∑
h

pihqjh

)2

+
β

2

⎛
⎝xij −

∑
k �=j

ρjk
√
σkk

σjj
xik

⎞
⎠

2

+ γ|ρij |.

When {i, k} ∈ D for k = 1, . . . ,m

∂εij
∂pil

= −
(
yij −

∑
h

pihqjh

)
qjl,

when {i, k} ∈ D̄ for ∃k �= j, {i, j} ∈ D,

∂εij
∂pil

= −
(
yij −

∑
h

pihqjh

)
qjl

−β
⎛
⎝yij −∑

k �=j

ρjk
√
σkk

σjj
xik

⎞
⎠

·
⎛
⎝ ∑

k �=j,(i,k)∈D̄

∑
k �=j

ρjk
√
σkk

σjj
qkl

⎞
⎠ ,

when {i, j} ∈ D̄,

∂εij
∂qjb

= −
(
yij −

∑
h

pihqjh

)
pib,

when a �= j, {i, a} ∈ D̄,

∂εij
∂qab

= −β
⎛
⎝yij −∑

k �=j

ρjk
√
σkk

σjj
xik

⎞
⎠ ρja

√
σaa

σjj
pib.

The derivatives yield the updated formula

p
(t+1)
il := p

(t)
il + η

∂ε
2,(t)
ij

∂pil

q
(t+1)
ab := q

(t)
ab + η

∂ε
2,(t)
ij

∂qab
.

for the minimization subproblem of Eq. 10, where η is a step
size.

The minimization subproblem is numerically solved by the
shooting method [11]. We define

x̌ = (x1,1, . . . , xn,1, x1,2, . . . , xn,2, · · · , x1,m, . . . , xm,m)
T

and column vector

χ(i,j) =(
0, . . . , 0,

√
σjj

σii
XT

1:n,j , 0, . . . , 0,

√
σii

σjj
XT

1:n,i, 0 . . . , 0

)T

,
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which has

√
σjj

σiiX
T
1:n,j and

√
σii

σjjX
T
1:n,i at the ith and jth

blocks, respectively, where X1:n,i = (x1,i, . . . , xn,i)
T . Let χ

be nm by the m(m− 1)/2 matrix denoted by

χ =
(
χ(1,2), . . . , χ(m−1,m)

)
.

The minimization subproblem of Eq. 11 is rewritten as

min
θ

1

2
‖x̌− χθ‖22 + γ|θ|

as linear regression with the L1 regularization term, where
θ = (ρ1,2, . . . , ρm−1,m)T . The initial value of θ is set by

θ
(0)
j = argmin

θj

1

2
‖x̌− θjχj‖22 + γ|θj |

= sign
(
x̌Tχj

) (|x̌Tχj | − γ
)
+

χT
j χj

where χj is the jth column vector of χ and (a)+ = aI(a > 0).
The updated formula for the minimization subproblem of Eq.
11 is derived by the shooting method [11], as follows:

θ
(t+1)
j = argmin

θj

1

2
‖x̌−

∑
i �=j

θ
(t)
i χi − θjχj‖22 + γ|θj |

=sign

(
(ε
(t)
θ )

Tχj

χT
j χj

+θ
(t)
j

)(∣∣∣∣∣ (ε
(t)
ε )Tχj

χT
j χj

+θ
(t)
j

∣∣∣∣∣− γ

χT
j χj

)
+

(13)

where ε
(t)
θ = x̌− χθ(t). Here, σii is estimated using the sum

of the squared errors

σii =

⎛
⎜⎝ 1
n

∥∥∥∥∥∥χi −
∑
j �=i

θijχj

∥∥∥∥∥∥
2

2

⎞
⎟⎠
−1

.

If the each solution of minimization subproblems of Eq. 10
and 11 decreases the objective function of Eq. 4, the objective
function sequentially decrease. However, the solution of mini-
mization subproblems of Eq. 10 dose not always decrease the
objective function because of the stochastic gradient method.
Thus, the objective function does not always decrease.

The pseudo code for the proposed method is denoted in
algorithm1.

III. RESULTS

A. Artificial data

We evaluated the performance of the proposed method
using artificial data. The data matrix X is generated from
a normal distribution with a mean of 0, which has a sparse
partial correlation matrix, and about m/2 of its singular values
are approximately less than 1/2 of maximum singular value.
After generating a complete data matrix, which has no missing
values, we replaced the small rnm values of the complete data
matrix with missing values, where r is the ratio of missing
values to the total number nm of entries ofX . In the biological
data measurement, small values tend to be missing because
they have a smaller signal-to-noise ratio than large values.

We determined m = 20, n = 10. For the partial correlation
matrix of the generative normal distribution, the ratio of

Algorithm 1
p, q,ρ,σ ⇐ Initial values
repeat
for i, l do
pil ⇐ pil + r

∂εij
∂pil

update ε
end for
for a, b do
qab ⇐ qab + r

∂εij
∂pab

update ε
end for
for i > j do

update ρi,j by Eq. 13

σii ⇐
(

1
n

∥∥∥χi −
∑

j �=i θijχj

∥∥∥2
2

)−1
end for
until convergence for ρ or upper limit number of iteration

nonzero off-diagonal entries to all off-diagonal entries was 0.3.
The nonzero or zero off-diagonal entries were randomly deter-
mined using a binomial distribution. Each nonzero off-diagonal
entry was generated from a uniform distribution with domain
[−1,−0.5] ∪ [0.5, 1], and the non-zero entries were rescaled
in order to assure positive definiteness. We heuristically tuned
the partial correlation matrix, so that the ratio of nonzero off-
diagonal entries was 0.3 and the ratio of the lower 50% singular
values was small. (i) We then set the lower 50% singular values
at small values and reconstruct the partial correlation matrix
by singular value decomposition. (ii) Each off-diagonal entry,
which was changed from zero to nonzero by (i), was set at
zero. Here, (i) and (ii) were iterated until the conditions were
satisfied. We conducted a numerical experiment involving 560
trials in order to estimate the network structure, i.e., to estimate
the nonzero coefficient of partial correlation, and evaluated the
performance of estimation by F1 score between the estimated
network structure and the true network structure. The F1 score
is the harmonic mean of precision and recall and is [0, 1]. If
the F1 score is 1, the estimated network structure is the same
as the true network structure.

We compared two methods with the proposed methods
(Fig. 1,2,3,4). First, the missing values and the partial corre-
lation matrix are estimated separately (separate method). The
missing values are estimated from P ,Q using Eq. 3, and the
network structure is estimated using Eq. 2. Second, the missing
values are simply replaced with the mean of each variable,
and the network structure is estimated using Eq. 2 (mean
imputation). We set k = 10 for each numerical experiment.

Fig. 1 shows the average F1 score of 560 trials, when the
hyperparameter γ was determined by a grid search of 100
points, so that the F1 score was maximized. Thus, the F1 score
is interpreted as the potential performance when γ is most
successfully selected. The proposed method provides a higher
F1 score over all missing rates. The F1 scores for all methods
tend to decrease, as the missing rate increases. In some cases,
the F1 scores were larger than those of the complete matrix.
This suggests that the estimated missing values may become
useful for partial correlation estimation, because the proposed
method simultaneously estimates the missing values and the
partial correlation matrix. As another possibility, the bias of the
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estimated missing values is unexpectedly advantageous for the
partial correlation matrix, particularly for the separate method
and mean imputation for a missing rate of 0.1. However, we
consider that it would generally be difficult to select a γ that
exceeds the performance of the complete data.

In practice, γ would be selected by an evaluation function,
e.g., information criteria for model selection. We selected γ
so as to minimize the sum of the squared errors with the L1
regularization term

F (γ) ≡
∑
i,j

⎛
⎝xij −

∑
k �=j

ρjk
√
σkk

σjj
xik

⎞
⎠

2

+ γ
∑
i>j

|ρij |, (14)

which corresponds to a log likelihood function with a prior
distribution function (Fig. 2). Although minimizing F (γ) is
an ad hoc solution, the proposed method provides an F1 score
close to the maximum F1 score (Fig.1) around a missing rate
of 0.1 ∼ 0.3 and a higher F1 score than for the separate
method and mean imputation. In addition, the minimization of
F (γ) is interpreted as the particular case of type II maximum
likelihood estimation, the posterior distribution of which is
highly concentrated in the mode.

On the other hand, the BIC-type criterion ([6]) is defined
as

BIC(γ) =

m∑
j

n log

⎡
⎢⎣∑

i

⎛
⎝xij −

∑
k �=j

ρjk
√
σkk

σjj
xik

⎞
⎠

2
⎤
⎥⎦

+ log n ·
∑
k �=j

I(ρj,k �= 0),

and the F1 score selected by minimizing the BIC-type criterion
(Fig. 3) is lower than the selection by F (γ) (Fig. 2).

The root mean squared error (RMSE) between the esti-
mated missing values and the values of complete data of the
proposed method is smaller than that of the separate method,
except for rmiss = 0.1 (Fig. 4). Whereas the RMSE of the
mean imputation is smaller than the proposed method and
the separate method, the F1 score of the mean imputation
is lower than those, possibly due to substituting same values
to missing entries by each variable. Although the RMSE
of the separate method is slightly smaller than that of the
proposed method at rmiss = 0.1, the F1 score of the proposed
method is higher than that of the separate method for the
maximum F1 score (Fig. 1) and selection by Eq. 14 (Fig. 2).
These suggest that the smaller RMSE does not necessarily
increase the accuracy of the network structure. Furthermore,
in the minimization subproblem of Eq. 10, the smaller RMSE
between the estimated observed values and the observed values
is not necessary for network structure estimation, because
the second term of Eq. 8 is regarded as the regularization
term for the minimization of the RMSE. This suggests that
reconstruction of the data matrix to more closely recover the
complete data set is not necessary in order to increase the
accuracy of network structure estimation.

B. Signal transduction pathway

The network structure of interaction between molecular
species was estimated from the data set [12], which consists

Fig. 1. Maximum F1 score for γ selection. The average of 560 trials is shown.
The solid lines with circle and asterisk symbols show the data obtained by the
proposed method for β = 1 and β = 3, respectively. The dashed lines with x
and square symbols show the data obtained by the separate method and mean
imputation, respectively. The dotted line shows the data of the complete data
set.

Fig. 2. F1 score for γ selection by F (γ). The average of 560 trials is shown.
The solid lines with circle and asterisk symbols show the data obtained by the
proposed method for β = 1 and β = 3, respectively. The dashed lines with x
and square symbols show the data obtained by the separate method and mean
imputation, respectively.

of the phosphorylation intensity of the signal transduction
molecule: ERK, CREB, p38, and JNK, and the expression
intensity of the gene product: c-FOS, EGR1, c-JUN, JUNB,
and FOSB, by the proposed methods. The phosphorylation and
expression intensities were measured at 60 time points from 0
to 177 minutes in three-minute intervals after stimulating PC
12 cells at 0 minutes by each growth factor, namely, EGF (5
ng/ml, 0.5 ng/ml), NGF (5 ng/ml, 0.5 ng/ml), PACAP (100 nM,
1 nM), or Anisomycin (50 ng/ml). Thus, data sets consisting of
420 measurement conditions and nine molecular species were
obtained by combining time point and stimulus data. The nine
measured molecular species are considered to be involved in
the ERK pathway.

The data set was measured by quantitative image cytometry
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Fig. 3. F1 score for γ selection by the BIC-type criterion. The average of
560 trials is shown. The solid lines with circle and asterisk symbols show the
data obtained by the proposed method for β = 1 and β = 3, respectively.
The dashed lines with x and square symbols show the data obtained by the
separate method and mean imputation, respectively.

Fig. 4. Root mean squared error between the estimated missing values and
the complete data set for the γ selection by F (γ). The average of 560 trials is
shown. The solid lines with circle and asterisk symbols show the data obtained
by the proposed method for β = 1 and β = 3, respectively. The dashed line
with x and square are separate method and mean imputation, respectively

(QIC) [13]. A data set with a large sample size can be
obtained by QIC, because QIC semi-automatically measures
samples by liquid-handling robots and processes images of
immunostaining. However, data acquisition involving a large
sample size by a conventional biological experiment is difficult
and expensive. In particular, for the sample size in omics
measurement, it is likely that n < m. We used the data set on
trial to evaluate the performance of proposed method. Thus, we
generated a n = 7,m = 9 data matrix by randomly selecting
seven measurement conditions from among 420 measurement
conditions and replaced the lower rmiss × 100% values with
missing values. Each data set was centralized at mean 0 by
preprocessing. Here, γ was selected by a grid search of 100
points so as to minimize Eq. 14 and set k = 3 and β = 10.

In total, 5,600 trials were performed as part of the numerical
experiments for network structure estimation.

The results of these 5,600 trials are summarized as the
empirical probability of edge appearance pemp (Fig. 5). The
edges, which are pemp < 0.25, are ignored due to low
reliability and in order to avoid complexity of visualization.
The estimated network structure of higher rmiss had a nest
relation that constitutes a subgraph of the network structure of
lower rmiss in Fig. 5. Although the nest relation would not be
general, it would exhibit interesting tendencies. In addition, the
number of edges and pemp becomes small as rmiss increases.

Since the ERK pathway has been studied extensively by
biologists, a great deal of knowledge on the ERK pathway has
been accumulated. In the network structure of rmiss = 0.05
(Fig. 5 A), 11 of the 17 edges were reported to correspond
to direct interaction between molecular species [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23]. The remainder of
the edges, which are between ERK and EGR1[24], between
ERK and CREB[25], between CREB and p38[26], between
CREB and c-JUN[20], between CREB and JUNB[27], or
between p38 and JNK[28], were reported to corresponded
to indirect interaction between molecular species. Note that
the existence of indirect interactions does not preclude the
possibility of direct interactions. In addition, whereas the edges
between JNK and c-JUN[29], between JNK and JUNB[30],
and between c-JUN and FOSB[31], were reported to involve
direct interaction between molecular species, the pemp for
the edges was less than 0.25. Biological knowledge is based
on experimental studies conducted under various conditions,
such as different cell lines, from various organs or species.
Thus, biological knowledge would not be consistent among
individuals, and some interactions in biological knowledge
possibly may be inactive depending on the organ or species. In
the present study, the edges between JNK and c-JUN, between
JNK and JUNB, and between c-JUN and FOSB may not be
active. In general, identifying the disappearance of interactions
in biological knowledge is important for understanding cell
systems.

We approximately estimated the network structures by
partial correlation under the assumption of Gaussianity while
ignoring time ordering. Since the objective is not necessarily
to estimate the physical or biochemical interaction between
molecular species, we consider that even statistical relation-
ships between molecular species yields information beneficial
to understanding life phenomena, particularly for pathways
with little knowledge.

IV. CONCLUSION

We proposed a novel method to estimate a network struc-
ture using a sparse partial correlation matrix with missing
values. The proposed method was applied and validated by the
artificial data set and the signal transduction data set. In the
analysis of artificial data, on average, the proposed method ex-
hibited a higher F1 score between estimated and true network
structures than the separate method and mean imputation. In
the analysis of signal transduction data, according to biological
knowledge, 11 of the 17 edges of pemp > 0.25 estimated
using the proposed method have direct interactions, and the
remaining six edges have indirect interactions. Moreover, the
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estimated network structure having a higher missing rate had
a nest relation that constitutes the subgraph of the estimated
network structure having a lower missing rate. This suggests
that the edges, which have direct or indirect interactions,
appear very frequently. Although estimated networks will be
rough if the sample size is small, the proposed method, when
used in conjunction with biological experiments for validation,
is better for investigating unknown interactions. Although the
algorithm of proposed method includes some heuristics, the
numerical experiment for the artificial and signal transduction
data set, shows advantage compared to other methods and
yields biologically reasonable interpretation, respectively. In
the future, we improve the algorithm in order to be computa-
tionally more efficient and intend to apply the proposed method
to omics data sets.

Fig. 5. Empirical probability of edge appearance pemp. (A) rmiss = 0.05.
(B) rmiss = 0.1. (C) rmiss = 0.15. (D) rmiss = 0.2.
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