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Abstract—Crowdsensing is more and more used nowadays
for indoor localization based on Received Signal Strength (RSS)
fingerprinting. It is a fast and efficient solution to maintain
fingerprinting databases and to keep them up-to-date. There
are however several challenges involved in crowdsensing RSS
fingerprinting data, and these have been little investigated so
far in the current literature. Our goal is to analyse the impact of
various error sources in the crowdsensing process for the purpose
of indoor localization. We rely our findings on a heavy mea-
surement campaign involving 21 measurement devices and more
than 6800 fingerprints. We show that crowdsensed databases
are more robust to erroneous RSS reports than to malicious
fingerprint position reports. We also evaluate the positioning
accuracy achievable with crowdsensed databases in the absence
of any available calibration.

I. INTRODUCTION AND MOTIVATION

Mobile crowdsensing is a widespread mechanism nowa-
days to collect various data from users’ mobile devices.
Typically, this is done on a volunteer basis and via informed
consent, when a user gives his/her consent of certain data
to be collected from his/her mobile device when installing a
certain application on that particular device. Sometimes, such
information is collected automatically, some other times it
requires the explicit user’s feedback or his/her manual inputs.

The data collected via crowdsensing, i.e., the ’crowdsensed
data’, can encompass a wide variety of formats and types,
ranging from data pertaining to the usage of cellular network
by a certain user (e.g., time and duration of calls or sms-
s, off-line or roaming durations, caller and receiver identities
and/or geographical areas, etc.) to data pertaining to the user’s
location, such as GPS data or WiFi data.

Crowdsensing in the field of mobile positioning is already
used by most location service providers and most location-
based applications on mobile devices. Our paper focuses on
crowdsensed data that is related to the indoor location of the
users, and more specifically to WiFi data. WiFi or Wireless
Local Area Networks data relevant for positioning includes
some spatio-temporal stamps where data is taken, the Media
Access Control (MAC) addressed of all the Access Points (AP)
or WiFi transmitters in range of the mobile, and the Received
Signal Strength (RSS) from each of the APs in range. The
network operators and the location service providers rely on
such WiFi data to build the so-called ’fingerprinting databases’,
which can be used later on for locating the users and offering
them various location-based services. For such a localization
to be possible, the data in the fingerprinting databases should
contain some location stamps (e.g., latitude-longitude-altitude

coordinates) or geographical labels (e.g. Room 212 in Building
A, or address B), that would allow a clear identification of
the geographical spot where the user is located at a particular
time. The fingerprinting principle in positioning relies on a
comparison between the current user data and the data already
stored in the fingerprinting database until the best match (or
fingerprint) is found. The comparison can be done based on
various metrics, such as Euclidean distances, Mahalanobis dis-
tances, rank-based metrics, among others [1]. Good overviews
of fingerprinting can be found for example in [2].

However, research studies on the quality and robustness of
such data collected for positioning purposes are still rare in the
present literature, especially for indoor scenarios, to the best
of the authors’ knowledge.

The authors in [3] described an algorithm to to build
accurate WiFi radio signal map with heterogeneous devices
in outdoor environments. Their measurements relied on three
different Android smartphones in a 5000m2 outdoor urban
area. Our approach is different in the sense that we concentrate
on larger indoor spaces and more heterogeneity in devices (we
did measurements in an area of about 22,500m2 and in a 5-
floor university building with 21 different Android devices) and
we look not only at the RSS statistics and at the relationship
between the measurements reported by different devices, but
also at the cumulative distribution functions of the positioning
errors.

The studies in [4] also deal with crowdsensing WiFi data
for positioning but they focus only on the privacy aspects
and propose compressed sensing methods of data collection
which preserve the privacy of the users’ traces. Thus, our
work is complementary to the studies in [4], as the privacy
aspects are not considered here, but we focus on the statistical
characteristics of the crowdsensed data and on the impact on
the positioning accuracy of the heterogeneity of crowdsensing
devices and software and of the presence of interference in the
collected data.

Another study related to crowdsensed fingerprints was
presented in [5] and it focused on how to detect rogue or
malicious AP attacks in a crowdsensed database. We also look
in here at the impact of malicious APs on the crowdsensed
data, but our approach is very different from the one in [5].
Because we look into both, the changes in the reported RSS
and in the reported 3D locations and, compared to [5], we use
different distributions of the malicious access nodes.

The authors of [6] described the development and use of
a crowdsourced WLAN fingerprinting system over the course
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of a year. They focus on the creation and temporal evolution
of their fingerprinting database, which was created by over
200 users and which contains more than 8700 measurements
on over 300,000 square feet. They also evaluated briefly the
positioning performance, but positioning performance issues
due to the quality of the radio map or the use of different
devices were not further explored.

Park et al. [7] developed a large, crowdsourced WiFi finger-
printing positioning systems for a multi-floor area with 1373
map spaces (rooms or similar spatial partitions) with more than
100,000 fingerprints. They studied the positioning accuracy
during the creation of the database for a nine day period
and used RSS clustering to detect and mitigate erroneous
fingerprint location inputs. The issue of erroneously reported
RSS values was not considered. In [8] they investigated the
influence of device heterogeneity on the localization accuracy.
They found a linear correlation of RSS between devices
and showed that a linear transformation is not enough to
compensate for it, but that a wide smoothing of the RSS
improves localization across devices. Our methodology to
investigate device heterogeneity relies on empirical cumulative
distribution functions (CDF) and power maps.

Also Laoudias et al. [9] use CDFs of RSS, with the
objective to compensate for the RSS differences reported
by different devices. This study is complementary to their
work, as our analysis of RSS of different devices focuses
on the quality of the fingerprinting database. Additionally, we
compare a larger variety of devices and base our findings on
more measurement.

Crowdsourcing for indoor localization has also been stud-
ied in [10]. The measurement space for the studies in [10]
was limited to a single-floor building of about 1600m2 area,
where only 26 AP were present. In our studies, we rely on
a much larger space (as mentioned above) and we detected a
total of 992 APs. One AP means here one MAC address, with
the observation that several MAC addresses can come from the
same physical location of a WiFi transmitter, due for example
to multiple BSSID addresses or to multiple-antennas of the
WiFi transmitters.

To summarize the discussion so far, there are several
open questions regarding the quality and robustness of the
crowdsensed WiFi fingerprints for indoor positioning, such as:

• What is the distribution of the RSSs collected via
crowdsensing (e.g., many users and many devices
reporting measurements) and how this distribution
compares with the case when RSS is collected via a
single device (e.g., dedicated data collection from peo-
ple specifically hired by the location service provider)

• What is the accuracy of a power map constructed with
multiple devices, compared with a power map built
with a single device?

• How much the positioning error is influenced by the
presence of malicious data in the database, such as
coming from devices which report wrong locations or
labels?

• Can we rely on heterogeneous fingerprinting (i.e.,
fingerprinting based on multiple devices with different

hardware and software versions) to achieve accurate
and robust positioning estimates?

• How to deal with intentional or unintentional faulty
RSS measurements?

This paper aims to address most of the above-mentioned
questions. The novelty of our papers is two folds: first,
we present our methodological approach to investigate such
research questions, and secondly, we present novel statistics
regarding the crowdsensed fingerprinting WiFi data and the
accuracy of the indoor location estimation based on such
crowdsensed data. In addition, our results are based on a large
database of fingerprints collected with heterogeneous devices
and softwares, in a multi-floor multi-room building where close
to one thousand APs were detected.

The rest of the paper is organized as follows. Section II
describes the main procedures and challenges in collecting
WiFi fingerprints in a crowdsensed mode. Section III presents
our methodology, from data collection to data analysis. Section
Section V summarizes the ideas and presents the conclusions.

II. CROWDSENSING WIFI FINGERPRINTS IN INDOOR

SPACES

People spend most of their times indoors. Indoor position-
ing applications, such as fast navigating inside a commuting
hall or a hospital or finding promptly a free parking place in
a shopping mall, are therefore of high interest for business
and service providers as well as for city planners and urban
councils. While satellite-based navigation offers nowadays
good availability and reliability of positioning and tracking
solutions outdoors, navigating in indoor environments is still
a challenging issue.

Most indoor navigation solutions nowadays rely on some
form of RSS-based fingerprinting, typically based on WiFi
signals or other signals available indoors, such as BLE, RFID
or cellular. The two biggest challenges, in authors’ opinion, of
RSS-based fingerprinting indoors are to get access to indoor
maps (which are often proprietary, inaccurate or in a format
difficult or tedious to convert in a digital application) and to
be able to build a dynamic and up-to-date fingerprint database.
The scarcity of indoor maps and solutions to overcome this
challenge are outside the scope of this paper. Interested readers
are referred to [19] and [20] to read more on this issue.
The well-known solution to the second challenge, the one
of building a dynamic and continuously available fingerprint
database is to rely on crowdsensed information from volunteer
users. A large scale collection of such a data (e.g., at country or
continent level) poses the additional challenge of data transfer
and storage. Solutions to these problems have been addressed
in [16], [17] for example.

The other challenges related to crowdsourced indoor data
for positioning are related to the fact that users employ
different devices and software to report such measurements
and the impact of this inherent heterogeneity of devices on
the database accuracy and positioning achievable accuracy are
still poorly understood.

The concept of crowdsensing WiFi fingerprints is illus-
trated in Fig. 1. Volunteer users located at various floors
inside a building have a fingerprint application on their mobile
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devices including the building map. They report their location
inside the building and the information about the AP in
range, namely their MAC addresses and their RSS values,
to a server. The location information can be a label, like a

room number, or coordinates, for example x
(u)
f , y

(u)
f , z

(u)
f , with

u = 1, . . . , U , U being the total number of volunteer users, and
f = 1, . . . , F (u), F (u) being the total number of fingerprints

collected by u-th user. In Fig. 1, RSS
(u)
f,a is the RSS value

measured by u-th user, in the f -th fingerprint, from the a-
th AP, a = 1, . . . , N , where N denotes the total number of
AP in that particular building. The information collected by
the server is then stored in a database of fingerprints, called
crowdsensed- or training database. The training database will
thus be able to create a power map for each AP in the building,
as shown in Fig. 1. Some of those power maps will have many
points (e.g., the top power map in the figure, which shows
that AP was heard by many users) and some other will have
fewer points (e.g, the middle power map in the figure, which
probably corresponds to the case when the AP was only heard
in a certain part of the building, where not many users have
access)

III. OUR METHODOLOGY

Two proprietary Android software applications developed
within various projects of the authors were used to collect the
data used in our analysis. Both applications are sensing the
environment and look for all the APs in range. The MAC and
RSS values of each AP in range is stored with a time-stamp
value. One of the Android applications (Android app 1), used
for the crowdsensed data, relies on a cloud service to report
manually the location on a map and it is less accurate than
the second one, as the indoor maps included in it are of lower
resolution (e.g., errors about 1-3m are expected in the users’
feedback). In the first Android application, only point values
are allowed, i.e., the position needs to be input manually at
every point. A total of 4648 fingerprints were collected with the
first application and a total of 2220 fingerprints were collected
with the second application.

The second Android application (Android app 2), which is
more accurate, relies only on the storage space of the device
where it is installed. The users can select very accurately (down
to 0.5m accuracy) their position on the map, and they can
measure a full track (i.e., several points in a row) at a time, just
by moving from one location to another, in a straight line. The
positions in-between the start and end point are interpolated
linearly. The main reason to use two different applications
was to attain a heterogeneity of software, which is one of the
main assumptions here. The heterogeneity of devices has been
achieved by installing these applications on several Android
devices. To better verify the heterogeneity assumption, we
also took the following approach: the data collected with the
first Android app and 21 heterogeneous devices was used as
training data, and the data collected with the second application
and 3 heterogeneous devices was used as test data. The number
of measurements per device is illustrated in Fig. 2.

The measurements were taken in the 5 upper floors of a
6-floor university building in Tampere, Finland (the basement
floor was not accessible). Compared to existing studies in the
current literature, our measurement space is a huge space, with

a large surface and multi-floor multi-room environment. The
measurement environment is summarized as follows:

TABLE I. MAIN PARAMETERS OF THE MEASUREMENT ENVIRONMENT

Nr. of AP Nr. of fingerprints Building area Number of floors
992 6868 22500m2 6

Nr. of rooms Nr. of inner walls Nr. of outer walls Number of floors
with measurements

882 435 86 5

The position estimation was based on a log-Gaussian
likelihood method [18]. Let’s denote by Oa the observed RSS
value from the a-th AP in the estimation track. This value
is compared to the training dataset fingerprint by fingerprint,
according to the following log-Gaussian metric:

G
(u)
a,f = log

(
1√
2πσ2

)
+

(
− Oa − RSS (u)

f,a

2σ2

)
(1)

where f is the fingerprint index in the training dataset and
σ is a constant value standing for the shadowing standard
deviation, which can either be fixed in the algorithm, or pre-
computed based on the training data (in our studies we used a
fixed value σ = 7 dB). The above metric is computed for all
those access points commonly heard in the observation sample
and the training sample. An overall log-Gaussian metric is
then formed by combining the metrics from all commonly
heard access points and all the crowdsensed training data from
various users:

Gf =
∑
a

∑
u

G
(u)
a,f , f = 1, . . . , F (2)

with F =
∑

u F
(u). These Gf metrics are then sorted from

highest to smallest, and the k highest metrics are then selected
together with their corresponding locations. The final position
estimate is obtained as the average over those k locations (in
our paper k = 3).

IV. FINGERPRINTS ANALYSIS

A. RSS distributions

To assess the different modes of creation of a fingerprinting
database, we compare the fingerprints collected by users in
crowdsensed mode with the fingerprints recorded systemat-
ically by a trained person. We follow the approach in [9]
and combine the RSS of all fingerprints that were collected
by the corresponding user(s)/device(s), irrespective of its later
use as training or test data and irrespective of the AP from
which the signals were emitted. Fig. 3 shows the CDF of RSS,
(i) collected systematically by a trained person, with Android
app 2, covering the whole building (Huawei Y360, #FP 2508),
(ii) collected uncoordinated via crowdsourcing by two dif-
ferent users, with Android app 1, (LGE LG-H815, #FP 81;
motorola XT1068, #FP 139), (iii) collected via crowdsourcing,
with Android app 1, but combining the measurements from all
users (all devices, #FP 4648). The CDF of RSS collected by a
trained person with the Huawei Y360, which covers the whole
building, resembles the CDF of RSS collected by volunteer
users (LG-H815 and motorola XT1068), even though their
fingerprint coverage is rather small, c.f. [9]. The range of RSS
from the Huawei Y360 is larger than the range from the LG-
H815 and motorola XT1068. However, this range depends on
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Fig. 1. Crowdsensing principle

many factors, especially the dynamic range of the wireless
network interface card (NIC) and also the spatial distribution
of the fingerprints and their distances to the APs. We found a
median RSS difference comparing RSS of all devices, either
systematically collected or crowdsourced RSS, of 3.5 dB in
average and of 7 dB maximum. This is the same order of
magnitude as the standard deviation of RSS, thus, linear
compensation to improve positioning, as proposed by many
studies (see [11], [9] and references therein), is likely to be
insufficient [8] unless the RSS are smoothed. Considering the
CDF of the crowdsourced, multi-device training database, that
is the CDF of RSS from all 21 devices, one observes that it is
almost identical to the CDF of RSS from the single devices that
covered the whole building systematically. That suggests that
creating fingerprinting training databases by crowdsourcing is
an appropriate replacement for dedicated data collection by
professionals, as long sufficient data is collected.

The RSS values shown in Fig. 3 originate from different
APs and they were sampled at different time instances at
different locations. In addition, RSS are non-stationary in
general, both temporally [12] and also spatially, as suggested
by [13]. Temporal stationarity can be assumed for shorter
time lags (shorter than changes in the environment due to
e.g. people or actual changes of the environment). Studies
about spatial stationarity of RSS are lacking, nevertheless,
we hypothesize that RSS are stationary over spaces with a
homogeneous transmission medium. For modelling purposes,
the intrinsic hypothesis (a weaker form of second-order sta-
tionarity) is commonly assumed [13], [14], [15]. Thus, the
RSSs used in Fig. 3 exhibit different statistics, or even stem
from different random processes. Computing the CDF of RSSs
measured at different time instances, at different fingerprint
locations is therefore inconsistent. Nevertheless, it provides

a simple method to visualize certain features of a training
database in a relative manner, such as device heterogeneity,
the amount of fingerprints or the coverage. The RSS CDF
does not allow conclusions about the spatial extend of the
fingerprints, i.e. fingerprints could be dense in a local region
or rather distributed sparsely in the whole area or about the
influence of the wireless NIC.

B. Power maps differences

The differences between the power maps reported by
different datasets (training versus estimation) and different
devices have been analysed in two different manners. The first
approach is illustrated in Figures 4 and 5 and consisted of
a floor-by-floor visual investigations of the power maps under
various circumstances. For example, if we look at the AP heard
in most of the crowdsensed measurements (here AP#492) and
we compare the power maps obtained in the training and in the
estimation data, we see the results from Fig. 4 (only second
floor is shown here for clarity, but similar results have been
obtained across the floors). We first notice that the coverage
areas of this AP is slightly different in the two datasets, no
doubt due to different devices and different users reporting
the measurements. A second observation is that the strongest
power level (shown in white in the plot) happens in similar
regions in both plots of Fig. 4, i.e., around x = 90m and
y = 20m. A third observation, by looking at the colour bar
from Fig. 4 is that the range of reported RSS values is also
slightly different in the training and estimation datasets, as well
as the RSS fluctuations with the location of the fingerprint.
This can be explained by the effect of shadowing, which obeys
spatio-temporal variations, as described for example in [16].

Fig. 5 does a similar comparison for the same AP (#492)
between different devices used to collect the crowdsensed data.

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 271 ----------------------------------------------------------------------------



0 5 10 15 20 25
0

100

200

300

400

500

600

700

800
Number of measurements per device in the crowdsensed (training) data

H
TC

 O
ne

 M
9

H
U

A
W

E
I T

1 
7.

0

H
U

A
W

E
I Y

36
0-

U
61

LE
N

O
V

O
 L

en
ov

o 
A

60
20

a4
0

LG
E

 L
G

-D
62

5

LG
E

 L
G

-H
81

5

Le
tv

 x
60

0

M
ei

zu
 M

X
4 

P
ro

M
ei

zu
 P

R
O

 5

O
bi

 S
F1

S
on

y 
E

58
23

S
on

y 
S

G
P

77
1

X
ia

om
i M

I 4
LT

E

X
ia

om
i M

I M
A

X
 2

as
us

 N
ex

us
 7

as
us

 T
ra

ns
fo

rm
er

 P
rim

e 
TF

20
1

m
ot

or
ol

a 
N

ex
us

 6

m
ot

or
ol

a 
X

T1
06

8

sa
m

su
ng

 S
M

-A
31

0F

sa
m

su
ng

 S
M

-A
51

0F

sa
m

su
ng

 S
M

-N
91

0F

HuaweiT1Tablet HuaweiY360Phone NexusTablet
0

500

1000

1500

2000

2500
Number of measurements per device in the estimation data

Fig. 2. Number of measurements per device in the training (upper) and
estimation (lower) datasets

-120 -100 -80 -60 -40 -20 0

rss
dB

 [log scale]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cd
f

Distribution of crowdsourced and systematically collected RSS

Huawei Y360
LGE LG-H815
motorola XT1068
all devices

Fig. 3. CDF of RSS collected in a systematic manner or by crowdsourcing

AP #492 in the training data, all 21 devices, 2nd floor 

-9
1

-8
9

-8
7

-87

-87

-85

-85

-85 -85

-85

-85

-85

-8
5

-85

-85

-8
3

-83-83

-83
-83

-83

-8
3

-83

-83
-83

-8
3

-83

-83

-83

-83
-83

-81

-81

-8
1

-81

-81

-81

-81

-81

-8
1

-81

-81

-8
1

-81

-81

-81

-81

-81

-8
1

-7
9

-7
9

-79-79 -7
9

-7
9

-79

-79

-7
9

-79

-7
9

-79

-79

-79

-79

-79

-7
7

-77

-77-77

-7
7

-7
7

-77

-77

-7
7

-77

-77

-7
7

-77

-77

-7
7

-75

-75

-75

-75
-75

-75

-7
5

-75

-75 -75

-75

-75

-7
3

-73

-73

-73

-7
3

-7
3

-73

-7
3

-73

-7
3

-73

-7
3

-73

-71

-71

-71

-71

-7
1

-71

-71

-7
1

-71

-71
-71

-7
1

-69

-69

-6
9

-6
9

-69

-69

-69

-6
9

-69

-69

-67

-67

-6
7

-67

-67

-67

-67

-6
7 -6
7

-67

-65

-6
5

-65

-6
5-65

-65
-65

-65

-65

-63

-6
3-63

-63
-63

-63

-63

-63

-63

-61

-6
1

-61

-61
-61 -61

-59

-5
9

-5
9

-59
-57

-57-57

-5
5

-55-55
-53-53 -51-49

6-6-6-6

--

1171711

55

7171

77777

777777777-666-66677777777777
55555 666

--

87878787777
-88-8888-8-887878787878787878787888

777777777777

66666666
--

77777

777

557575
56565555655111111

616161616161666666666666666

5656565656665665665656565665
55566-5555555

----
---7-7-7-7-7-7111 77771111 77

-8-8-8

6656565656
363636333656565656565656565555555556565656555

6666

717171717717177777777771717166666666

7171711111111711166

33333
-----

33333337777777777

5555

999

77777777

99999999

777
7-777--

888888

777777

7793377777779797979797979797979797979999977797977779797979797979
777777777777

1188818888888188

6363636366-6---

666
11

777377377377777377737373777

71777766666717171717171717171717171717171717171717171711117171666 777777777777777777

85858585858585 888888888

858585--77777777 ---7-7-7-7779996969555---3333333333 8-888-888833

7777777777777777777777777777777777766666655 59959959595555559559595595955959656565656565656565656656577337733773773333333337331111 6666--66666333771-771--7171 655655

999 889898889898989898999999999999999999999999999999999777771717771771777777771 55331111717111111 66111111111111 5555555565655555577776666666666666666666666666666666666666666666666666666666666666661111111111111777777777777777777777777777777777777755555555 6-6-6-6676767676767676766666666676733333333 11111333355555557773737377355 777777

11111111111111

7979999979979797979797979

1111111111888888888888899999999799777779779797979797779797
777 99--833--83--- 3 999

778888888888

9999999999998388388

20 40 60 80 100 120 140 160
x [m]

-30

-20

-10

0

10

20

30

40

50

60

y 
[m

]

PB
Meas. points

-90

-80

-70

-60

-50

-40

AP #492 in the estimation data, all 3 devices, 2nd floor 

-82

-80

-80

-78

-78

-78

-78

-78

-76

-76

-7
6

-7
6

-76

-74

-74
-7

4

-74

-74

-74

-72

-72
-7

2

-7
2

-72

-7
2

-72

-72

-70

-70

-7
0

-7
0

-7
0

-7
0

-70-7
0

-68

-68

-6
8-68

-68

-68

-6
8

-6
8

-68

-66 -66

-66

-66-6
6

-6
6

-6
6

-6
6

-66

-66

-66

-6
4

-6
4

-64

-6
4

-6
4

-64

-64

-64

-64

-64

-62

-62

-6
2

-62

-62

-6
2

-62

-62

-62

-60

-60

-60

-6
0

-60

-60 -60

-58

-58

-5
8

-58

-58

-58

-58

-5
6

-5
6

-56

-5
6

-5
6

-5
6

-54

-5
4

-5
4

-5
4

-5
4

-52

-5
2

-52

-5
2

-50

-5
0

-5
0-48

-48

-4
8

-4
6

-4
6

-44-4
4

-4
2 -4

0
-3

8
-3

6

88888

66666666

6666666
-6-66666666666666

6666666

66

6666666

6

8686868

78788877

888

22222

6

888

6444

888888

4
55545454

555445454
550505

555555
44

--6-6

55555

-7
6-6-6

-

2626266626262

8788

7776

88

777222777777777

-8-866666666

76776766666
0088686688000000

555-55-55--5-52
666666666666 55555555 555555555555566666666 22222222222 8888888666666

555555555--444444444 555555555555558888888 44000000 88888880000000000006-----00 444

6 44444666666666666666666666-- 55-5-577070707070 666666666666

7474747474747466866886868664664646466464888888888777 777777777777777777

8888887277727272272272 888

40 60 80 100 120 140
x [m]

5

10

15

20

25

30

35

40

45

y 
[m

]

PB
Meas. points

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

Fig. 4. Example of the differences of a power map between the crowdsensed
training data and the estimation data. Top: training data; bottom: estimation
data

Two devices with high number of measurements per device
were selected for the comparison: Sony E5823 device, which
reported 664 measurements and Letv-x600 device, which
reported 790 measurements. Similar observations as above
also hold here: different devices have different coverage areas,
different RSS ranges and different shadowing profiles, but the
strongest reported RSS values happen in similar regions for
both devices (also around x = 90m and y = 20m point).

The second approach to compare the power maps was to
look at the distribution of the power map differences. This
was done by selecting the same floor and the same AP (one
by one) from different datasets, building an interpolated and
extrapolated power map for it to cover exactly the same
spatial area and then looking at the histogram of the power
map differences (in dB scale) and comparing it with 11
theoretical distributions, namely: Gaussian, Exponential, Log-
normal, Extreme value, Rayleigh, Gamma, Weibull, Logistic,
Burr type XII, and Generalized extreme value distributions. An
example of the power map differences between Sony E5823
and Letv-x600 devices is illustrated in Fig. 6.
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AP #492 in the training data, one device only (Sony E5823), 2nd floor 
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Fig. 5. Example of power maps provided by two different devices in the
crowdsensed training data. Top: Sony E5823 device; bottom: Letv-x600 device
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Fig. 6. Example of the differences of the power maps between two different
devices in the crowdsensed training data (Sony E5823 power map minus
Letv-x600 power map for one AP)

The best-fit distribution among the tested ones proved to
be Burr distribution, as shown in Table II and example of
the measurement histogram and best-fit distribution is given
in Fig. 7. The power differences would ideally be constant
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Fig. 7. Example of the distribution of power map differences between two
datasets (Sony E5823 versus Letv-x600 datasets)

according the approximately linear relation of RSS of different
devices, but as RSS are subject to noise, which is reflected in
this distribution. The distribution is symmetric, around zero
and heavy tailed. RSS differences do not obeys a Gaussian
distribution, which means that calibration between different
devices could be difficult. That is why, our next analysis
about the achievable positioning accuracy with heterogeneous
devices, in the absence of calibration, is an important steps
towards a better understanding of crowdsensing in positioning.

C. Positioning cumulative distribution functions

Fig. 8 shows the CDFs of positioning errors with crowd-
sensed training data and in the absence of calibration. To better
understand the impact of heterogeneity of the devices on the
positioning accuracy, Fig. 9 shows the CDF of the positioning
error per device, i.e., when a single device is used from the
available training database. Of course, the number of training
points plays an important role in the results. Devices with
low number of training data points give very low accuracy,
while devices with a high number of training data points
have a higher accuracy. However, a simple increase in the
number of training data points does not insure an increased
positioning accuracy, as we can see if we compare the best
plot in Fig. 9, where an accuracy of less than 10m error in
achieved in almost 90% of cases, with the plot in Fig. 8,
where less than 10m error accuracy is achieved in less than
70% of cases. This basically points out the fact that there
is an inherent deterioration in the positioning accuracy when
several heterogeneous devices and software are used, compared
to the case of a single-device single-software approach for data
collection. One could further investigate calibration to alleviate
parts of this problem, but this is out the scope of our paper.
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TABLE II. BEST-FIT DISTRIBUTION (ON AVERAGE) FOR POWER MAP DIFFERENCES

Compared datasets Best-fit distribution Distribution main parameters
(average values)

Crowdsensed (Android app 1) and
Huawei T1 (Android app 2)

Burr a = 4.65; c = 1.37; k = 1.50

Crowdsensed (Android app 1) and
Nexus (Android app 2)

Burr a = 13.41; c = 1.43; k = 1.88

Sony E523 (Android app 1) and Letv-
x600 (Android app 1)

Burr a = 2.00; c = 1.91; k = 2.35

Nexus (Android app 2) and Huawei T1
(Android app 2)

Burr a = 9.51; c = 1.81; k = 1.44
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Fig. 8. Cumulative distribution function of the positioning error with
crowdsensed training data

D. Intentional database deterioration

In this section we analyse the impact of an intentional
database deterioration by a certain percentage of the crowd-
sensing devices. Two case studies were investigated:

• Incorrectly reported positions

• Incorrectly reported RSS values

1) Incorrectly reported positions: To simulate erroneously
reported fingerprint locations, we modified the floor number
and the coordinate of a fingerprint position: First, to create
the floor error, the original data’s floor number is changed
randomly to another floor number. For example, if one point
is measured at the 2nd floor, it will be randomly changed to
1st, 3rd or 4th floor. Secondly, to modify the coordinates (x, y),
the maximum and minimum values of all x and y values in the
training database are computed. Then the mid coordinates for
x and y coordinates are computed and the points assumed to
be affected by malicious intent are then modified in symmetry
to the mid point.

Fig. 10 shows the CDF of the positioning accuracy when
various percentages of the crowdsensed data are affected by a
positioning error. These percentages range from 0% (no error
in the database) to 100% (all database is erroneous).

2) Incorrectly reported RSS values: The approach to model
incorrectly reported RSS values was the following one: in

randomly selected measurements points (according to a ran-
dom percentage varying from 0% to 100%) we assume that
all the RSS data received from the AP in range has a fake
or bogus value a. Two cases were studied: a small a value,
when a = −90 dB, and a high a value, when a = −40 dB.
This modelling corresponds to a situation when there are
users reporting fake or garbage data into the database, e.g.,
by tampering with the application that collects RSS data
(malicious intent) or by simply having a faulty device, which
is not able to compute correctly the RSS values. The results
are shown in Fig. 11. Surprisingly, the impact of the RSS
errors is rather small on the positioning accuracy. This apparent
contradiction can be explained by the fact that, even if the RSS
values are reported incorrectly, the ID of the AP in range is
reported correctly. Thus, the log-Gaussian likelihood algorithm
of eq. (2) falls back into a rank-based algorithm, which relies
on the commonly heard access points in the training and
estimation data. It turns out that by simply knowing the APs
heard in a certain point (even without their correct RSS values)
provides already enough information to be able to locate the
mobile user inside a building.

E. Interchanging the training and estimation databases

Fig. 12 shows what happens if we interchange the training
and estimation data: one curve shows the results with the
crowdsensed training data collected with the first Android
application and 2220 estimation points collected with the
second Android application; the second curve in this figure
shows the results when the data collected with the second
Android application is now used as training data, and the
estimation data is based on the crowdsensed 4648 points. The
first case gives better results, and this could be explained by
two reasons: on one hand, we have more training points in the
first case than in the second; and on another hand, the training
data collected with a higher number of devices can offer a
higher degree of resistance to various calibration issues, and
thus, on average, it is expected to work better.

V. CONCLUSIONS

This paper analysed several effects related to a crowdsens-
ing approach for indoor positioning based on RSS. An exten-
sive measurement campaign involving several devices, several
software applications and several users was conducted in order
to collect the data used in our analysis. The analysis looked at
the differences between the power maps collected with various
devices, at the positioning accuracy in the presence of crowd-
sensed data and at the impact of various crowdsensed errors
on the location estimate. Our analysis of fingerprints showed
that a sufficient high number of crowdsourced fingerprints can
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Fig. 9. Impact of the crowdsensing device type and the number of measurements per device on the positioning error.
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Fig. 10. Impact of the incorrectly reported locations by the crowdsensing
devices on the positioning error

yield a fingerprinting database similar to those systematically
created by trained personnel. The difference between the
RSS of different devices is affected by non-Gaussian noise,
which eventually hinders the calibration and makes calibration
approaches based on such an assumption inaccurate. It was
also shown that crowdsensed databases are more robust to RSS
reports than to malicious fingerprint position reports, as long
as the malicious reports send correctly the IDs of the AP in
range. Our studies relied on un-calibrated data, thus future
studies should focus on calibration methods and whether such
methods can significantly improve the location accuracy or
robustness.

OPEN DATA

Part of our measurement data is also openly available [22].
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