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Abstract—The paper presents algorithms for fault tolerance
evaluation which will be applied in a new computer-aided design
system for SpaceWire onboard networks. We give general notions
on fault tolerance for onboard networks, and introduce our
algorithm for evaluation of fault tolerance in SpaceWire networks.
Finally we address our future work direction on network topology
transformation for fault tolerance.

I. INTRODUCTION

Evolution of microelectronics has led to the growth of the
onboard networks and systems sizes. The onboard networks
especially for spacecraft and avionics require good fault
tolerance characteristics in order to continue their operation in
case of faults and failures.

SpaceWire is a data-handling network for the spacecraft,
which combines simple, low-cost implementation with high
performance and architectural flexibility [1]. It is a technology
which is being actively integrated into new generation
spacecraft.

Nowadays there are a lot of computer-aided design systems
(CAD) but none of them is intended for SpaceWire networks.
According to our review in [2] there are several network
simulation tools for SpaceWire such as MOST [3], Sandia
National Laboratories simulator [4], VisualSim [5] and
DCNSimulator [6]. However, these are just simulation tools
without any functionality for network design and analysis of
structural and fault tolerance characteristics of the designed
topology. Therefore, we decided to create a new computer-aided
design system for SpaceWire networks which will support full
onboard network design and simulation flow, which begins from
the network topology design and finishes with getting the
simulation results, statistics and different diagrams. This CAD
system will contain fault tolerance analysis features as a part
of'it.

The problem we address in this paper is analysis of fault
tolerance in SpaceWire onboard networks which is solved
through k-connectivity search on a graph.

The paper is organized as follows. In section II we start with
a brief description of a new computer-aided design system for
SpaceWire onboard networks and introduce its first component
which is responsible for network topology design and estimation
of its structural characteristics. Section III gives general notions
on fault tolerance for onboard networks. Then in section IV we

review the current state-of-art in this field. In section V we
describe our algorithm for evaluation of fault tolerance in
networks. Section VI proposes an additional feature for future
work and, finally, section VII concludes the paper.

II. NETWORK TOPOLOGY DESIGN AND ESTIMATION OF
STRUCTURAL CHARACTERISTICS OF SPACEWIRE ONBOARD
NETWORK

In [2] we proposed a concept of a new computer-aided design
system for SpaceWire networks, which will provide wide
functionality for onboard network design. Implementation of
such kind of a design and simulation toolset will give an ability
for spacecraft designers to design the onboard SpaceWire
network with all its technical characteristics and features,
distribute the data flows and simulate it taking into account real
latencies, different errors, etc.

Each node of the designed network will include
implementation of the SpaceWire protocol and two transport
layer protocols: RMAP [3] and STP-ISS [8] which we plan to
implement in the first version of the CAD for SpaceWire.

For some future implementations of the CAD system we plan
to give a possibility to add other space protocols to the CAD
system (e.g. SpaceFibre). For this purpose we will use particular
library for each protocol implementation, so that in future we
will be able to replace the SpaceWire for any other
communication protocol (for example, SpaceFibre).

The proposed architecture of the CAD system is shown
in Fig. 1. Architecture of the proposed CAD system includes
four main components:

e Component #1: A component for onboard network
topology design and evaluation of its structural
characteristics;

e Component #2: A component for tracking of the routes
for the data transmission in a network;

e Component #3: A component for generation of the
scheduling table for the STP-ISS transport protocol for
the transmission of the data with Scheduled quality of
service;

e Component #4: A component for simulation of the
network operation with all the data that component got
from other 3 components and graphical user interface
(majorly redesigned DCNSimulator) [2].
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Computer-aided design system for SpaceWire networks
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Fig. 1. A new computer-aided design system architecture

Visualization and graphical interface will be taken from the
VIPE project [9]. Graphical user interface (GUI) will provide the
visual network composition and management capabilities. It will
allow designing SpaceWire network topology in visual
interactive way from components (see Fig. 2).
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Fig. 2. SpaceWire network scheme in GUI
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The component library is a replenish set of network nodes
and switches relevant to physical devices that are available for
network building. It may also include flexible components if the
developer wants to try various combinations of network
equipment. For all nodes, switches and channels the GUI will
provide the configuration interface to set up their parameters,
configure transport protocols and application-level traffic
generators.

The designed network will be exported to the intermediate
representation format to be used in other CAD components for
simulator, routes tracking, scheduling calculation and other
tools. GUI will be also able to show results after running each
component.
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In this paper we will focus on the Component #1 which is
responsible for the following tasks:

e network topology design;

evaluation of structural characteristics of the designed
topology;

network topology transformation for achieving required
fault-tolerance.

Network topology design assumes creation of a network
topology by means of GUI and setting up parameters for nodes,
switches and links. Once this step is completed, the designed
network can be analysed. We suppose to estimate the following
characteristics of the designed network:

Network mass: cable mass, switches mass or both;
Power consumption of network switches;
Network diameter

Fault-tolerance of the network or its cluster.

While estimation of the first three characteristics is rather
easy, the last one is worth additional research and discussion.
Fault-tolerance is a very important characteristic for onboard
networks, especially for the domain of long-term satellites. It is
a common practice when the network topology contains
redundant nodes and links.

Nowadays, sizes of the network topologies increase with the
growing demands of industry. That is why it is so important to
obtain an automated estimation of fault-tolerance characteristic
in the designed network and remove the human factor for the
most part.

II1.

In designing or selecting a topological structure of onboard
networks for a system, one of fundamental considerations is the
fault-tolerance [10]. In the context of this paper we will assume
that fault tolerance is a property that enables a system to continue
operating properly in the event of the failure or one or more
faults within some of its components. Basically, any system
containing redundant components or functions has some of the
properties of fault tolerance [11].

FAULT TOLERANCE IN ONBOARD NETWORKS

Systems such as communication onboard networks have
many nodes representing processors, sensors, control units,
memory, etc. that desire to communicate and also have several
links providing a number of interconnected pathways. These
many interconnections increase reliability and topology
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complexity. As all these devices are connected to such a
network, a failure or fault affect many people; thus the reliability
goals must be set at a high level especially in the domain of
spacecraft and avionics.

Generally, the onboard network is assembled from three
main types of elements: terminal nodes, routers and links. Each
of these elements can fail so that it cannot be repaired in any
considerable time. However, a fault-tolerant system should
continue its proper operation. This can be achieved by adding
redundancy to the onboard network. For example, one terminal
node can be represented by two or three redundant units. When
one of redundant units fails another unit continues to operate
properly, replacing the failed one.

In the current paper we address failures and faults that can
occur in terminal nodes, routers and links, i.e. in the elements
from which the network is assembled.

IV. RELATED WORK

Among a wide range of modern CAD systems for network
and SoC design there are no such CAD which provide facilities
for fault tolerance analysis of the designed network [12].

In [13] it is stated that a fault tolerance analysis feature is
provided by Fault Tolerance Simulation and Evaluation Tool for
Artificial Neural Networks (FTSET) which is based on Matlab.
This tool is capable of evaluation the fault tolerance degree of a
previously trained Artificial Neural Network given its inputs
ranges, the weights and the architecture. However, this FTSET
evaluates graceful degradation characteristic but not
connectivity characteristic of a network which is a subject of
interest of this paper.

There has not been any work, other than [14], that considers
fault tolerance for SpaceWire networks. In that paper the authors
propose the methodology and toolset for SpaceWire network
design. This methodology allows generating fault tolerant
networks with variable level of tolerance. However, there are no
fault-tolerance analysis algorithm provided in this paper.

V. FAULT TOLERANCE EVALUATION ALGORITHM

A. Graph representation of a network

In the design of an interconnection and onboard networks,
one of the most fundamental considerations is the fault-tolerance
of the network, which can be usually characterized by
connectivity and edge-connectivity of the topological structure
of the network. Therefore, we consider a network as a graph
G = (V,E), where Vis a set of network nodes and routers and £
is a set of links between them.

The connectivity of a graph is a good estimate of the fault
tolerance (f) of the network, since higher connectivity means
more elements can fail without disrupting the communication
among the rest of the onboard network [15]. It is important that
a graph stay connected when an edge or a vertex is removed.
That is, it is necessary to have more than one route between each
pair of vertices in a graph, so as to handle possible failures.

A graph is k-connected if there are at least & vertex-disjoint
paths connecting every pair of vertices in the graph. There are
two types of connectivity: edge connectivity and vertex
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connectivity. The vertex connectivity (k(G)) of a graph is the
minimum number of vertices that need to be removed to separate
it into two pieces. The edge connectivity (1(G)) of a graph is the
minimum number of edges that need to be removed to separate
it into two pieces [16].

Fault tolerance analysis of onboard networks requires
evaluation of vertex connectivity of the graph. This is due to
failures of routers and nodes that can disable proper operation of
the entire network. Moreover, there is a Whitney’s inequality
which relates edge connectivity, vertex-connectivity and
minimum degree (§(G)) and states that for any graph G:

k(G) < A(G) < 5(6)

This means that vertex connectivity is less or equal to edge
connectivity. Therefore, in this paper we will evaluate vertex
connectivity of a graph. Consequently, in this paper we will
consider failures of nodes and routers, which correspond to
vertices in a graph. Failures of links are not considered
separately, because node or router failure leads to all adjacent
links disconnection.

So, in order to estimate fault tolerance of a designed network,
it is necessary to build a graph on the basis of the network
designed by user. While graph creation it is necessary to take
into account that the network structure can be of arbitrary
topology and may contain redundant nodes.

While evaluation of fault tolerance we should consider a
general case and singular case. Singular case corresponds to
point-to-point topologies and it shall be considered separately
from the general algorithm. An example of point-to-point
topology is given in Fig. 3.

"Node N | "Node m !

| |

|| UnitB [}——-— UnitB |

S —— — —

Unit A

Fig. 3. Point-to-point topology

The system from the example above can tolerate 1 failure,
i.e. it is 1-fault-tolerant (f = 1).

General case corresponds to a network topology with nodes
and switches. The input network topology should be transformed
into a graph. We have set up a rule for graph construction (see
Fig. 4):

1)

2)

All redundant units of a node shall be associated with
only one vertex of the graph.

All routers shall be represented by separate graph
vertices.

3) All links shall be represented by graph edges.

Input data for the algorithm are obtained from the
intermediate file generated by the graphical user interface. This
file can contain either full network structure or a part of the
network topology which should be analyzed for fault-tolerance.
In both cases the transformation rules are the same.
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Fig. 4. Transformation of network topology to a graph

The connectivity analysis is performed on the basis of
directed graphs. A directed graph, or digraph D, consists of a
finite nonempty set V' of points together with a prescribed
collection X of ordered pairs of distinct points. The elements of
X are directed lines or arcs which are called edges [17].
SpaceWire standard provides bidirectional links, so each link
shall be represented by a pair of edges with opposite orientations
(see Fig. 5). We use the digraph for the k-connectivity analysis
because we should apply maxflow algorithms which work in
directed graphs.

Graph Digraph
/S— )
- N
) S— ) —
- -

Fig. 5. A digraph of a network topology

B. Generalized algorithm of fault tolerance evaluation

Once the graph is created from the network topology we can
start the general algorithm of fault-tolerance evaluation. The
algorithm is divided into several steps which are described
below in this subsection.

Step 1. Check the connectivity of a graph. If a graph is not
connected, then there is no need to continue fault tolerance
evaluation as it obviously does not tolerate any failure.
Otherwise, if the graph is connected, move to Step 2.

Step 2. Evaluation of vertex connectivity of the graph. It is
necessary to search through all pairs of graph vertices s and ¢,
find the number of vertex disjoint paths from s to ¢ and get the
minimum which corresponds to search value of the graph
connectivity k.

The problem of finding vertex connectivity reduces to a
problem of finding edge connectivity. For each pair of vertices s
and ¢ we should create new graph G‘ where each vertex v from
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the graph is split into two vertices v; and v. All incoming edges
to the original vertex go to v; while all outgoing edges come from
v2 (see Fig. 6). Moreover, we add an edge v;-v; of the capacity
equal to 1.

L
(s

The algorithm of creation such graph G‘ for the pair of
vertices s and ¢ from the initial graph G = (V, E) is given below.
Input: G, s, t; output: G*.

Fig. 6. Splitting of vertex

Algorithm 1 Creation of graph with split vertices

0: V' {s, t}; E'— &

L:iforve V\{s t} do V' «— V' U {v;, v2};

E —E’ U {vp:} od
:fore € Edo
cife=svwithv=r¢then E' — E’ U {sv;} fi
cife=tvwithv=ysthen E’ — E’ U {vs} fi
rife=uvwithuy, v=s,tthen £’ — E’ U {u’'v;, vou’} fi
od
G — (VE);

In theoretical computer science, graph connectivity has been
well studied for more than forty years. It has a strong relationship
with the problems of maximal network flow and minimal cut.

In order to find the number of disjoint paths from s to ¢ we
propose to use maxflow algorithms such as Ford-Fulkerson or
Edmonds-Karp algorithms [18]. Let us assign each edge of the
graph G a capacity equal to 1. This allows to apply maxflow
algorithm to evaluate sz-connectivity.

The minimal maxflow among all s-¢ pairs of the initial graph
G yields the graph vertex connectivity value k. In order to
decrease the number of iterations in the algorithm we propose to
terminate the search once the connectivity value & becomes
equal to 1. This means that the graph cannot be more than
1-connected, i.e. it cannot tolerate any failure. The connectivity
search algorithm stops its execution and moves to Step 3.

Step 3. Calculate fault tolerance of the graph using the
following formula:

f=k-1
The upper bound of complexity of this algorithm is
O(IVI?IEI®) [18].
C. Bottlenecks search in the designed network topology

If the value of fault tolerance is 0 then we propose to search
all bridges and articulation points in a graph. This can give an
opportunity for the CAD user to find out all bottlenecks of the
designed network.
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Let us start with a search of bridges. A bridge in a graph is
an edge that, if removed, would separate a connected graph into
two disjoint subgraphs. Fig. 7 shows a graph which contains two
bridges — edges (1, 4) and (2, 5).

Fig. 7. An edge-separable graph

Finding the bridges in a graph seems, at first blush, to be
nontrivial graph-processing problem, but it actually is an
application of depth first search. Depth-first search (DFS) is an
algorithm for traversing or searching tree or graph: to visit a
vertex, we mark it as having been visited, then recursively visit
all the vertices that are adjacent to it and that have not yet been
marked [16]. It is one of the most important algorithms as it
deceptively simple, it is easy to implement, takes linear time and
in fact it is a powerful algorithm which is used for numerous
difficult graph processing tasks.

On the basis of initial topology graph using the DFS
algorithm we get an ordered tree. This tree contains all the
vertices of the initial graph. Applying DFS to a graph we check
both representations of each edge. For the edge v-w we either
make a recursive call (if w is not marked) or just skip this edge
(if w is already marked). When we come across this edge the
second time but with the opposite direction, we should ignore it
as the target vertex v has already been visited.

For the further discussion we need to introduce some notions
referring trees, such as ancestor, descendant and parent. The
parent of a vertex is the vertex connected to it on the path to the
root; every vertex except the root has a unique parent. A child of
a vertex v is a vertex of which v is the parent. A descendant of
vertex v is any vertex w whose path from the root contains v. An
ancestor is a vertex on the path from the root to the vertex. Vertex
v is an ancestor of vertex w if and only if w is a descendant of v.

In order to find bridges it is necessary to find all vertices in
the tree with the following property: no back edge connecting
descendant with an ancestor, and no other nodes have that
property. Therefore, breaking the edge between such node and
its parent would disconnect the subtree rooted at that node from
the rest of the graph.

Bridges in a graph correspond to links that are bottlenecks in
the designed network. However, not only links can be
bottlenecks in the network. A failure of router can lead to
breaking a network into two separate subnetworks with no
means to communicate with each other. Therefore, we will now
discuss the problem of articulation points search.

An articulation point in a graph is a vertex that, if, removed,
would separate a connected graph into at least two disjoint
subgraphs. Fig. 8 shows a graph with two articulation points —
vertices 1 and 2. A graph that has no articulation points is vertex
connected [16].
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Fig. 8. Articulation points in a graph

Similarly to the search of bridges we use the same DFS-
based approach to identify articulation points. Articulation point
is a tree vertex v which satisfies the following conditions:

v is a root of DFS tree and it has at least two children.
This means that it is impossible to reach all vertices of a
graph traversing a tree via an arbitrary edge from the root
of DFS tree.

v is not a root of DFS tree and it has a child u such that
no vertex in subtree rooted in u has a back edge to one of
the ancestors of v.

Articulation points can be found in linear time.
D. Fault tolerance evaluation examples

In the scope of our project we implemented the described
above algorithm in C++ and performed several tests of its
operation. In this subsection we give two examples with their
results.

The first example is a network, which consists of four
terminal nodes, each of which is represented by to redundant
units, four switches and a number of communication links
(see Fig. 9).
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\ \

N

} N4.A N4B ||

Fig. 9. Example 1

This network topology is 1-fault-tolerant (i.e. f = 1), as
connectivity of corresponding graph is k = 2 . There are no
bridges and articulation points in this network structure.

The network topology for the second example is given in
Fig. 10. It consists of four terminal nodes, five routers and a
number of communication links. Similarly to the first example
each node is represented by two units.
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Fig. 10. Example 2

Running fault tolerance evaluation algorithm for this
network structure results in zero fault tolerance (f = 0), as this
network is 1-connected (k = 1). The algorithm identified one
bottleneck router R3, i.e. articulation point in the
corresponding graph.

VI.  NETWORK TOPOLOGY TRANSFORMATION FOR FAULT

TOLERANCE

Another issue that we want to discuss in this paper is
network topology transformation for increasing fault tolerance
in the network. Modern onboard networks consist of a huge
number of computers, telemetry, radio-transmitting and data
transmitting devices. The more big and complex the onboard
network is, the easier for a network topology designer to make
a mistake in fault-tolerance structure. Therefore, we propose to
apply automatic network topology transformation to achieve a
required fault tolerance. This is planned be an additional feature
of the Component #1 in our CAD system.

The problem can be described as follows. Given a network
topology, place additional redundant units for terminal nodes,
additional routers and communication links to achieve the
required by user fault tolerance.

We propose to solve the stated problem in two stages:

Stage 1: Initialise a topology of a network with required
fault tolerance f. This can be done in the following ways:

e replicating an initial network structure with all routers

and links (except nodes) and then by connection of
replicas into one network structure. Connection of
replicas is performed by adding links between the
routers’ replicas.

connecting all routers in the initial network structure
trough additional links.

If it is necessary, additional redundant units should be added
to terminal nodes. Each unit of a terminal node should be
connected to different routers in order to increase fault tolerance
of a network.

Stage 2: Iterative improvement of the topology obtained on
the stage 1. Improvement consists in one by one removing
added routers and links and then checking fault tolerance of the
modified network. If the modified network is still k~connected
then continue with the next router. Otherwise, put the removed
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router with all corresponding edges back to the network
topology. Stop when all added routers have been considered.

An example of network transformation for fault tolerance is
given in Fig. 11.

links between routers
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Fig. 11. Example of network transformation for fault tolerance

SpaceWire network can consist of a large number of
terminal nodes and routers which are grouped into special
network regions. The problem of network transformation for
such a network is more complex than for a single region
SpaceWire network. Firstly, we need to transform each network
region to achieve the required fault-tolerance and then connect
the regions in such a way that fault tolerance stays at the same
level. This problem is not a trivial one, so it is a subject for
discussion in our next paper.

VIL

In the current paper we address the problem of fault
tolerance analysis of SpaceWire onboard networks. Firstly, we
introduced an architectural concept of a new computer aided
design system for SpaceWire networks. This CAD system is
intended to solve important tasks, which developers face with
during implementation of onboard systems and networks. A
component of onboard network topology design and evaluation
of its structural characteristics is a part of this CAD. One of its
key features is fault-tolerance evaluation of the designed
network.

Our contribution is a proposal of an algorithm for fault
tolerance analysis and bottlenecks search. Fault tolerance
analysis is performed through k-connectivity search in a graph
corresponding to a designed network topology.

CONCLUSION
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There are still some open problems to be considered in
future work. Our future steps will be focused on performance
analysis of our algorithm. Finally, we are planning to extend
Component #1 with an additional feature of network topology
transformation for achieving the required fault tolerance.
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