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Abstract—The paper considers a process of conformance
testing by means of computational tree temporal logic. Authors
present a Kripke structure, which is STP-ISS-13 protocol
implementation under test and a compilation example of
temporal logic formula for a protocol requirement. Finally, the
paper gives an example of error detection.

I. INTRODUCTION

On-board equipment always needs a proper testing. Before
integration on-board equipment into a on-board network, we
need to be sure that this equipment works as expected [1].
Especially if we talk about equipment, that operates according
to the newly developed communication protocol. The
conformance testing is used to ensure that equipment operation
complies with specification of the protocol and expected
behavior.

Conformance testing is a kind of an audit which is used to
check that the external behavior of a given implementation of a
protocol is equivalent to its formal specification [2]. This
definition can be expressed formally:

(I sat$) & (Vr € S:1satr) (1
where [ is an implementation under test (IUT), S=
{ry,ry,13,...} — specification, » — conformance requirement.
“I sat $” means that IUT [ satisfies specification S.

Implementation under test is a system that represents
implementation of one or more protocols and which is needed
to be tested [3].

Nowadays, we participate in development, implementation
and evolution of the STP-ISS transport protocol for the
communication in onboard SpaceWire networks. In this
project, we developed two revisions of STP-ISS protocol,
simulated and investigated them. The first revision of STP-ISS
(STP-ISS-13) is much simpler and compact, but the second one
(STP-ISS-14) is more powerful. Nevertheless, the backward
compatibility for these revisions is provided. The detailed
description of the protocol is provided in [4]. After
development of protocol specifications, we got the task to
implement a tester for the STP-ISS rev.l equipment, which
could tell the manufacturer, that STP-ISS device operates
correctly. This tester should examine a device, implementing
STP-ISS, with a set of different testing scenarios; each scenario
should test a particular STP-ISS mechanism. Therefore, after
testing, the manufacturer will get information on what STP-ISS

mechanism failed and then operation history from the log-files
could be analyzed for the details of an error [5].

II. KRIPKE STRUCTURE

In conformance testing, IUT of tested protocol can be
represented by any system, which implements that protocol. In
this paper, we will use model checking as conformance testing
method. In this case, IUT must be a formal model. The most
often used formal model in model checking is a Kripke
structure.

Kripke structure is a kind of a nondeterministic finite state
machine. It can be represented as M = (S, Sy, R, AP, L), where:

S is a non-empty set of states;
So € S is a non-empty set of initial states;

e RCSXS isa set of transition relations. Every state
must have one or more transitions;
AP is a finite set of atomic propositions;
L:S - 24P is a labeling function. This function assigns
set of true atomic propositions with every state.

Atomic proposition is a statement, that can be true or false
and whose structure we can ignore [6]. We chose various
service primitives, packages and some processes (storing and
deletion from buffers, timers expiration, data transmission, etc.)
as atomic propositions for STP-ISS-13 protocol. Examples of
atomic propositions are presented in Table 1.

A state of a Kripke structure is a snapshot of all information
about modeled system in every specific moment of time. By
means of the L function, each state is associated with a set of
atomic propositions, which are true in this state. Besides the
states, the Kripke structure must contain transitions. A
transition is a change of states of a real system. Every state
must have one or more transitions. Graphical representation of
the Kripke structure of the STP-ISS-13 protocol IUT is
presented in Fig. 1.

This Kripke structure contains:

e 103 states: {Sg, S, ---, S102};

e  One initial state sy;

e Set of atomic propositions. Examples of atomic
propositions are given in Table I;

e Labeling function L.
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Fig. 1. The model of STP-ISS-13 protocol implementation
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TABLE I. ATOMIC PROPOSITIONS

Atomic The meaning of atomic proposition

proposition

ack Acknowledge

disc Packet was discarded

iut Implementation under test

err_snd Packet was corrupted before transmission

gb_del Packet was deleted from the general messages transmitter
buffer

gm General message

It Lifetime timer expiration

mb Application layer was informed by
STP_MessageBuffer.ind service primitive that the amount
of free space in the general messages transmitter buffer has
changed

ms_It STP-ISS-13 protocol indicated to the application layer by
STP_MessageStatus.ind service primitive with “lifetime
timer expiration” status about lifetime timer expiration

msg_err Message is incorrect (other errors)

msg_ind STP-ISS-13 protocol transferred the received message to
the application layer by STP_ Message.ind service
primitive

msg_req STP-ISS-13 protocol received message by
STP Message.req service primitive

qos_g Guaranteed data delivery quality of service

rcv Packet was received from a link

rt Retry timer expiration

rxb_del Packet was deleted from the receiver buffer

rxb_wr Packet was stored in the receiver buffer

snd Packet was sent to the link

snd_ack Acknowledge was sent to the link

tester Tester

um Urgent message

States are observed in two nodes:

1)

2)

The first node is IUT of STP-ISS-13 protocol. States,
which are observed in IUT, are marked by atomic
proposition 7uf (in those states atomic proposition iut is
true). For example:

In state s, IUT received a general guaranteed message,
stored this message in a receiver buffer and transferred
that message to the application layer. Function L in this
state has the following meaning: L(s,) = {iut, rcv, gm,
qos_g, rxb_wr, msg_ind}.

In state 55, IUT sends an acknowledgement for packet
receipt and deletes that packet from the buffer.
Function L in this state has the following meaning:
L(ss) = {iut, rxb_del, gm, qos_g, snd_ack}.

In state s IUT receives an incorrect general
guaranteed message and discard that message. Function
L in this state has the following meaning: L(ss) = {iut,
rev, rxb_wr, msg_err, disc, gm, qos_g}.

The Second node is a tester, which also implements
STP-ISS-13 protocol. States, which are observed in the

tester are marked by atomic proposition fester. For
example:

In state sy, the retry timer in the tester expires for a
guaranteed general message. Function L in this state
has the following meaning: L(sg) = {tester, rt, gm,
qos_g}.
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In state s,, the lifetime timer in the tester expires for a
guaranteed general message. This message is deleted
from the general messages transmitter buffer.
Application layer is informed about lifetime timer
expiration and about the change of the amount of free
space in the general messages transmitter buffer.
Function L in this state has the following meaning:
L(s;9) = {tester, It, ms_It, mb, gb_del, gm, qos_g}.

In state s;;,, the application layer has an urgent
guaranteed message, which is intended for
transmission. Function L in this state has the following
meaning: L(s;;) = {tester, msg_req, um, qos_g}.

The presence of a tester in this Kripke structure is due to the
fact that the second node is required for modeling of the
protocol operation. STP-ISS-13 protocol implementation in the
tester is a reference implementation. Only IUT shall be a
subject of testing.

III. TEMPORAL LOGIC

We created a set of testing scenarios for STP-ISS-13
protocol. Each scenario is intended for testing of a specific
mechanism of STP-ISS-13. This set of scenarios was developed
by means of temporal logic.

Temporal logic is a logic in which the statements take into
account the time aspect [7]. Values of the formulas of temporal
logic depend on the time at which the values of these formulas
are calculated [6].

There are different temporal logics:

ITL — Interval Temporal Logic [8];

PSL — Property Specification Language [9];
LTL — Linear Time Logic;

CTL — Computation Tree Logic[6];

Etc.

In order to implement a set of testing scenarios we chose the
computation tree logic (CTL). CTL formulas are state formulas
[10]. They describe computation trees properties. Computation
tree is formed by sweeping the Kripke structure from the initial
state [11].

CTL formulas can include:

Atomic propositions (p, g, ...);
Logical operators (V, A, —, ...);
Path quantifiers (4, E);

Temporal operators (U, R, X, F, G);
Parentheses.

CTL have two quantifiers for branching structure description:

e FE (Exist). This quantifier means “in some computation
path”;

A (All). This quantifier means “in all computation
paths” [12].

Path quantifiers are used in every state to indicate that all or
some paths, that outgoing from this state, possess the prescribed

property.
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Temporal operators describe the properties of the path in
computation tree [11]. CTL have following temporal operators.
1) U (Until). U is a binary operator of conditional
expectation.

Example of use:

rUgq @
In this example, atomic proposition p will be true until q is
true. The diagram for this example is given in Fig. 2.

Fig. 2. Operator U

2) R (Release). R is a binary operator of unlocking.

Example of use:

PRq 3)

In this example, atomic proposition q will be true until p is

true. In contrast with the operator U, q becomes false only in the

next state after the state in which p is true. The diagram for this
example is given in Fig. 3.

Fig. 3. Operator R

3) X (Next Time). X is a unary operator of time shift.

Example of use:

Xq 4)

In this example, atomic proposition q will be true in the state,

immediately following the considered state. Diagram for this
example is presented in Fig. 4.

4

Fig. 4. Operator X

4) F (Future). F is a unary operator of an event.

Example of use:

Fq )

In this example, atomic proposition q will be true at least in

one state in future. Diagram for this example is presented in Fig.
S.

Fq _
Fig. 5. Operator F
5) G (Globally). G is a unary operator of invariance.

Example of use:

Gq (6)
In this example, atomic proposition q will be true in all future
states. Diagram for this example is presented in Fig. 6.

A

Fig. 6. Operator G

CTL formulas can include different combinations of path
quantifiers and temporal operators, but each operator must be
preceded by path quantifier [13].

IV. MODEL CHECKING

Let us consider an example of CTL formula drafting.

Step 1. Guaranteed general message receiving mechanism was
chosen as the tested mechanism.

Step 2. According to the selected mechanism, we choose the
following requirements from the STP-ISS-13 protocol
specification [14]:

e An acknowledgement shall be sent if the following
conditions are fulfilled simultaneously:

— No CRC errors;
—  Correct data packet length.
—  Packet is transmitted with Guaranteed quality of
service, i.e. there is an “Acknowledgement
request” flag set to 1.
Step 3. According to the selected requirements, we choose the
following atomic propositions from Table. I:
e tester — Tester. This atomic proposition is true in states,
which are observed in the tester.
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@1 = EF(tester A snd A gm A\ gos_g A ~err_snd) N AG((tester A snd A gm A qos_g N ~err_snd) => AF(tester A rev A ack A gm A qos_g))

Fig. 7. Divided formula into subformulas

e snd — Packet was sent to the link. This atomic
proposition means that packet was sent to the link.

e rcv — Packet was received from the link. This atomic
proposition means that packet was received from the
link.

e gm — General message.

e qos_g— Guaranteed delivery quality of service.

e err_snd — Packet was corrupted before transmission. A
packet can be corrupted in order to test non-nominal
cases. If a packet was not intentionally corrupted before
transition, then err_snd atomic proposition will be false.

e ack— Acknowledge.

Construct the formula using
requirements and atomic propositions.

selected mechanism,

e In order to check that IUT implements the mechanism
of guaranteed general message receiving correctly, the
tester must send a guaranteed general message to the
IUT, i.e., the model must include a state, in which
atomic propositions tester, snd, gm and gos_g are true
at the same time. Atomic proposition err_snd must be
false in this state, because the packet was not corrupted
before sending. This can be expressed by the formula:

¢, = tester Asnd A gm A qos_g A —err_snd 7

e In future, after sending a correct guaranteed general
message, the tester must receive an acknowledgement.
This means that after the state, in which atomic
propositions fester, snd, gm, qos_g are true and err_snd
is false, must be a state, in which tester, rcv, ack, gm,
and gos_g are true. This statement can be expressed by
the formula:

@, = (tester Asnd A gm A qos_g A —err_snd)
= AF (tester Arcv Aack A gm A qos_g) (8)
e Formula ¢, must be true in all states and all paths.
Therefore, we add an appropriate temporal operator and
quantifier:

¢, = AG((tester Asnd A gm A qos_g A —err_snd)
= AF (tester Arcv A ack A gm A qos_g)) )
e Formula ¢; have an implication logical operator (=).
Implication as function is true if and only if the left part
of the function is true, and right part is false. In this
example, formula ¢; will be false if subformula
tester Asnd A gm A qos_g A —err_snd is true and
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subformula AF(tester Arcv Aack Agm A qos_g) is
false. Consequently, if the model has no state, in which
a correct guaranteed general message is received, the
formula @; will be true too. Therefore, we add an
additional condition: the model must have at least one
state, in which atomic propositions tester, snd, gm and
qos_g are true and err_snd is false. This condition can
be expressed by the formula:

@, = EF(tester Asnd A gm A qos_g A —err_snd)  (10)

e Formulas ¢; and ¢, can be united, because this

formulas must be true at the same time. As a result, we
obtain the following formula:

¢, = EF (tester Asnd A gm A qos_g A —err_snd)
NAG((tester Asnd A gm A qos_g A —err_snd)
= AF (tester Arcv Aack A gm A qos_g)) (11)
According STP-ISS-13 protocol specification, we developed
a set of CTL formulas, which allow us to test all of STP-ISS-13
basic mechanisms and non-nominal cases. Here are examples of
the formulas:

e For testing guaranteed control command receiving
mechanism we used the following formula:

@3 = EF(tester Asnd A cc A qos_g A —err_snd)
N AG((tester Asnd A cc A qos_g A —err_snd)
= AF (tester Arcv A ack A cc A qos_g)) (12)
e For testing guaranteed urgent message receiving
mechanism we used the following formula:

¢@g = EF (tester Await Aum A qos_g) A AG((tester
Await A\um A qos_g) = EF (tester Arcv Aum A
qos_g A —msg_err A —=msg_crc_dpd A —err_rcv
N AX(tester A snd_ack Aum A qos_g N AX (iut A
qos_g Nrcv Aack Aum Aub_del) (13)
e For testing non-guaranteed incorrect control command
receiving mechanism we used the following formula:

@15 = EF(tester A snd A cc A qos_ng A err_snd) A
AG((tester Asnd A cc A qos_g A err_snd) =
AX(iut Arcv A cc Aqos_ng A cc_err A disc)) (14)
For formal verification of the model we chose the model
checking method [15]. Depending on the formal models used,
the model checking algorithms can be different. For the case,
when the IUT is represented by a Kripke structure and
requirements are represented by CTL formulas, we can use
labeling algorithm.




Main idea of labeling algorithm is that for any subformula of
the CTL formula we need to know in which states of the Kripke
structure this subformula is true. CTL formula is true in the
model if that formula is true in the initial state. In another case,
the formula is false.

The labeling algorithm for CTL formula ¢ and Kripke
structure M includes the following steps:

1Y)

Formula ¢ is divided into subformulas, starting with
the simplest.

2) For each subformula f:
a. Set Sat; of Kripke structure states, where
subformula is true, is computed.
Subformula is written as atomic proposition.
c. All states from set Saty are marked by this atomic
proposition.
3) If initial state of Kripke structure M is marked by

atomic proposition p,, then formula ¢ is true in M [6].

Consider an example of labeling algorithm for formula ¢,
and Kripke structure, presented in Fig. 1.

1) Divide formula ¢; into 20 subformulas. Formula
division is presented in Fig. 7.
2) For each subformula f:

a. Compute a set Saty. Results are presented in Table
II.

Each subformula is written as atomic proposition
(subformula f; is written as atomic proposition fy,
subformula f; is written as atomic proposition f;,
etc.).

All states from the set Satg; are marked by atomic
proposition f;. Part of the Kripke structure with
new marks is presented in Fig. 8.

b.

TABLE II. SET SAT

PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

Subformula Set Saty
Jo=fsnS Saty = {s3, 57, 833, S35}
Jio=fofs Satfio= {s3, 7}
Jiu=fuhf Saty; = {ss}
Ji2=foNfs Saty, = {565 S165 526, S58, S635 S68 5735 5765 583 S865 593, S96> 102}
Jis=fi2 N fs Saty; = {Se, S16, S26}
Jiu=fis N f2 Satys= {se}
Jis=fia NS Satys = {s¢}
Jis = AF(f15) Satyis = {8, S4, S5}
Ji7=f11 => fis Saty; = {so,..., S102}
Jis = AG(f17) Satys = {S0,- -, Si02}
Ji9=EF(f11) Satyg = {0,.-., Si02}
Soo=f19 N s Satpo = {80,..., S102}

Subformula Set Saty

Jo = tester Satp = {S0,. .., S3, S65 57, 59, .+, S13, S165 S17, S195- -5 523, S26, 527,
$29,- .., 833, 835, 838, 539, 840, S42, S45, S46, 547, S49, S51, S52, Ss4, Ss8,
S59, 5635 S645 S685 S695 5735 S745 S765 $79, 583, S84, 5865 589, 593, S94,

S965 S99, S102}

f1=snd

Sﬂfﬂ = {53, S$7, 813, S17, 823, 527, 833, 535, 540, S42, S47, S49, S52, 857,

S625 S67> S725 8825 892, S101}

Sal/z = {51,-»-v S105 S315--+5 837, S54,..., S58, 569,---,578}

S>=gm

fi=qos_g Saty; = {81,- .., 830, S69,---» Sog}

Jfa=err_snd Satyy = {87, 817, $27, S35, S42, Sa0}

fs=rcv Sats = {S4, S6, Ss, S145 S16, S18, 524, S26, 528, 534, S365 537, 841, S43,
S44, S48, S50, 853, 858, S63, S68, 73, $75, $76, 883, S85, S86, S93, S,

S96, S102}

Jfs=ack Satys = {85, S6, S15, S165 $25, $265 S745 S75, S84 5855 S04, 895}

f7 = ﬁf4 Salﬂ = {So,-»-, S65 S85-++5 S165 S185- -5 5265 8285+, 534, 8365, S41,

S435- -+ S48, 8505+ -5 S102}

Js=fo N

Saty = {83, $7, 813, S17, S23, 527, 533, S35, S40, S42, 47, S49, S52}
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3) In the given example, the atomic proposition f3 is the
atomic proposition p,¢. The initial state of the Kripke
structure was marked by the example atomic
proposition f3,. Therefore, the formula ¢, is true in this
Kripke structure. We can conclude that Kripke
structure satisfies the requirement, which is represented
by the formula ¢ .

SO tester
" 0,f7,f17,
18,f19,f20

tester, It,
ms_It, mb,
gb_del, gm, qos_g

tester,
msg_req,
gm, qos_g

A

gm, qos_g, rxb_del
£0,£2,13,f5,16,f7,f12,
f13,f14,f15,f17,
£18,f19,f20

0,f2,f3,f7,f17,
18,f19,f20

0,f2,13,f7,f17,
18,f19,f20

S10

tester, rt,
gm, qos_g

tester, gb_wr,
gm, qos_g, mb

10,12,13,7,f17,
f18,f19,20

10,£2,13,f7,f17,
£18,f19,20

tester, snd,
8m, qos_g

f0,f1,2,3,17,f8,f9,
£10,11,f16,f17,
£18,f19,20

dut,
rxb_del, gm,
qos_g, snd_ack

12,13,16,f7,f16,
£17,f18,f19,20

Sg

dut, rev,
rxb_wr, msg_err,
drop, gm, qos_g

2,13,15,f7,f17,
18,f19,f20

tester,
snd, err_snd,
gm, qos_g

S7

rcv, gm, qos_g,
rxb_wr, msg_ind

0,f1,f2,f3,f4,f8,
19,f10,f17,
118,19,f20

12,3,5,17,f16,
f17,f18,f19,f20

Fig. 8. Kripke structure with new marks

Let us consider an example of how we can identify errors in
IUT by labeling algorithm. For this purpose, we added a
transition from sate s, to state soin Kripke structure, presented in
Fig. 1. This transition means that the structure has a path, in
which after receiving correct guaranteed general message [UT
does not send an acknowledgement. A part of this structure
presented in Fig. 9.
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So

tester

structure does not satisfy the requirement, which is

tester, It,
ms_lIt, mb,
gb_del, gm,
gos_g

tester,
msg_req,
gm, qos_g

tester,
gb_wr, gm,
gos_g, mb

dut,

dut, rcv d0s_g,
S snd_ack
rxb_wr, tester, snd,
msg_err,

drop, gm, gm, qos_g

qos_g

tester,
snd, err_snd,
gm, qos_g

rxb_del, gm,

represented by formula ¢;.

S
0 tester
>
f0,f7,f119
tester, It,
ms_|t, mb,

“ gb_del, gm, qos_g

tester,
msg_req,
gm, qos_g

rev, rxb_wr, ack,
s_ack, mb, gb_del
gm, qos_g, rxb_del

f0,f2,f3,f5,16,f7,f12,
£13,f14,f15,f19,

f0,f2,f3,f7f19 f0,f2,f3,f7,f19

S10
S9
tester, t, tester, gb_wr,
gm, qos_g gm, gos_g, mb
10,12,13,7,19 10,12,13,7,19 35

dut,
rxb_del, gm,
qos_g, snd_ack

tester, snd, 2,13,16,f7,
gm, qos_g 16,119

0,f1,f2,f3,f7,18,f9,
10,f11,f19

S8

dut, rev,
rxb_wr, msg_err,
drop, gm, qos_g

tester,
snd, err_snd, rcv, gm, qos_g,
gm, qos_g rxb_wr, msg_ind

S7

Fig. 9. Incorrect Kripke structure

We also use the labeling algorithm for formula ¢, checking
on this model. The first step of the algorithm will be similar to
the previous example. Let us consider the second and the third
steps of the labeling algorithm:

2) For

a.

each subformula f:

Compute a set Sate. Meanings of sets Saty,
Saty;, ..., Satf;s are matches the values in Table II.
The rest of meanings is presented in Table II1.

TABLE III. SET SAT FOR KRIPKE STRUCTURE WITH ERRORS

0,1,62,13,14.f8,
10119 2,13,15,(7,119

Fig. 10. Incorrect Kripke structure with new marks

V. CONCLUSION

The paper considers a process of conformance testing by
means of computational tree temporal logic. Firstly, we created
a Kripke structure, which represents a formal model of
STP-ISS-13 protocol implementation. This model allows us to
describe all possible states of IUT and tester. Also, we
developed a set of CTL formulas, which is a formal description
of requirements of the STP-ISS-13 protocol implementation. A

set of CTL formulas allows us to test all of STP-ISS-13 basic

mechanisms and non-nominal cases.

Moreover, in this paper we described the process of Kripke

structure formal verification. We choose the labeling algorithm,

which is one of a model checking algorithms, as a formal

verification method. In this case, formal verification is a
conformance testing method, where protocol implementation

Subformula Set Saty
Ji6 = AF(f15) Satps = {ss}
Jir=111=>fis Satgr = {}
Jis =AG(fi7) Sats={}
J19=EF(f11) Satyio = {So,. .-, S102}
Joo=fr9 A fis Satpo = {}
b. Each subformula is written as atomic proposition

(subformula f; is written as atomic proposition fy,
subformula f; is written as atomic proposition f;,
etc.).

All states from the set Saty; are marked by the
atomic proposition f;. Part of the Kripke structure
with new marks is presented in Fig. 10.

3) In the given example, the atomic proposition f5, is the
atomic proposition py,;. The initial state of the Kripke
structure was not marked by the example atomic
proposition f>,. Therefore, the formula ¢, is false in
this Kripke structure. We can conclude that the Kripke

under test is a Kripke structure, and specification is a set of CTL
formulas.

Described conformance testing method is suitable only for
testing formal models of STP-ISS-13 protocol implementations.
In order to be able to test software and hardware
implementations of this protocol, we developed a Software-to-
Hardware Tester. This tester is based on a Kripke structure and
CTL formulas, which were developed in this paper.
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