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Abstract—This article discusses software tools for studying
non-linear dynamical systems. For a detailed analysis of the
behavior of chaotic systems stepsize-parameter diagrams are
introduced. A new self-adjoint semi-explicit algorithm for the
numerical integration of differential equations is described.
Two modifications of the proposed method are represented. A
two-memcapacitor circuit is selected as a test dynamical
system. Symmetry, accuracy and performance analysis of semi-
explicit extrapolation ODE solver are considered in a series of
computational experiments. Phase space of the two-
memcapacitor circuit model, stepsize-parameter diagrams and
dynamical maps are given as experimental findings.

I. INTRODUCTION

The theory of elements, that exhibit the property of
changing their main characteristics upon electrical stimuli in
a nonvolatile manner, originates from the prediction of the
fourth basic passive element in 1971 [1]. This element was
called a memristor by L. O. Chua, who placed it on a par
with resistors, capacitors and inductors. Later, in 1976, the
mathematical description of the memristor was extended to a
wider class of memristive systems [2], within the framework
of which the modern terms of other passive two-terminal
circuit elements, a memcapacitor and a meminductor [3],
were introduced. A slightly different view on the
relationship between the four basic electrical quantities is
presented by J. Shen et al. in paper [4], where transtors and
memtranstors are also included into the list of the basic
elements.

Nowadays, ideal memristive elements are considered as
a possible circuit description of resistive switching devices
[3] — the promising electrical components in
nanotechnology. It is necessary to note that relevant models
of the real devices cannot be implemented as a single
memristive system [5]. In order to achieve the realistic
device behavior in a circuit model one can combine a basic
memristive system with other circuit elements. Since present
resistive switching devices are fabricated in the parallel-
plate capacitor geometry, it reasonable to add a virtual
capacitive element, a linear capacitor or a nonlinear
memcapacitor, depending on observed operation in a
specific real device. Additionally, due to the internal
chemical processes in the device ionic subsystem, one can
also expect an inclusion of a meminductive element as a
battery-like  component. =~ Thus, memcapacitors and

meminductors should receive no less attention than

memristors during development of circuit models.

Electrical circuits with memristive elements are also
interesting objects in the field of nonlinear dynamics.
Nonlinear nature of these elements leads to complex
phenomena, including deterministic chaotic behavior.

Mathematical models of nonlinear dynamical systems are
usually represented by ordinary differential equations which
rarely have analytical solutions. In this case numerical ODE
solvers are widely used being the basis of analysis tools,
from calculation of Lyapunov exponents to the construction
of multidimensional dynamical maps. However, most of
researchers do not consider the properties of finite difference
chaotic schemes obtained with various integration methods.
In the process of chaotic systems simulation, the properties
of the applied discrete operator can make a significant
impact on model behavior [6]. Neglect of this fact may lead
to incorrect simulation results in SPICE environments and
packages for modeling of nonlinear dynamical systems.

The goal of this study is to propose and investigate the
performance of a new semi-explicit scheme, suitable for
solving nonlinear ODEs and estimate its properties on the
two-memcapacitor circuit model in comparison with other
integration methods. The investigation of oscillation modes
and the detection of hidden features of the circuit model are
also of our particular interest.

II. TWO-MEMCAPACITOR CIRCUIT

The paper [7] presents a chaotic circuit obtained by
introducing several changes into the Chua's circuit. In this
circuit (Fig. 1) the Chua's diode is replaced by a negative
conductance -Gy (active element), and the both capacitors
are substituted by memcapacitors C,,; and C,, (nonlinear
energy-storage elements). The circuit also includes an
inductor L and a resistor with conductance G, just as the
origin.
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Fig. 1. Schematic of the circuit with two memcapacitors
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The model of each smooth memcapacitor [7] is
represented by the equations:

u, =(m+n0'2)q 0
o, =ma+(1103/3)=aa+b(73
where o is the time integral of the memcapacitor charge ¢,
and ¢ is the time integral of the voltage u. across the
terminals of the memcapacitor.

Applying the Kirchhoff's law and the volt-ampere
characteristics of the circuit elements one can obtain a
system of ordinary differential equations:

di
L—Lt=y
df c2
dan _ G(uyy —uy)+ Gouy 2
dt
dq, .
—==G(u, —u.,)—1
dt ( cl 62) L

Applying integral operation, (2) can be transformed to
the following form:

9. _
dt c2
do,
Ttl =G(Per = P1) + Gopy 3)
do,
%2 G —0.)—
dt ((pcl ¢)¢2) qr

Finally, defining x =¢,,y=01,z=05, ¢c=1/L,d = Gy, e
= G and introducing a;, b, a,, b, referred to (1), the system
described by (3) can be normalized:

X =c(ayz+byz°)
y=(d-e)ay+by’)+e(ayz+byz’) (4)

z=e(ay+by° —ayz—bz")—x

The system (4) can be used as a test problem for research
of numerical integration methods since it has complex
nonlinearities and chaotic solution for many parameter
values. According to [7], for the initial conditions (0.1, 0, 0)
the possible parameters of the system to exhibit chaotic
behavior are: a; = 0.25, by = 0.6, a, = -0.17, b, = 10, ¢ =
8.96,d=4,e=17.

III. INTEGRATION METHODS

A method for integration of chaotic ODEs should satisfy
several requirements. One of the most important is that its
ability to drive a system into a quasi-chaotic (long-periodical
oscillations) mode should be as less as possible. Also, it has
to be numerically efficient since computation of bifurcation
diagrams and dynamical maps is a complicated task.

From [8], a family of semi-implicit extrapolation
methods is known. These methods are derived from the
Euler-Cromer algorithm and are called the D-methods (“D”
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is for “diagonally implicit”). They usually need less
computational efforts than the other extrapolation methods and
are better suited for chaotic problems [9]. These methods exist
for systems of order N > 2. For a general form of IVP,

d
—x=F(,x 5
7 (7,x) (%)
where a bold font denotes a vector, the basic D-method is
written as follows.

Each derivative of a state variable x; is related to a right-
hand side function as

d
—x; = fi(t, X, X, X,...Xy)

7 (6)

Integrate (5) consequently with respect to x, x,,... using
the explicit “Euler-Cromer” integration, when previously
calculated state variables are taken into the right-hand side
function:

Xipel =Xy T hfi (2, Xt X2 pe1 - Xip "'xN,n)

()

We take “Euler-Cromer” in quotes since the original
Euler-Cromer method is usually applied only to Hamiltonian
systems. The D-methods are suitable for a general case of
IVP. Denote f{(t,.X,) = f.». The Taylor expansion of x;,.; on
one integration step of (7) yields

xl,n+1 = xl,n + hfi,n
xz,n+1 = x2,n + hfé,n + hzfi,nfé’,n + O(h3)
(®)

N-1
Xyt =Xy H Wy, + B [ S, +O)
j=1

From (8) one can see, that as an ordinal number of a state
variable increases, the quantity of terms by A® increases
correspondingly. The method (7) is called the explicit D-
method Dg(t,h,x). To complete the Taylor series, an
application of an adjoint method is required. This method is
implicit and will be denoted as D/(t,h,x). The implicit D-
method is almost similar to (7), but the integration of each
variable is implicit, and their order is reverse xy, Xy....

implicit
——

Xipe1 =X T hf(t, XU et X2 pat++Xi et -~-XN,n) ©)
This gives another Taylor expansion
xN,n+l = xN,n + hfi,n + hzf}v,nfi(f,n + O(hS)
Xyt = Xyoip, T th—l,n +
sl FaLianJHOOY (o

N
xl,n+1 = xl,n + hfi,n + hzzfj,nfi:n + 0(h3)

J=1
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Composition of (7) and (9) with a stepsize //2
h
D, (t,h,x)=(D,, oD, )(I,E,x)

completes Taylor series for each state variable. Moreover,
thus obtained D,-method is symmetric which follows from
the fact that the integration (8) with negative stepsize yields
the integration (10) and vice versa. Also, this method is
reversible for p-reversible systems. As its accuracy order is
2, the abbreviation D, is used for it.

Implicit integration in (6) can be inconvenient in case the
function f(t,,x,) is nonlinear. This motivates to replace an
implicit calculation by an explicit one in a following way.

For simpler notation, denote fit, X1 nt1, X215+ --» Xintls---»
Xnz) = g(xi,11)- Recall that the expression

xi,n+l = xi,n + hg(xi,nﬂ)

an
can be expanded as

Xi 1

= xi,n + hg(xi,n + hg(xi,n + hg("xi,n + hg())))

This is an infinite series of substitutions which is
equivalent to the implicit formula (11). But, to achieve a
second order, only one substitution is required, which allows
using an approximation

Xigrt =X +hg(x;,)

xi,n+1 = xi,n + hg()_ci,n-%—l)

(12)

instead of (11). Extrapolation methods of higher order based
on the D, integrator require a quantity of expansions (12)
proportional to their order of accuracy. Such a fully explicit
method retains symmetry. An abbreviation “SED” (“SE” is
for semi-explicit) is used for D,-method with the explicit
substitution (12) further.

The D,-method is then used as a basic method for
extrapolation. The idea of extrapolation is as follows.
Suppose, a solution on one “macro” step 4 should be
obtained with accuracy O(h*). Take a sequence {n;}of
natural numbers which will be divisors of the stepsize, for
instance,

n;}=1234..

Compose a first column of a table of solutions on one
“macro” time step x(t,¥h) = T, obtained by iterating the
basic method with “micro” stepsizes h/n;

L

LT,
LT

The second and the following columns are obtained by
the Aitken-Neville extrapolation formula
T, —T.
T/‘,k (tNH) = T;k 1 %’
(——)"-1
Mjg
where p equals 2 for symmetric methods like the D,-method.

From the table, xy;; = T;; is a solution. The chosen
sequence {n;} affects the efficiency of the method, but
usually a simple row of doubled natural numbers is enough.

Consider simple 2™ order system integration as an
illustrative example for the D, method. Let the system be as

x=f(x,y)
y=g(xy)

For this case, the D, method will be written as

Xpp1/2 = X%, + (X, 0,)

Vnst/2 = Vo +hg(x, 10, 0)
Vit = V12 +h&(X 15 Vi) ’
Xyt = Y12 F (X005 V1)

while the SED, algorithm will look as

Xpi1/2 =Xy + 1 (x,,5,)
Vusti2 =V +hg(%,115,)
Vel = Vus1/2 Thg(X,i1,3,)
Vst = Yusrr2 +hE(Xi1s V1)
Xi1 = X1/ + 1 (X0 V,010)

X1 = Xps1/2 + 1 (Xi15 Vi)

Consider an integration of the memcapacitor chaotic
problem (4) by D, method. Written in C-like code, it is as
shown in Listing 1.

Listing 1. Code for the memristive problem (4)

h=h/2;

float tmp;

int 1;

int k=4;

x=x+h*c* (a2*z+b2*z**3) ;

y=y+h* ((d-e) * (al*y+bl*y**3)+...

+e* (al2*z+b2*z**3)) ;

z=z+h* (e* (al*y+bl*y**3-a2*%z-b2*z**3) -x) ;
tmp=z;

for (1i=0; i<k; 1i++)

z=tmp+h* (e* (al*y+bl*y**3-a2%*z-b2*z**3) -x) ;
tmp=y;

for (i=0; i<k; 1i++)

y= tmpth* ((d-e)* (al*y+bl*y**3)+...

+e* (al2*z+b2*z**3)) ;

x=x+h*c* (a2*z+b2*z**3) ;
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For fully separable systems when derivatives have
simpler form like

d N
d_x[ = f;(H+ Zfl/(x,)
t p=

a more compact code can be written resulting in
sufficient computational economy, see Listing 2.

Listing 2. Alternative code for the memristive problem (4)

h=h/2;

float tmp;

int 1;

int k=4;

x=xth*c* (a2*z+b2*z**3) ;

y=y+h* ((d-e) * (al*y+bl*y**3)+...
+e* (al*z+b2*z**3)) ;

z=z+h* (e* (al*y+bl*y**3-a2%z=-b2%z**3) -x) ;
tmp=z+h* (-xte* (al*y+bl*y**3));
for (i=0; i<k; i++)

z=tmpth*e* (mal2*z-b2*z**3) ;
tmp=y+h*e* (a2*z+b2*z**3) ;

for (i=0; i<k; i++)
y=tmp+h* (d-e) * (al*y+bl*y**3);
x=x+h*c* (a2* z+b2*z**3) ;

Notice that the number of calculations inside the loops is
reduced through some pre-calculations. However, this
technique can be implemented for ODEs with partially
separable right-hand side functions.

IV. NUMERICAL RESULTS

All  computational described in this
section were carried out in NI LabVIEW 2017
environment on the desktop class PC (Intel Core

15-4590, 8GB RAM, OS Windows 10).

experiments

Fig. 2. Chaotic attractor of the system (4)

67

First, we obtained the chaotic attractor of the system (4),
shown in Fig. 2. Simulation was performed with the semi-
explicit integration method (SED) for the parameters and the
initial conditions from Section II.

The system (4) was used as a test problem for efficiency
estimation of integration methods. The main motivation of
this part of the study was that construction of bifurcation
diagrams and dynamical maps is a long, time-consuming
process. Reducing computation time in nonlinear problems
simulation is a challenging task. There is the evidence
mentioned above that the semi-explicit methods being used
as basic methods in extrapolation schemes have the best
performance for many chaotic problems compared to the
other methods. We tested several adaptive stepsize
extrapolation solvers of order 8 based on the following basic
methods: explicit midpoint rule (EMP), modified explicit
midpoint rule (MEMP), linearly implicit midpoint rule
(LIMP) and two versions of the semi-explicit method,
corresponding to codes in Listing 1 (SED-1) and Listing 2
(SED-2).

The experimental results are shown in Fig. 3. We chose
computational time as performance criterion (vertical axis)
since it includes both evaluation time of right-hand side
function and additional overheads caused by extrapolation
procedure.
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SED-1 i
EMP .
MEMP
LiMP
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Elapsed Time, s
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0,002 .

T T T T 1
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Truncation Error

7
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Fig. 3. Performance plot of adaptive extrapolation solvers of order 8

It can be seen that the performance of semi-explicit
methods stands between implicit (LIMP) and explicit (EMP
and MEMP) methods. Also, as we predicted, optimized
SED-2 algorithm is more efficient than SED-1. However,
the accuracy achieved by SED methods on double precision
overcomes that of explicit solvers. Moreover, the slope of
the efficiency line of SED-2 is lower than the slope of
MEMP/EMP line which means that SED-2 code is likely to
outperform explicit methods when extended data type and
higher accuracy order are used.




PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

poot-{ By N e,
0,0001
==

1E-6-

1E-7-]

Difference

1E-8-]

1E-9-|

1E-10-]

1E-11-]

TE-12-]

TE-13-]

1E-14- .

Order 2
Order 4
Order &
QOrder &

Order 10

IR

Fig. 4. Plots of difference between D- and SED-based extrapolation solvers

In Listings 1 and 2 the number of loops k is chosen
according to results displayed in Fig. 4. Since the SED
algorithm is the approximation of the D, for systems where
diagonal implicitness cannot be expressed analytically, an
increase in the number of calculations, determined by &,
leads to their numerical convergence. One can see that even
values of k correspond to reasonable minimum of difference
for methods of respective orders. Thus efficient value of &
should be matched with the accuracy order of extrapolation
solver, e.g. k =2 for order 4 and 6, k = 4 for order 8 etc. The
paper [10] presents the proof of stability, symmetry and
time-reversibility of the D,-mehods, due to mentioned
convergence the SED-methods also share these properties.

Further we present the results of multidimensional
bifurcation analysis. Fig. 5 illustrates two-dimensional
bifurcation diagrams (dynamical maps) for the system (4) in
resolution 800x800 pixels. In order to plot dynamical maps
we need to obtain a set of 1D bifurcation diagrams first and
then analyze it to determine a number of limit cycles that the
system has for each pair of parameter values. The darkest
tint in the diagrams corresponds to chaotic behavior. Let us
note the fact that the application of the SED methods made it
possible to plot this diagrams accurately for an acceptable
time compared to implicit methods.

Study of two-dimensional stepsize-parameter diagrams
shows some interesting results. In Fig. 6 stepsize-parameter
diagrams with respect to the parameter a, are presented.
Dark color corresponds to chaotic regions. A special
property of the semi-explicit method which cannot be found
in the explicit or implicit methods can be seen in Fig. 6 (a).
When the stepsize is small, a behavior of the system is
chaotic during the interval of @, € [-0.22,-0.14], which is
approximately equal to that of the continuous system. But,
when the stepsize exceeds 0.3, the region of the chaotic
behavior expands on the larger interval of parameter values.
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This change of chaotic properties is undesirable when an
accurate simulation is needed but can be useful for a simple
discrete chaotic map construction which would be able to
work in a higher range of parameter values. Fig. 6 (b)
corresponds to LIMP method and demonstrates the superior
stability of this method comparing to the other tested
methods. However, in a case of extrapolation solver the
stability of LIMP algorithm can be slightly reduced.
Fig. 6 (c) and Fig. 6 (d) refer to EMP and MEMP methods,
respectively. They both lose stability for stepsizes higher
than 0.7.

V. CONCLUSION

In this paper the semi-explicit modification of the D,-
method is proposed. The study of SED method shows that it
can be more efficient than the other extrapolation methods
on extended data types, especially for separable dynamical
systems. These finite-difference schemes are symmetric and
time-reversible for p-reversible ODEs. The main advantage
of proposed methods is the possibility to construct single-
step explicit composition solvers, which will be the subject
of our further research. A two-memcapacitor chaotic circuit
was simulated by SED method. Stepsize-parameter diagrams
were introduced as a valuable tool for studying the influence
of the chosen discrete operator to the finite-difference
scheme behavior. It was found that the proposed semi-
implicit method causes a special non-trivial behavior on
large stepsizes, sufficiently changing the bifurcation map of
the system which can be used in discrete chaotic pseudo-
random generators. Despite the fact that numerical
efficiency of the semi-explicit ODE solver for considered
problem is relatively lower than efficiency of explicit
solvers, its superior stability, symmetry and time-
reversibility can be useful for many cases of nonlinear
problems where application of semi-implicit or fully implicit
methods is not possible.
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Fig. 5. Dynamical maps of the system (4); al, a2, b2, c, d are the parameters of system (4)
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