PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

Measurement of Speech Signal Patterns under
Borderline Mental Disorders

Alan Alimuradov, Alexander Tychkov, Andrey Kuzmin, Pyotr Churakov, Alexey Ageykin, Galina Vishnevskaya

Penza State University
Penza, Russia
alansapfir@yandex.ru, tychkov-a@mail.ru, flickerlight@inbox.ru, snpbi-pgu@mail.ru, keokushinkai@yandex.ru,
galina.vishnevskaya.62@mail.ru

Abstract—An algorithm for pitch frequency measurement for
pattern detecting systems of borderline mental disorders is
developed. The essence of the algorithm is decomposition of a
speech signal into frequency components using an adaptive
method for analyzing of non-stationary signals, improved
complete ensemble empirical mode decomposition with adaptive
noise, and isolating the component containing pitch. A block
diagramfor the developed algorithm and a detailed mathematical
description are presented. A research of the algorithm using the
formed verified signal base of healthy patients, and male and
female patients with psychogenic disorders, aged from 18 to 60, is
conducted. The research results are evaluated in comparison with
the known algorithms for pitch frequency measurement, realized
on the basis of the autocorrelation function and its modifications,
the robust algorithm for pitch tracking, and the sawtooth
waveform inspired pitch estimation. In accordance with the
results of the study, the developed algorithm for pitch frequency
measurement provides an accuracy increasein determination of
borderline mental disorders: for the error of the first kind, on the
average, it is more accurate by 10.7%, and for the second type
error by 4.7%.

[. INTRODUCTION

Currently, an assessment of human mental health is a
socially significant problem for every state, since it is directly
related with the formation of a healthy lifestyle of the
population. According to the World Health Organization,
current socially significant diseases, which are the main cause
of temporary disability, invalidity and mortality, negatively
affecting the socioeconomic factors of the state development,
are directly related to the mental health of the population [1].

An assessment of borderline mental disorders is of
particular importance in those branches of human activity that
involve an increased risk to human life and the risk of
economic consequences (operators of control systems with a
high degree of responsibility: pilots, astronauts, servicemen,
airport dispatchers, dispatchers of hazardous production
facilities, e.g., nuclear power plants, thermal power plants,
chemical industry facilities, etc.).

Recently, the research in the field of mental (psycho-
emotional) state assessment has been actively supported by
international funds and grants of organizations: Remote
Assessment of Disease and Relaps in Central Nervous System
Disorders, RADAR CNS (#115902), Foundation/Grant
Organization: EU H2020 / EFPIA Innovative Medicines

Initiative (IMI); Emotion Sensitive Assistance System,
EmotAsS (#16SV7213), Foundation/Grant Organization:
BMBF IKT2020-Grant (Sozial- und emotionssensitive
Systeme fiir eine optimierte Mensch-Technik-Interaktion);
Promoting Early Diagnosis of Rett Syndrome through Speech-

Language Pathology, (#16430), Foundation/Grant
Organization: ~ Osterreichische ~ Nationalbank  (OeNB)
Jubildumsfonds.

II.  RELATED WORK

Currently, various experimental and statistical techniques
and differentiation of signal processing methods on accessible
recording channels of the human body reactions are used for
the detection of borderline mental disorders. Methods for
evaluation, implemented on the basis of video data reflecting
mimic and gestural changes [2], [3]; signals reflecting
parameters of physiological activity of a human body
(electroencephalography, electrocardiography,
electromyography, etc.) [4], [5], [6]; biochemical blood
parameters [7], [8]; parameters of handwriting and keyboard
writing of texts [9], [10]; parameters of oculography (eye
tracking) [11], [12] are of particular interest.

An essential shortcoming limiting a wide practical
application of these methods is the obligatory condition of
contact recording/sampling/writing, which certainly affects the
mental state, which it is no longer possible to effectively
evaluate. The most promising and adaptive (in real time and
free activity) is the method based on the analysis of speech
signals (SS) [13], [14], [15].

III. MATERIALS AND METHODS

A.Informative parameters of speech signals reflecting the
borderline mental disorders

The importance of SS analysis for the purpose of
diagnosing the nervous systemdisturbances is noted in [16],
where the authors showed that the grouping of certain
informative parameters reflects the allegedly underlying
pathology.

The type and degree of severity of mental disorders are
coded into certain informative parameters of SS, called
patterns. A review analysis [17], [18], [19], [20], [21], [22] in
the field of speech formation, psychology and
psycholinguistics has revealed that speech characteristics
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capable of serving as patterns of psychogenic states
(manifested at the level of voice segments, syllables, words
and whole sentences associated with the geometric shape and
change dynamics of the speech apparatus), can be divided into
three main groups: spectral-temporal, cepstral, and amplitude-
frequency.

Each group of patterns is designed to describe certain
aspects of SS, and finds its application in the detection of
borderline mental disorders.

B. Pitch frequency

Speech represents a non-stationary acoustic signal of
complex shape, which amplitude and frequency characteristics
are rapidly changing in time. Speech consists of voiced and
unvoiced sections, being formed, respectively, as a result of
periodic and non-periodic oscillations of the vocal cords.
Periodic oscillations of the vocal cords are called the pitch (P).
The oscillation frequency of the cords is an important
informative parameter of speech, called the pitch frequency
(PF). From an acoustic point of view, the PF is the first
component of the formant frequencies (the harmonic sieve) of
speech. Besides PF, the vocal characteristics of speech also
are: the P intensity, the dynamics of the P intensity change, the
dynamics of the PF change, the PF deviation, and the
harmonics intensity ratio to the P intensity.

A peculiarity of the PF in disorders is that the intervals of
impulses repetition of the vocal cords are continuously
changing within a considerable range. In many cases, the
duration of voiced sections of speech is low; a significant part
is occupied by transient processes.

C. Approaches for the pitch frequency measurement

The task of the PF measurementconsists ofthe P contour
spotting, marking of the P periods, and the PF measuring. At
present, a large number of methods for PF measuring are
known which in general can be classified as methods in time,
frequency, and frequency-time domains.

In the time domain [23], [24], the measurement is carried
out by analyzing peaks’ distribution, transitions through zero,
correlation  (autocorrelation, measured and normalized
autocorrelation) of the signal oscillogram. Temporal methods
are the most accurate, but require careful filtering and setting
(work is done only with vocalized sections) of the original SS.
The main disadvantage is high sensitivity to the noise level in
the signal.

In the frequency domain [25], [26], the measurement is
carried out by using the maximum energy values of the
spectrum (peaks), and comparing them with frequencies that
are multiples of the PF. The main disadvantage of frequency
methods is the presence in the considered frequency band the
second or third harmonics with higher energy, in addition to
the PF.

In the frequency-time approaches [27], [28], the
measurement is carried out by analyzing the intended P
contour, highlighting the instantaneous maxima of the
individual harmonics, and dividing the signal into voiced and
unvoiced sections. The disadvantage of the frequency-time
methods is high probability of obtaining the instantaneous
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maximum of energy in the unvoiced sections due to the
presence of noise in the SS.

A wide practical application belongs to the approaches
implemented on the basis of the autocorrelation function and
its modifications (“YIN) [29], robust algorithm for pitch
tracking (RAPT) [30], and the sawtooth waveform inspired
pitch estimation (SWIPE) [31]. The popularity of these
algorithms is due to high functionality, low percentage of
gross errors, and the availability of freely distributed software
implementations.

Nevertheless, given the irregularity of the organs motor of
the speech apparatus under borderline mental disorders, the
possibilities of these algorithms are substantially limited. The
limitation is due to the use of inefficient and non-adaptive
methods for processing of complex non-stationary SS, leading
to low accuracy and large errors in the PF measurements.

In this paper, the development of an algorithm for the PF
measurement for pattern detecting systems of borderline
mental disorders is proposed. This study is the development of
previously published papers of the authors [32], [33].

D. Methods for empirical mode decomposition

The research of the SS processing methods has revealed
the perspective of using the adaptive technology for analysis
of non-stationary signals: empirical mode decomposition
(EMD) [34].

The EMD [34] is an adaptive method for analyzing non-
stationary signals stemming from nonlinear systems. The
EMD produces local decomposition of a signal into fast and
slow oscillatory functions. As a result of the decomposition,
the original signal can be represented as a sum of amplitude
and frequency modulated functions, called a mode, or intrinsic
mode functions (IMF). An analytical expression of theEMD is
as follows:

1
x(n) = )" IMFy(n) +7i(n) (M
i=1

where x(n) is the initial signal, /MF(n) is a mode, ry(n) is a
residue, =1, 2, ..., [ is the IMF number, n is discrete
timing(0<n<N, N is the amount of discrete samples in the
signal).

As a result of the SS decomposition using the EMD, one
IMF may haveoscillatory functions incommensurate in
amplitude and frequency scales, or vice versa, commensurate
oscillatory functions can appear in different modes. This
phenomenon is called ‘mode mixing’. To alleviate it, a new
method was proposed: the ensembleempirical mode
decomposition (EEMD)[35]. The essence of the method is in
addition of white noise to the original signal to create new
extremes:

x;(n) = x(n) + w;(n) )

where x;(n) are noise copies of the original signal, w;(n) is the
white noise realizations with zero mean unit variance.
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An analytical expression of the EEMD is as follows:
where j=1, 2, ..., J is the amount of white noise realizations.

Thus, as a result of the decomposition, more regular IMFs
with commensurate scales of oscillatory functions are
obtained. The main disadvantage of the EEMD is that the
decomposition is not complete. Each noise copy of the original
signal x;(n) is decomposed independently of other realizations,
and the residue 7;(n)=r;.1(n)—IMF; (n) is computed for each of
them at each stage, without connection between different
implementations. In addition, residual white noise is observed
in the IMF, and various implementations of noise copies can
generate different amounts of IMFs, which makes final
averaging more difficult.

Another type of the EMDis complementary ensemble
empirical mode decomposition (CEEMD) [36] which more
qualitatively solves the problem of residual noise, using
additional (that is, adding and subtracting) pairs of noise with
direct and inverse amplitude values. Nevertheless, the
averaging problem remains unresolved, since different noise
copies of the original signal can produce different amounts of
IMFs.

x| 11 1 [x(n)
[x}‘(n) =l e @
where x,(n) is a noisy signal with white noise, x;*(n) is a noisy
signal with white noise with inverse amplitude values.

Taking into account these shortcomings, a new method
called the completeEEMD with adaptive noise (CEEMDAN)
is proposed in [37]. The main idea of the method is the
addition of controlled noise to the original signal to create new
extremes. The first IMF is extracted using the EEMDmethod,
averaging the first modes of the signal with white noise:

]
. 1 _
TMF,(n) = 72 IMF;,(n) = IMF, (n) 5)
=1

Then the first residue is calculated, independent of the
noise realization:

r(n) = x(n) — IMF,(n) (6)

For further IMF extracting, a specific noise is addedto the
current first residue. This noise is an IMF of white noise,
obtained by the EMD method.

Despite the above mentioned advantages of the
CEEMDAN method, the authors note its disadvantages in
[38]:

e IMFs contain a residual noise.

e Informative modes about the signal during the
decomposition are extracted later that using the EEMD
with some parasitic modes in the early stages of the
decomposition.

In the same paper, the authors solve the noted
shortcomings, and propose an improved complete EEMD with
adaptive noise.
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The essence of reducing the residual noise is the use of

1
500 = ) IMF(m) + 1) G
i=1

local mean values instead of IMF values.

The EEMD method independently decomposes each
realization of the signal with noise, therefore at the first stage
of each decomposition implementation there is one local mean
value and one mode.

Given that the true mode can be defined as the difference
between the current residual and the averaged value of its local
averaged value, we get the following expression:

Ei(x(n)) = x(n) — M(x(n)) (7

where M is the operator creating the local average value of the
applied signal.

Then, for the first IMFs obtained by the EEMD and the
CEEMDAN, the expression will have the following form:

THF, (n) = {E; (5,(m)) = (x5 (0) — M(x ()
= (5;(m)) — (M (% (n))

where (. ) is the averaging action.

®)

Estimating only the local average value and subtracting it

from the original signal, we obtain the following
expression:equation is centered.
IMF;(n) = x(n) — (M(x;(n))) ()]

The essence of the elimination of emerging parasitic IMFs
in the early stages of decomposition consists in the reduction
in the overlap of the scale-energy spaces of the first two
modes.

Here is an algorithm and mathematical description of the
improved CEEMDAN method.

e Step 1.Using the EMD apparatus and determining the
local average values of noise copies of the original
signalx;(n) = x(n) + BoE;(wj(n))from (8), the first
residue 1, (n) = (M (x]- (n)))is calculated.

e Step 2. At the first stage, the first mode IMF;(n)=x
(n)—r;(n) for i=1 is calculated.

e Step 3. The second residue is calculated as the averaged
local average value of the noise copies of the first
residuer; (n) + B1E,(w;(n)), and the second mode
IMF,(n) = r,(n) — r,(n) = r,(n) — (M (7'1 (m) +
BrE>(w; (n))))is determined.

e Step 4. In the subsequent stages, the i-th residue
r(n) =(M (n-_l(n) + [i1E; (Wj(n))))for =3, ..,[ is
calculated.

e Step 5. The i-th mode is calculated: IMF;(n) =
ri—1(n) — ry(n).

e Step 6. Go to Step 4 for the next value i.
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The constants f=¢; std (r(n)) are selected to obtain the
desired signal-to-noise ratio between the added noise and the
residue to which the noise is added. Note, that usingthe
EEMD, the signal-to-noise ratio between the added noise and
the residue is increased by an order of i. This is due to the fact
that the noise energy in the i-th residue, ©>1, is only a low
noise energy added at the beginning of the algorithm
operation. To emulate this behavior, in this paper we will set
po so that g is directly opposite to the desired signal-to-noise
ratio between the first added noise and the analyzed signal: if
we express the signal-to-noise ratio as a standard deviation
factor, then we have fy=gsstd (x(n))/std(E(w,(n))). To obtain
noise realizations with smaller amplitudes for the last stages of
decomposition, we will perceive noise in the remaining IMFs
as a result of its pre-processing by the EMD, i.e. without their
normalization by standard deviation.

IV. DESCRIPTION OF THE ALGORITHM

The authors have developed analgorithm for the PF
measurement to detect the patternsof borderline mental
disorders. A block diagram for the algorithm (blocks 1-8) is
shown in Fig. 1.

Y

Determination
of IMF with a pitch

1
Speech signal input

Y '

Pitch frequency

Pre-processing (PF) measurement

Y

Determination
of voiced sections

v

Determination
of PF functionals

Y . Y ;
¢ Empirical mode ’ Trining |7 Determination
(IMF) decomposition The result output | of "norm/pathology”

Y
10 Database of
"norm/pathology” ==
values

Fig. 1.A block diagram for the algorithm for the PF measurement to detect the
patterns of borderline mental disorders

The algorithm decomposes the SS into frequency
components, allocates the component containing the P, and
measures the PF.

The algorithm works as follows (Fig. 2):

e Processing in block 2 is performed for the SS in the full
time interval.

Processing in block 3 is performed in a sliding window
mode with a duration of 15 ms, and an overlap of 7.5
ms.

Processing in blocks 4-8 is performed in a sliding
window mode with a duration of 20 ms (variations are
possible),and a 10 ms overlap.

Let’s consider each stage of processing in more detail.

1) Input of a speech signal: The input is carried out with
the following parameters: sampling frequency is 8000 Hz,
quantization capacity is 16 bits.

2) Pre-processing. The removal of a constant component
(displacement of the signal relative to zero by a certain
constant value), which usually occurs in the analog-to-digital
converter, is carried out. In order to remove the constant
component or, in other words, to equalize the signal with
respect to zero, the arithmetic mean of all signal samples is
determined, and subtracted from the original signal.

The next stage of pre-processing is the SS filtering by the
fourth-order Chebyshev high-pass filter to remove frequencies
below 130 Hz, which include the main rumble, crackle and
other noises in this range. Filtering with a frequency cut at 130
Hz does not affect the useful information in the signal [39].

At the end, the correction of natural distortions of the
spectrum (minus 6 dB per octave) is carried out, arising in the
human speech apparatus during the speech [40].

Pre-processing is performed
for a speech signal in the full
time interval
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The SS are passed through a correction filter with a transfer
function:

m

W(z) = Z a,z7¢ (10)

k=0

where a; are constant coefficients, m is an integer (m> 0), k is
the coefficient number. Most often m=1, and the transfer
function has the form: W(z) = ay — a;z™*

3) Determination of voiced sections: Voiced sections are
isolated from the SS using the cluster analysis in the space of
the calculated values of Zero-Crossing Rate (ZCR),
Autocorrelation Function(ACR), and energy/power (PWR)
[41]. The vocalization segments were identified as segments
with the highest PWR value and the lowest values of ZCR and
ACR. The solutions were smoothed by the fifth-order median
filter using the following rule: the voiced segments shorter
than 30 ms were classified as segments that did not contain
vocalization (formed without the participation of vocal cords);
but segments that did not contain vocalization, shorter than 20
ms, were classified as vocalized due to the physiological
aspect of speech formation [41].

4) Empirical mode decomposition: On the basis of a
detailed analysis of the advantages and disadvantages of
various types of decomposition, and taking into account the SS
specificity under borderline mental disorders, the authors
decided to use the improved CEEMDAN to decompose the
signal into frequency components [39].

The result of decomposition of the voiced SS section by
the improved CEEMDAN is shown in Fig. 3. Decomposition
parameters: the standard deviation of noise is 0.2 mV, the
number of realizations is 500, and the maximum permissible
number of sifting iterations is 5000.

As it can be seen from Fig. 3, the voiced SS section is
decomposed into nine IMFs. The first two modes contain the
main noise present in the original signal. The sixth mode and
the subsequent ones are low-frequency, and correspond to the
trend present in the signal. Valuable high-frequency
information associated with the closure of vocal cords appears
with the third to fifth IMF.

5) Determination of the IMF with a pitch: Informative
modes (IMF3-IMF5) have more energy than the trend modes.
The amplitude distribution of IMFs is well described by the
short-term energy function. In the developed algorithm, the
logarithm of energy is used to compress the signal amplitude
in a large dynamic range, maximizing the operation of the
algorithm to the work of the human auditory apparatus:

N
LE; = log, Z(IMF,-(n))2 (11

n=1
where LE; is the logarithm of IMF energy.

The process of determination of the IMF with a pitch
consists in sequent modulo calculating of the value difference
of energy logarithms between the current and subsequent
modes:

d = |LE; — LE;44] (12)

where d is the difference between the logarithms energy values
of the current and subsequent IMF.

As a result, from the sequence of the obtained d values, the
greater of them corresponds to a sharp decrease of energy
between the informative IMF containing the P and the trend
one [42], [43]. Fig. 4 shows a graphical interpretation of the
mode determining process containing the pitch.
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According to the determination rule, it follows from
Fig. 4a that the fifth IMF can contain the pitch. The analysis of
the spectral distribution of the fifth IMF and the original SS
confirms the correctness of the mode determination containing
the pitch: the only harmonic PF component of the fifth IMF
corresponds to the first component of the harmonic sieve of
the original SS (Fig. 4b).
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Fig. 5 shows the oscillograms of the original signal of the
fifth IMF with the pitch. As a measurement unit of the power
spectral density, a composite value of dBW/Hz with a
reference level of 1 W/Hz (power allocated in the frequency
band of 1 Hz wide) was selected.
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Fig. 5.0scillograms of the original signal (black color) of the fifth IMF with
the pitch (grey color)

6) The pitch frequency measurement: It is carried out using
the measuring function of the signal instantaneous energy, the
Teager operator, which has simplicity, efficiency, and good
susceptibility to the SS change:

T(n) = (IMF,pp(n))” = IMFypp(n — 1)
x IMF, pg(n + 1) (13)

where 7(n) is the function of the Teager operator; IMF;, PF(n)
is the IMF containing the pitch.

Fig. 6 shows the oscillogram and the function of the
Teager operator of the fifth IMF.
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Fig. 6.0scillogram (black color) and the function of the Teager operator (grey
color) of the fifth IMF

31

PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

To measure frequency, closely spaced maxima and the
Teager operator function sare used, between which the
difference in discrete time readings is determined; the P period
is calculated in seconds, and the PF is in Hz:

Tax(M + 2) — Tppar ()

Py = - (14)
fo= (15)
Py

where P, is the pitch, f; is the PF; T,,,(n), T (ntl) are the
maxima of the Teager operator function; f; is the sample rate.

7) Determination of the pitch frequency:To expand the
information space on the P frequency, the following values are
determined:

e PH mean value in Hz:

P
1
fO,mean = Ez fo,p (16)
p=1

where p=1, 2, ..., P is the period number of the PF.

e The maximum max (fy) and the minimum min (fy) of the
PF values, in Hz.

e Standard contour deviation of the PF:

P
1 2
SDfO = mZ(fO,p _fO,mean) (17)
p=1
e A range of background frequencies:
log M
PFR =12 x —(“““(f‘))) (18)
log,
e Mean absolute jitter value:
1 1
MAJ === > |fopr = fonl 19
p=P-1
o Ajitter:
MA
= / (20)
fO,mean

e An average relative perturbation of the PF, smoothed
over tree P periods:

1 Zp_l Jop+1itfoptfop-1

RAP = P27~ 3 %Pl 100 @D

fO,mean

e The PF perturbation coefficient, smoothed over five P
periods:
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p+2
1 Zp_z Zk:p_z fO,k _
_44&p=3 5

foi

(22)

PPQ = x 100

fo,mean

8) Output of the results: At this stage of the algorithm, the
vector formation of the received PF patterns and its values in a
convenient for the further the norm/pathology definition is
carried out (Fig. 1 blocks 9, 10 in grey color).

V.  INVESTIGATION OF THE ALGORITHM

A.Description of the speech signal database

To conduct the research of the developed algorithm, a
group of patients, and a verified signal base have been formed
with the support of K.R. Evgrafov Regional Psychiatric
Hospital (Penza, Russian Federation), and Penza State
University. The group of patients has been formed according
to the clinical disorder state of the following diagnostic
headings of the International Classification of Diseases ICD-
10: F48.0, F45.3, F43.2, and F41.2.

The group of patients with psychogenic disorders included
100 males and females, aged from 18 to 60, with clearly
expressed symptoms. The control group of 100 patients,
without signs of borderline mental disorders (conditionally
healthy) was also formed. The average age in the experimental
group of patients with borderline mental disorders was 40.2
years, and 35.4 years in the control group.

In both groups, women were predominated (75%),
agedfrom 40 to 59, and men aged from 50 to 59. The majority
of patients were employed (90.8%), among which were
employees of enterprises and organizations (65.0%). Smaller
shares fell on workers (14.2%), creative workers (12.5%), and
a small amount were pupils, students and non-employed. The
majority of patients had higher or incomplete higher education
(69.2%).

B.The research results

To evaluate the algorithm efficiency, errors of the first and
second kind were used. In this study, the task wasto determine
the patterns of borderline mental disorders, so the first kind
error would be a false assignment of the ‘normal’ SS status,
spoken by a person with a psychogenic disorder, and a second-
kind error would be a false assignment of the ‘pathology’ SS
status, pronounced by a healthy person. The results of the
study of the developed algorithm are evaluated in comparison
with the PF measurement algorithms, the software
implementation of which is available for free access: “YIN”,
RAPT, and SWIPE (Table 1).
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In accordance with the results obtained, it follows that the
developed algorithm by the authors provides an accuracy
improvement of the PF measurement: for the error of the first
kind,it is more accurate by 8% than for the RAPT algorithm;
by 13% than for the “YIN” algorithm, and by 11%, than for
the SWIPE algorithm; for the second-kind error, it is more
accurate by 4%, 7%, and 3%, respectively.

CONCLUSION
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These results allows to conclude that the developed
algorithm based on the improved CEEMDAN method can be
successfully used in pattern detecting systems of borderline
mental disorders, and introduced into psychiatric clinical
practice.

TABLE I. RESULTS OF DETERMINATION OF BORDERLINE MENTAL DISORDERS

Determination result Errors of the
Predictable result Pathology Norm first and second
kind, %
Robust Algorithm for Pitch Tracking (RAPT)
Pathology 84 pers. 16 pers. Ist 16
Norm 8 pers. 92 pers. 2nd 8
Algorithm based on autocorrelation function (“YIN”)
Pathology 79 pers. 21 pers. 1st 21
Norm 11 pers. 89 pers. 2nd 11
Sawtooth Waveform Inspired Pitch Estimation(SWIPE)
Pathology 81 pers. 19 pers. 1st 19
Norm 7 pers. 93 pers. 2nd 7
Developed algorithm
Pathology 92 pers. 8 pers. Ist 8
Norm 4 pers. 96 pers. 2nd 4
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