
CINFRA: A Quick System Modeling Approach
Vladimir Ivanov

State University of Aerospace Instrumentation
St. Petersburg, Russia

vladimir.ivanov@ieee.org

Swaminathan Ramachandran
CircuitSutra Technologies Pvt. Ltd.

Bengaluru, India
r.swaminathan@circuitsutra.com

Abstract—In this paper we deal with System-on-Chip (SoC)
system (transaction and higher abstraction) level modeling. The
traditional approach based on libraries of custom IPs and
SystemC/TLM-2.0 framework is saddled with issues, which
prevents wider dissemination of system modeling technology in
the industry. Incompatible interfaces of custom IPs give rise to
integration issues. Current SystemC/TLM-2.0 framework
requires highly skilled developers having software and hardware
expertise. We propose a new approach that looks promising and
overcomes the above-mentioned drawbacks. The essence of our
approach is an infrastructure library that hides the complexity of
SystemC. System level models are assembled from infrastructure
elements with functional cores expressing hardware capabilities.
Implementation results and proof-of-concept are presented.

I. INTRODUCTION

With ever-increasing complexity, SoC requires adequate
means and tools for modeling. Means includes models and
languages for system specifications. One of the most popular
means is SystemC [1], [2]. SystemC is a system level
modeling language, based on C++ that has gained a lot of
traction in the fields of system level modeling, architectural
exploration, performance modeling, software development,
functional verification, and high-level synthesis. It is a set of
C++ classes and macros, which provide an event-driven
simulation interface enabling a designer to simulate concurrent
processes. SystemC processes can communicate in a simulated
real-time environment, using signals of any (built-in or user-
defined) data types.

Transaction level modeling in SystemC involves
communication between SystemC processes using function
calls. TLM-2.0 focuses on modeling of on-chip memory-
mapped buses. TLM-2.0 has a layered structure, with the
lower layers being more flexible and general, and the upper
layers being specific to bus modeling. TLM-2.0 has kicked off
a thriving third party ecosystem for development of reusable
and standard IPs that can be shared across teams and
companies.

The flexibility and generality of C++ in modeling
hardware across multiple levels of abstractions and desired
cycle accuracy, via templates and libraries, has some
downsides. The hardware engineers and system architects are
put off by the syntactic complexity (template heavy) and
debug (into library internals) of SystemC. There is a
noticeable amount of boilerplate code that needs to be written
to handle common scenarios. In addition, the tool vendors
have made limited investment into the language, whose
reference implementation is available from Accellera site [2].

Tools provide instruments for model development
including IDEs, which aggregate GUIs, libraries, compilers,
linkers and execution environment or, in case of SystemC,
simulation engine. Synopsys “Platform Architect MCO”©
represents a typical tool in this area. The tool provides an
environment for SystemC/TLM-2.0 models’ development at
different levels of accuracy (untimed, loosely timed, cycle
accurate). It gives a powerful means for system architecture
performance optimization including power optimization. One
of the important parts of such tools is the library of
predesigned elements. Libraries usually include typical
hardware elements such as clock generators, registers, buses
etc.

Despite the powerful means and tools in system model
development, there are substantial drawbacks as listed below,
which prevents its wider dissemination in the industry:

Semantic complexity of SystemC/TLM-2.0 for
hardware engineers and as a result, system models are
typically developed by highly trained software
developers who must have both hardware and software
expertise;
Long development cycles for model development
despite hardware libraries usage, due to a labor-
intensive development process, testing and verification;
Integration of IPs taken from hardware libraries is not
straightforward due to rigid interfaces. Quite often,
selected IPs bring the required functionality, but due to
incompatible interfaces they cannot be integrated in a
model project;
Software projects are isolated within on-shelf tools.
Usually commercial tools do not export system model
program codes outside their tool environments.

We have attempted to address all these issues in this paper.
In the following sections, we describe a system modeling
methodology, which dramatically simplifies and speeds up
system model development, while at the same time maintains
the requested level of accuracy and simulation quality.

The paper consists of five sections. After the current
introduction, the essence of the proposed methodology is
described in Section II. Section III presents generic CINFRA
library, which is a simple library of infrastructure elements
and templates. This library is the cornerstone of the proposed
methodology and allows developing system models with any
level of accuracy and complexity. We present some
implementation results in Section IV and conclusions in
Section V.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

II. PROPOSED SYSTEM MODELING METHODOLOGY

A. Model declarative specification

Usually a “system model” of hardware assumes a complex
entity consisting of many interacting elements, which in turn
can also be treated as a system. Such hierarchical
decomposition can be continued until some level where all
elements are atomic and non-decomposable. The term
“model” exactly reflects the level of decomposition
(abstraction) where we want to stop decomposition. For
example, in Register Transfer Level, the model includes
registers, digital signals and logical operations carried out on
those signals. More abstract Transaction Level Model (TLM)
hides communication details, and instead of signals considers
transactions for data transfer. Below, in the paper, “system
model” will be assumed to be of TLM or higher abstraction
models. “System model” term will be used for such types of
models.

We specify hardware models as formal algorithms
following [3]. Nevertheless, due to hardware nature, it needs
to be kept in mind that it should be a declarative specification.
The basis of the system modeling methodology is an adequate
underlying model of computation (MoC) [4]. Description of
system hardware models based on MoC brings us at least two
advantages, which are vital for complex systems:

mathematically rigorous hardware elements
behavior and their interactions;
ability for formal verification.

Hardware components of TLM models are reactive. It
means that a corresponding component starts work when it
receives all input data. The component generates output data
after processing all input data. This reactive behavior
motivates us to use the dataflow model of computations
(Dataflow Network Processes, [3], Section B.4) for
specification of system models. Let us also note that this
specification is purely declarative.

Fig. 1 shows an example of a dataflow model consisting of
two terminal operators A, B and data 1, 2, 3, 4 among them.
An operator A starts work (or fires) when both input data 1
and 2 are full. The operator A generates an output data 3. The
data 3 is an input data for an operator B. Thereafter, the full
data 3 enforces firing the operator B that, in its turn, generates
an output data 4.

Operators A and B might be not terminal but rather
complex operators. In such cases, they play role of wrappers
for internal terminal operators and their firing is defined
by internal components of corresponding operators.

Our strategy in building the system modeling methodology
is the following.

A

B

1 2

3

4

Fig. 1. An example of dataflow model

Keeping in mind the mentioned dataflow MoC, we are
going to use SystemC to build infrastructure templates and
objects, which will behave according to this MoC and provide
related hardware functionality. TLM-2.0 supplies the standard
communication capabilities. One of the obstacles on the way is
the perceived complexity of SystemC/TLM-2.0. While
SystemC has found a home as a system level modeling
language, it still has work to do to endear itself to people
coming from non-software background. One way to deal with
this is to provide a framework that they are already familiar
with and tucks away the complexity until they need to deal
with it. What is the familiar paradigm? Passing input/output
values as function parameters and capturing the processing
logic within the function. This provides a simple mind-map for
consuming input values, processing it and generating
output.

The framework also takes care of providing the appropriate
input/output SystemC ports and TLM memory buses to
connect with other SystemC/TLM-2.0 compliant models out
of the box. The framework provides this through a simple
declarative mechanism, which captures the intent, and takes
care of transforming the same to corresponding
implementation at compile time.

We introduce three types of infrastructure templates for
building system models.

COMPONENT – terminal element bringing hardware
functionality; it is atomic and the functional core is
executed when all input values are presented.
BLOCK – complex element consisting of
COMPONENTs and other BLOCKs; it does not have
its own functionality; all block functionality is
expressed in components.
SUBSYSTEM – complex element consisting of
COMPONENTs and BLOCKs with specific
communication capabilities, it reflects a complex
cluster of hardware elements.

General methodology of system model development
consists of the following actions.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 423 --

Specification of the model as a dataflow model in terms
of operators, complex operators and data flow amongst
them.
Mapping operators onto COMPONENTs and complex
operators onto BLOCKs or SUBSYSTEMS.
Development of functional cores for corresponding
COMPONENTs or referring to functions from an
existing functional library.
Writing program code by declaration of model
COMPONENTs, BLOCKs, SUBSYSTEMs and
elements from CINFRA library.
Binding declared modules by using corresponding
macros from CINFRA framework or specification of a
text netlist.
Testing.

B. Component template
COMPONENT is a sc_module declaration. It shown in

Fig. 2. The Component is the basic unit to capture the
hardware functionality. The Component, by default, awaits
inputs on all its input ports, and then fires the functional core
while passing all the input data as input Params<data-
type>&… to the function. The functional core then executes
the functionality and populates the output in
Params<data_type>&… which is then forwarded to the
corresponding output ports. Params<> may be thought of as a
vector/map which has a 1-1 correspondence to its
corresponding port. Execution (and pipeline) delay can also be
(optionally) inserted after the functional core execution.

For e.g. if we need to model a simple Max2 Component
with a reset/in, two inputs int/in and one output int/out, it may
be declared as follows:

// Simple functional core to calculate max
void max2(Params<int> &in, Params<int> &out) {

out[0] = (in[0] > in[1]? in[0]: in[1]);
}
// Max2 Component
COMPONENT (Max2, PORT (rst_t, 1, IN), PORT (int, 2,

IN), PORT (int, 1, OUT)) {
COMPONENT_CTOR (Max2) {

// Associate this Component with Max2
// functional core
this >set_func_core(&max2);

}
};
The communication between Components is standardized

and this allows for flexible exchange of information based on
the need.

Each port is declared as a triad – PORT (data-type, size,
IN/OUT), where

data-type is any C++ built-in type, SystemC type or
User-defined data type.
block(data-type) changes the port to a blocking port-
type from the default non-blocking port type.
evt_t is a data-less port type that signals events.

COMPONENT

Functional Core

p1 p2 pN

Fig. 2. A COMPONENT template

wr_tlm_t & rd_tlm_t is a stand-in for TLM2.0
write/read sockets.
size is the number of ports, default size is 1.
IN/OUT determines the direction of the port. INOUT is
not supported now.

A Component or Block supports all PORT types, whereas
a SubSystem supports a subset of PORT types.

Callbacks are associated with each PORT/IN type to
handle the incoming signals. Drive functions are associated
with each PORT/OUT type. Default implementation is
provided, which users can override, if needed.

C. BLOCK template
BLOCK is a sc_module declaration. Fig. 3 illustrates

BLOCK concept.

The Block is a structural mechanism to put together
simpler Components/Blocks to model more complex logic.
BIND() is a function that is used to dynamically discover and
connect the given pins, instantiating a channel in between as
needed. The Block, unlike the Component, can execute
operations when only a part of data are available for
computations. For this purpose, we use a specific component -
mux2, having two inputs and one output. The mux2 executes
data time-division multiplexing and is triggered by only one
input. A dataflow model of mux2 is shown in Fig. 5.

The following example illustrates the Block concept. Let
us suppose we need to model a Max4 Block (using 3 simple
Max2 Components) we could declare and bind it as follows:

// Max4 Block
BLOCK (Max4, PORT (rst_t, 1, IN), PORT (int, 4, IN),
PORT (int, 1, OUT)) {

// Declare 3 Max2 Components.
Max2 m0, m1, m2;

BLOCK_CTOR(Max4)
: m0(“m0”), m1(“m1”), m2(“m2”)
{
BIND(“rst_0”, “m0.rst_0, m1.rst_0, m2.rst_0”);
BIND(“in_0”, “m0.in_0”);
BIND(“in_1”, “m0.in_1”);
BIND(“in_2”, “m1.in_0”);
BIND(“in_3”, “m1.in_1”);
BIND(“m0.out_0”, “m2.in_0”);
BIND(“m1.out_0”, “m2.in_1”);
BIND(“m2.out_0”, “out_0”);
}

};

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 424 --

BLOCK

COMP1 COMP2

COMP3

p1 p2

p3

Fig. 3. An example of a BLOCK template

D. SUBSYSTEM template
SUBSYSTEM is a sc_module declaration. Fig. 4 illustrates

SUBSYSTEM concept.

A SubSystem is a structural element like a Block except
that it has restrictions on the kind of ports it permits at the
boundaries (only Reset, Clock and Tlm ports permitted).

For e.g. if we would like to support a pipeline operation on
a given input TLM stream, we could do it as follows:
SUBSYSTEM (Image, PORT (rst_t, 1, IN), PORT (wr_tlm_t, 1,
IN), PORT (wr_tlm_t, 1, OUT)) {

PipeOp0 p1;
PipeOp1 p2;
PipeOp2 p3;

SUBSYSTEM_CTOR (Image)
: p0(“p0”), p1(“p1”), p2(“p2”)
{
BIND(“rst_0”, “p0.rst_0, p1.rst_0, p2.rst_0”);
BIND(“in_0”, “p0.in_0”);
BIND(“p0.out_0, p1.in_0”);
BIND(“p1.out_0”, “p2.in_0”);
BIND(“p2.out_0”, “out_0”);
}

};

E. Communications
The Communication and Computation part of the

Components are strictly separated as it was described in [5].
The framework provides a standard set of communication
mechanisms for notifications and exchanging information.
They are listed as follows:

1) evt_t: data-less notifications.

2) rst_t: Specialized evt_t with custom behavior to reset
the module to init_state.

3) pos_clk_t/neg_clk_t: Clock types triggered at positive
and negative edges.

4) T: In-built or user defined data type that is implemented
using sc_in/sc_out ports. This provides non-blocking
communication interface.

5) block(T): Like T, except that the transaction blocks
unless there is space to write/data to read. This may be
used for flow-control.

SUBSYSTEM

BLOCK1

BLOCK2

BLOCK
N

CO
M
M

CO
M
P

p

Fig. 4. An example of a SUBSYSTEM template

1. wr_tlm_t/rd_tlm_t: Write/Read TLM sockets. Write and
Read TLM transactions are handled separately for ease of
modeling. tlm_generic_payload is wrapped with a simple
structure (mreq_t) to hide its complexity.

Currently INOUT transactions and TLM/Debug
transactions are not supported.

III. CINFRA LIBRARY

A. Infrastructure elements
Many infrastructure-plumbing elements were developed to

enable easy connectivity of Components. Some of them are
listed below:

mux2/fmux – different multiplexers: mux2, multiplexer
with 2 input ports and 1 output port, fmux, configurable
multiplexer with variable number of input ports and user
defined functional core;
dmux2/fdmux – different demultiplexers: dmux2,
demultiplexer with 1 input port and 2 output ports, fdmux,
configurable demultiplexer with variable number of output
ports and user defined functional core;
fwd – forwarder copies data from the input port to
configurable number of output ports;

Fig. 5. A dataflow model of the multiplexer mux2

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 425 --

sel – selector selects data from the input port according to a
user defined rule in the functional core and copies selected
data to the output port;
splitter – splitter routes data from configurable number of
input ports to configurable number of output ports
according to user defined rules;
terminator – terminator terminates input or output ports;
const – constant value generator.

B. Declarative syntax
The declarative syntax is enabled using C++ Template

Meta Programming. Some of the important elements in it are
described below.

1. ToPort: This is used to convert a duet of data-type and
direction to a SystemC port of appropriate type using
template partial specialization.

template<typename T, direction_t D>
struct ToPort {
using type = sc_core::sc_out<T>;
};
template<typename T>
struct ToPort <T, IN> {
using type = sc_core::sc_in<T>;
};
template<>
struct ToPort <evt_t, IN> {
using type = sc_core::sc_in<bool>;
};
template<>
struct ToPort <evt_t, OUT> {
using type = sc_core::sc_out<bool>;
};

2. Port: This is used to capture the user defined Port
declarations and communicate it to the underlying
class.

template<typename T, size_t N, direction_t D>
struct Port {
using port_data_type = T;
static const size_t port_size = N;
static const direction_t port_dir = D;
};

3. Variadic template base class to capture port
declarations. This information is then used to declare
SystemC ports, instantiate corresponding port-buffers,
evaluate trigger condition for FunctionalCore, generate
pre-callbacks for ports etc.

template<typename FunctionalCore, typename ...Ts>
struct Component
: public sc_core::sc_module {
// See how declarative syntax can be used to drive
// SystemC port declarations
std::tuple< sc_core::sc_vector< typename ToPort<typename
Ts::port_type, Ts::port_dir>::type >... > ports;
/* … */
}

C. Common extensible core framework in C++11
The framework provides a simple and consistent way to

declare a Component/Block/SubSystem. The heavy lifting of
transforming this declarative structure to C++ code is
accomplished using the C++ Variadic Template feature and

Template Meta Programming. Component<>, Block<> and
SubSystem<> classes are defined as generic base classes with
mandated functionality. Each user-defined
COMPONENT/BLOCK/SUBSYSTEM inherits this
functionality and expands on it as required. Since the bulk of
the functionality is already captured and well-tested in the base
classes, the amount of code to be written by the user is
drastically reduced (order of 2x-10x).

D. Text based netlist connectivity and configuration
The framework supports dynamic discovery of SystemC port

types and has knowledge of how to connect common port types
(and instantiate appropriate channels, if needed). The user can
extend this for user-defined types as well. While the dynamic
discovery may slow down the init-time of the system, this is
miniscule compared to the runtime of a typical simulation. In
addition, this helps cut down the compilation times by changing
fix-recompile-run to fix-run cycles, for netlist connectivity
errors.

Hierarchical (XML-based) configuration support is provided
for initializing the init-time parameters of
Components/Blocks/SubSystems. These can help to override the
default values of the base classes to suit the SoC being
constructed. When SystemC Configuration, Control and
Interface (CCI) [7] is released, this may be updated to CCI
standard without much ado.
<system>

<module name="t"> <! top >
<module name="tb"> <! testbench >

<attribute name="tv" value="10,20,60,9,
1,16"/> <! testvector >

</module>
<module name="adder_0">

<attribute name="port_names" value="rst_in,
int_in, int_out"/>

<attribute name="delay" value="10 ns"/>
</module>
<module name="adder_1" clone="adder_0"/>
<module name="adder_2" clone="adder_0">

<attribute name="delay" value="15 ns"/>
</module>
<attribute name="connect"

value="tb.rst, adder_0.rst_in_0,
tb.rst1, adder_1.rst_in_0,
tb.rst2, adder_2.rst_in_0,
tb.a, adder_0.int_in_0,
tb.b, adder_0.int_in_1,
tb.A, adder_1.int_in_0,
tb.B, adder_1.int_in_1,
adder_0.int_out_0, adder_2.int_in_0,
adder_1.int_out_0, adder_2.int_in_1,
adder_2.int_out_0, tb.c"/>

</module>
</system>

IV. IMPLEMENTATION RESULTS

A. CINFRA library implementation
The CINFRA library is developed using standard C++11

features and uses the Boost library for XML config parsing.
The code has been compiled using both g++ and clang++
compilers on Windows and Linux (64-bit). The complete
source code is only a few kLOC; as it leverages the
SystemC/TLM2.0 infrastructure in full.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 426 --

B. System Cache Model
The CINFRA framework was used for modeling a System

Level Cache which is one of the important parts of shared-
memory System-on-Chip (SoC) architectures (see for example
[6], Chapter 5.2). The System Level Cache (SLC) defines
memory access performance of application processors in most
smartphones. The functional and loosely timed SLC models
(TLM) are described by the same program code, with the
difference in time attributes. Time attribute for all model
components is equal to zero in the functional model and they
are non-zero in the loosely timed model. Metrics
characterizing CINFRA efficiency for this case is shown in
Table I. In the table, we compare SLC development based on
SystemC/TLM-2.0 only and with CINFRA framework. We
ported SystemC/TLM-2.0 SLC model into Synopsys Platform
Architect© environment and compared simulation speed of
ported model and model in CINFRA framework.

TABLE I. EFFICIENCY METRICS

Metrics Value
Model development time reduced by ~ 50%

Code length reduced 40% - 70%
Simulation speed increased 2 - 8 times

We did not use IP libraries for model development.
CINFRA methodology requires only functional library
development. Functions from this library are responsible for
implementation of core hardware functionality. Component
functional cores refer to such functions. In case of the SLC,
the functional library includes program codes related to the
cache operations. Functions can be developed in C or C++
style. Only new functions require unit testing. Other model
elements are taken from well-tested CINFRA library and does
not require unit testing at all. It substantially reduces testing
efforts.

V. CONCLUSION

We proposed in this paper a system modeling methodology
founded on algorithmic specification of a complex hardware
system. It provides us with an ability to use formal verification
of system models and substantial simplification of
development process. Simplification is approached by
development of the specific CINFRA framework that includes
three basic templates and infrastructure elements allowing us

to build system models with any level of complexity and
accuracy. CINFRA framework is created just using pure
C++11. It allows escaping to script languages for system
models programming and significantly increases simulation
speed of resulting models. The basic templates annotated by
indexes (delay, area, power consumption etc.) supports
development of performance models or models for
architecture explorations. From a practical point of view, a
process of system model building consists of three steps:
system specification as a dataflow model, development of
functional cores expressing elementary hardware functionality
and mapping the dataflow model onto CINFRA framework.

CINFRA framework does not have issues related to IPs
integration due to incompatible interfaces. Hardware
functionality is described in functional cores that can be bound
with any interface parameterized in CINFRA templates.

 The proposed methodology was applied for development
of the System Cache TLM model and has demonstrated its
efficiency first in terms of time-to-market.

ACKNOWLEDGMENT

The research leading to these results was supported by the
Ministry of Education and Science of the Russian Federation
grant 8.4048.2017/4.6 from 31.05.2017.

REFERENCES

[1] D. C. Black, J. Donovan, B. Bunton and A. Keist, SystemC: From the
Ground Up, Second Edition. New York: Springer, 2010.

[2] Accelera Systems Initiative™ official website, SystemC 2.3.1
(includes TLM), 03.11.2016, Web:
http://www. accellera.org/downloads/standards/systemc.

[3] S. Edwards, L. Lavagno, E. A. Lee and A. Sangiovanni-Vincentelli,
"Design of Embedded Systems: Formal Models, Validation and
Synthesis," Proceedings of the IEEE, vol. 85, no. 3, 1997, pp. 366-
390.

[4] S. Marco, L. Lavagno and A. Sangiovanni-Vincentelli, "Formal
Models for Embedded System Design," IEEE Design & Test, vol. 17,
no. 2, 2000, pp. 14-27.

[5] CircuitSutra Technologies Pvt Ltd official website, STARC
Complient Model, Web:
http://www.circuitsutra.com/uploads/3/7/0/9/37098571/starc_complia
nt_models.pdf.

[6] J. L. Hennesy, D. A. Patterson, Computer Architecture, A
Quantitative Approach, Third Edition. New York: Elsevier Science,
2003.

[7] Accelera Systems Initiative™ official website, SystemC CCI, Web:
http://www.accellera.org/activities/working-groups/systemc-cci.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 427 --

