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Abstract—Software defect prediction is one of the software 
quality assurance activities that can be applied during the 
software development life cycle. This activity helps quality 
assurance groups and project managers to determine risky 
modules which require more attention and more testing efforts. 
In this study, we investigated nine classification algorithms on 22 
datasets which contain class-level metrics as part of our within-
project case study. After this case study, we sorted the datasets 
regarding their data instances and performed cross-project 
experiments on the large datasets, namely Apache Xalan, Xerces, 
and POI projects. We demonstrated that Decision Tree based 
algorithms are mostly superior to the other classification 
algorithms for within-project defect prediction and acceptable 
results can be achieved with Logistic Regression algorithms for 
cross-project defect prediction even if the data transformation 
approaches are not applied. 

I. INTRODUCTION 
Most of the software defect prediction models utilize from 

historical defect and metrics data [1]. From machine learning 
perspective, this prediction problem can be represented as a 
supervised learning problem and classification algorithms such 
as Naive Bayes and Random Forests can be applied. However, 
there are some real-world cases in which there are no previous 
defect data. For example, the first project of a company in a 
new domain such as unmanned aerial vehicles (UAV) will not 
be able to use historical defect data to build the defect 
prediction model. In this kind of cases, it’s possible to use data 
from the other projects or companies. In literature, this research 
area is known as Cross-Project Defect Prediction (CPDP). 
Recently, many researchers proposed novel methods to apply 
data from the other companies for defect prediction. Herbold 
[2] published a very recent systematic mapping study on this 
issue and he accessed 49 CPDP papers published between year 
2002 and 2015. He reported that 25 publications applied 
Logistic Regression technique and summarized the 
contributions of these 49 papers in detail. 

In this study, we aimed to analyze the available 
classification algorithms in Azure Machine Learning (ML) 
Studio for within-project defect prediction problem and build 
cross-project defect prediction models without using any data 
transformation algorithm. We performed our experiments on 
the following 22 datasets which exist in the PROMISE 
repository [3] and prepared by Jureczko and Madeyski [4]: 
Workflow, Xerces, Xalan, POI, Velocity, Tomcat, 
Thermoproject, Systemdata, Synapses, Skarbonka, Sherapion, 
Redactor, Prop, Forest, Ivy, JEdit, Log4j,Lucene, Ant, Arc, 
Kalkulator, Nieruchomosci.  

There are 20 metrics in these datasets. 6 metrics (WMC, 
DIT, NOC, CBO, RFC, and LCOM) belong to Chidamber-
Kemerer metrics suite [5], two metrics (CA and CE) are 
proposed by Martin [6], three metrics (IC, CBM, AMC) are 
suggested by Tang et al. [7], five metrics (NPM, DAM, MOA, 
MFA, CAM)  belong to Bansiy and Davis metrics suite [8], one 
metric (LCOM3) is proposed by Henderson-Sellers [9], two 
cyclomatic complexity metrics (MaxCC, avgCC) are related 
with McCabe cyclomatic complexity metric [10], and one 
metric is the popular lines of code (LOC) metric.  

The investigated classification algorithms are Averaged 
Perceptron, Bayes Point Machine, Boosted Decision Tree, 
Decision Forest, Decision Jungle, Locally Deep Support, 
Logistic Regression, Neural Network, and Support Vector 
Machine. After the performance of these algorithms are 
calculated based on Area under ROC Curve (AUC) evaluation 
parameter, top three algorithms were marked in the tables with 
#1, #2, and #3 labels. Since we did not observe an algorithm 
which performs best on all the 20 datasets, we decided to count 
the number of these labels. Based on the count of these labels, 
we identified the top algorithms for within-project defect 
prediction. After this first case study, we listed the datasets 
based on their sizes and selected the large ones for cross-
project defect prediction case study. In the second case study, 
we performed our experiments on Apache Xalan, Xerces and 
POI projects. Therefore, we created four different analyses: 

1) Xalan for training – Xerces for testing

2) Xerces for training – Xalan for testing

3) Xerces for training – POI for testing

4) POI for training –  Xerces for testing

After the best algorithm is selected, the best model was 
transformed into a web service and deployed on Azure cloud 
platform. In addition, a web-based client application was 
implemented to consume this web service. The following 
explains the Related Work. Section III shows the methodology 
applied in this study. Experimental results are given in section 
IV. Section V shows the conclusion and future work.

II. RELATED WORK

There are many recent papers on cross-company defect 
prediction. Traditional software defect prediction models are 
evaluated under within-company defect prediction research 
area. Yu et al. [11] analyzed whether the features or instances 
are more important for cross-project defect prediction and 
concluded that features are more important than instances 
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based on their analyses on NASA and PROMISE datasets. 
Gunarathna [12] identified 30 CPDP studies as part of 
systematic literature review (SLR) study and reported that 
models using Nearest Neighbour and Decision Tree provide 
good performance in CPDP problems. Hosseini et al. [13] 
proposed a new data selection approach called Genetic Instance 
Selection for CPDP context and concluded that it is promising 
for the selection of training data. He et al. [14] proposed a 
novel data selection method called TDSelector and reported 
that the prediction models using this method provide better 
performance than the baseline methods. Wu et al. [15] 
developed a semi-supervised structured dictionary learning 
(SSDL) approach for cross-project semi-supervised defect 
prediction problem. Hosseini et al. [16] demonstrated that 
search based instance selection and feature selection can 
improve the performance of CPDP models. Yu et al. [17] 
designed a feature matching and transfer approach (FMT) and 
showed that it is effective for CPDP. Yu et al. [18] suggested a 
data filtering approach based on Agglomerative clustering and 
showed that it improves the performance of CPDP models. Yu 
et al. [19] showed that the class imbalance learning method 
called under-sampling improves the performance of CPDP 
models. Herbold et al. [20] analyzed the performance of local 
models in CPDP context and reported that they provide a minor 
difference compared to global models. You et al. [21] CPDP 
problem was modelled as a ranking problem and suggested a 
ranking-oriented CPDP method. As seen in these recent 
studies, researchers are still developing methods for this 
challenging problem. 

III. METHODOLOGY

Datasets regarding to the software projects were 
downloaded from the PROMISE repository [3]. Since there 
were different versions of each project such as Xerces-init, 
Xerces-1.2, Xerces-1.3, Xerces-1.4, we decided to merge these 
datasets to get a larger dataset. It’s known that a larger dataset 
mostly simplifies the learning process of machine learning 
algorithms in machine learning community. This merge 
operation was performed for the other projects such as JEdit, 
Ivy, Forrest, POI, and Log4j as well. Therefore, we got only 
one dataset for each project. 

For the evaluation of our fault prediction models, we 
applied the hold-out validation approach. In this approach, the 
original dataset is split into two parts, namely training and 
testing. The performance of the model on the testing set is 
considered as the generalization capability of the learning 
model. We used 70% of the dataset for training and 30% of the 
dataset of testing. This step is performed with the Split Data 
component in Azure ML Studio platform. The experiment 
screen regarding to the within-project defect prediction is 
shown in Figure 1. The dataset component (poi-merge.csv) is 
inserted into the top of the experiment screen as seen in Figure 
1. Two-Class Boosted Decision Tree component, shown at the
left hand side of the screen, represents the learning algorithm 
in this experiment. All the other classification algorithms were 
used after this algorithm was applied. Split Data component 
helps us to specify the hold-out evaluation approach. If the 
dataset is not large enough, K-fold cross-validation might also 
be considered as an alternative evaluation method in machine 

learning. To do so, Partition and Sample module must be used 
instead of Split Data component. Train Model component in 
the figure uses the training dataset to learn the parameters of 
the learning algorithm. Once the training model component is 
inserted into the screen, the class label of the dataset must be 
specified on the Train Model component with the help of 
Launch Column Selector button. Score Model component 
analyzes the performance of the model in the testing set. 
Evaluate Model component helps to depict the evaluation 
parameter results. All of these components in italics are shown 
in Fig. 1. 

Fig. 1. Experimental design for the case study-I 

Fig. 2. Experimental design for the case study-II 

In Fig. 2, experimental design for the case study II is 
depicted. In this figure, we have two datasets because while 
one of them will be used for the training step, the other one 
will be used for the testing step. 

Evaluation results are given based on the AUC (Area under 
ROC Curve) evaluation parameter which is between 0 and 1. 
If the value is near to 1, this indicates that the model’s 
performance is perfect. We can state that the higher this value 
is, the better the performance of the model is. While the x-axis 
of the ROC (Receiver Operating Characteristics) curve plots 
the false positive rate, y-axis represents the true positive rate. 
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This curve passes from the points (0, 0) and (1, 1). Once new 
points are added to this curve, the integral of this curve 
provides the area under this curve. 

We divide our experiments into two categories: 

 Case Study I: Within-Project Defect Prediction 

 Case Study II: Cross-Project Defect Prediction 

Since a large amount of data will be required to build a 
high-performance CPDP model, we sorted the datasets based 
on their sizes. Therefore, Case Study-II was performed on the 
large datasets instead of all the datasets used in Case Study I. 
However, Case Study I was performed for all the datasets and 
all the classification algorithms. Also, all the classification 
algorithms were investigated for Case Study II. 

IV. EXPERIMENTAL RESULTS

Nine classification algorithms were applied for both of the 
case studies. While 22 datasets were used in the first case 
study, three datasets were investigated for CPDP analyzes. 

A. Case Study I: Within-Project Defect Prediction 
In this case study, all the classification algorithms were 

investigated for the within-project defect prediction. The top 
three algorithms are indicated with the red colour in Table 1. 
Red 1 indicates that the corresponding algorithm works best 
for that dataset. We decided to count the number of these 
labels (1, 2, and 3) to select the best algorithm for the case 
study I. 

TABLE I.  EXPERIMENTAL RESULTS FOR CASE STUDY-I 

In Table 2, we show that how many times an algorithm has 
been listed in the top three ranks during the experiments. 
According to the Table 2, it is observed that decision jungle, 
decision forest, and boosted decision tree algorithms work 
better than the other classification algorithms when all the 

datasets are considered. Since all of these three algorithms are 
based on the decision tree concepts, we can state that the 
decision tree based algorithms are more appropriate for within-
project defect prediction when class-level metrics are used. 

TABLE II.  PERFORMANCE RESULTS OF EACH ALGORITHM 

B. Case Study II: Cross-Project Defect Prediction 

Since Xalan, Xerces, and POI datasets had larger amount of 
data instances, we decided to work with them for cross-project 
analyzes. According to the experimental results, we observed 
that Logistic Regression works best for most of the cross-
project cases as shown in Table 3. We did not perform any data 
filtering or data selection method while building our CPDP 
models. Therefore, we can state that a large amount of cross-
project data might be good at predicting the defects in another 
environment and no complex data selection algorithms are 
required to build these CPDP models. However, if the reported 
performance results are not acceptable for a specific domain 
such as real-time mission critical systems, it’s absolutely 
required to integrate recent data selection and data filtering 
methods into the machine learning models. 

TABLE III. CROSS-PROJECT ANALYSIS RESULTS 

After these analyzes were done, the best model for within-
project defect prediction was transformed into a web service in 
Azure ML Studio Platform. The selected dataset for this 
transformation was Log4j and the algorithm was Decision 
Jungle since it provides the best performance over all the other 
classification algorithms.  

Web Service Input and Web Service Output components 
must be integrated into the experiment screen to build the web 
service. After the web service was deployed into the Azure 
cloud platform, a web-based client application was 
implemented using ASP.NET technology. The inputs are 
received from the user, sent to the web service, and the defect 
prediction result is returned to the user. Azure ML Studio 
platform easily lets developers to use the request/response API 
produced after the web service is produced. 
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V. CONCLUSION AND FUTURE WORK 
In this study, several classification algorithms were first 

investigated for within-project defect prediction and it was 
shown that decision jungle, decision forest, and boosted 
decision tree algorithms which are decision tree-based 
algorithms provide better performance than the other 
classification algorithms. In the second case study, it was 
demonstrated that logistic regression based CPDP provides 
acceptable results even if any data transformation and data 
filtering method are applied. In addition, we showed that the 
transformation of the prediction model into a web service is an 
efficient approach for building software fault prediction 
systems.  Also, it was concluded that acceptable results can be 
achieved if the cross-project data are large enough to build the 
training model. In the future, new experiments will be 
performed on the new datasets and data filtering algorithms 
will be integrated into these systems to improve the prediction 
results. 
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