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Abstract—Continuous health monitoring provides a promising
way for early detection of complications development in patients
with chronic conditions and plays significant role in forward-
looking applications and services related to fitness, well-being,
chronic diseases treatment and independent living for elderly.
A number of arrhythmia detection algorithms are being devel-
oped within a CardiaCare project that is aimed at continuous
monitoring of heart function in real-time and analyzing electro-
cardiograms on a smartphone. Arrhythmia detection algorithms
are heavily rely on features extracted from electrocardiogram
recordings, in particular, on reliable detection of QRS complexes.
In this paper, we present fast and reliable algorithm based on
joint application of Teager energy operator and level crossing
sampling resulted in high detection performance indicators.

I. INTRODUCTION

According to World Health Organization so-called car-
diovascular diseases (CVDs) are the leading cause of death
globally: more people die annually from CVDs than from any
other cause. It is typical for Commonwealth of Independent
States (CIS) as well.

TABLE I. CVD CONTRIBUTION TO MORTALITY IN CIS

Georgia 67

Ukraine 64

Azerbaijan 60

Russia 57

Moldova 56

Belorussia 53

Kazakhstan 50

Armenia 50

Kyrgyzstan 49

Tajikistan 39

Majority cardiovascular diseases can be prevented by ad-
dressing behavioural risk factors such as tobacco use, un-
healthy diet and obesity, physical inactivity and harmful use
of alcohol. People with cardiovascular disease or who are at
high cardiovascular risk need early detection and management
using counselling and medicines, as appropriate.

Within the CardiaCare project the efforts are concentrated
on the development of the continuous monitoring system aimed
timely detection of rhythm abnormalities. Despite the fact
that the arrhythmias are harmless in general, they can pose
serious threat of complications against chronic diseases such as
hypertension or diabetes. Therefore, continuous heart rhythm
monitoring provides the possibility to detect the deterioration
of heart function and even to save the life.

The system operates as it is shown in Fig. 1. Raw cardio-
gram data are received by smartphone app and passed to the
analysis core.

Fig. 1. Continuous monitoring system operation

Detection of cardiac abnormalities relies on electrical activ-
ity of the heart that can be registered and visualised with a plot
that is known as cardiogram. Each feature of the cardiogram
is related to activity of specific part of the heart from atrial
contraction to ventricular relaxation. Normal sinus rhythm of
the cardic cycle consists of five typical waves: P, Q, R, S and
T.

Most important in analysis is the highest point of the R
wave, so-called R peak. Successful identification of R peaks
allows to split the signal into segments on which other features
can be estimated. Examples of different rhythm anomalies that
are aimed to be catched in CardiaCare project are shown below.

In normal sinus rhythm you see the lengths of RR interval
in 60-100 beats per minute (bpm). This rhythm is shown in Fig.
2 Sinus tachycardia, characterized with frequent beats (more
than 100 bpm), is illustrated by Fig. 3. If sinus bradycardia
occurs the heart rate is below 60 bpm. Bradycardia recording
is shown in Fig. 4.

In Fig. 5, 6, 7 there are arrhytmias that require more
detailed analysis but R peaks play a vital role in localization
of cardiac cycles.

It is obvious that in this scenario precise but complicated
algorithms cannot be used since heavy computations can drain
the battery of mobile device in minutes.
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Fig. 2. Normal sinus rhythm

Fig. 3. Sinus tachycardia

Fig. 4. Sinus bradycardia

Fig. 5. Sinoatrial block

Fig. 6. Atrial flutter

Fig. 7. Wolff-Parkinson-White syndrome

One of the methods was proposed by Yamamoto and
Yoshida in 2013 [1]. This approach based on Teager-Kaiser
energy operator widely used in speech processing [2]. This
operator defines energy of a signal produced by a simple
harmonic oscillator. Due to less computational requirements
this method is prominent for devices with restricted energy
capabilities. In this work the one-pass algorithm based on
Teager-Kaiser energy operator computation was constructed,
tested against the real ECG recordings and implemented as a
standalone library.

II. R PEAK DETECTION BASED ON TEAGER-KAISER

ENERGY OPERATOR

Let us briefly discuss the background of Teager-Kaiser
Energy Operator (TKEO). Detailed explanation can be found
in [2] and [3]. Consider an object with mass m suspended
by a spring with a constant factor characteristic of the spring,
or stiffness, k. If the mass is displaced from its equilibrium
position, a restoring elastic force is exerted by the spring. This
force which obeys Hooke’s law and is given by

F = −kx (1)

where x is the displacement from the equilibrium position. The
following second order differential equation can be deduced by
means of Newton’s second law to describe the simple harmonic
motion of considered object and is given as

F =
d2x

dt2
+

k

m
x = 0 (2)

The solution to equation 2 is given by

x(t) = A cos(ωt+ φ) (3)

where x(t) is the position of the object at time t, A is the
amplitude, ω is the frequency, and φ is the initial phase. The
total energy of the object is given as the sum of kinetic energy
of the object and the potential energy of the spring, given by

E =
1

2
kx2 +

1

2
mẋ2 (4)

By substituting x(t) = A cos(ωt + φ), we get the following
expression for the energy:

E =
1

2
mA2ω2 (5)

Now we consider the continuous-time form of Teager energy
operator defined to be

Ψc[x(t)] = (ẋ(t))2 − x(t)ẍ(t) (6)

Substituting x(t) = A cos(ωt+ φ), we obtain

Ψc[x(t)] = A2ω2 (7)

Thus, the operator defined by 6 is the amplitude and frequency
product squared. But from 5 the total energy is proportional
to the amplitude and frequency product squared.

In order to get the discrete-time form of the operator,
consider the digital signal xn given by

xn = A cos(Ωn+ φ) (8)

where Ω is the digital frequency Ω = 2πf/Fs. Here f is
analog frequency and Fs is the sampling frequency. By means
of trigonometric identities we obtain

xn−1xn+1 = A2 cos2(Ω + φ)−A2 sin2(Ω) (9)

Substituting A2 cos2(Ω + φ) with x2n we get

A2 sin2(Ω) = x2n − xn−1xn+1 (10)

Restricting Ω to be positive and less than π/4 and approx-
imating the sin(Ω) with Ω we get the unique solution with
approximation error less than 11%. Hence, the discrete-time
form of the Teager energy operator is defined by

Ψd[xn] = x2n − xn−1xn+1 (11)
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Since R peaks have high frequency component and usually
high amplitude, this approach is useful to enhance these peaks
and suppress the other features.

The method proposed in [1] involves three base steps.

1) Estimation of the instantaneous energy of a signal

Ψd[xn] = x2n − xn−1xn+1

2) Emphasis of the R peaks

yn = Ψd[xn]
3

3) Choosing parameters N , α and β and computing the
adaptive threshold

zn = α
1

N + 1

N∑
k=−N

yk + βσy

Parameters α and β depend on a signal and N should be
chosen from one to doubled length of RR interval.

The algorithm can be implemented in one-pass in obvious
way if we modify the sum in threshold for every sample.

For the appropriate thresholding at least one R peak should
happen during the window size. And for better results one R
peak should happen exactly.

III. LEVEL CROSSING

The wearable and implanted sensor devices possessing
means of wireless data transfer are in center of attention of
vendors of medical and consumer electronics now. In such
systems the key value is acquired by signal quality, volume
of transmitted data and consuming of energy. The traditional
analog-to-digital converters, as a rule, use uniform sampling
of signals, continuously generating counting and consuming
energy irrespective of character of the read-out biomedical
signals. For reduction of volume of transmitted data and
increase in energy efficiency on the side of sensors different
techniques of non-uniform sampling are used. One of such
approaches is the method of intersection levels [24], [25].

When sampling the continuous signal the method of inter-
section of levels implies that the initial analog value (tension,
current intensity, temperature, etc.) which value changes over
time, is displayed in the discrete set of values by the following
method: the range of possible values of an analog signal
breaks into a set of the intervals restricted to the lines of
level corresponding to values of levels of quantization; the
value on an output of the transformer appears at the time of
intersection by a signal of the line of level (fig. 8). Use
of a method of intersection of levels is justified by smaller
energy consumption and smaller level of intrinsic noises of
the transformer.

In spite of the fact that initially the method of a perecheniye
of levels was used for sampling of analog signals [26], [27],
[28], [29], there were recently operations in which this method
is applied to a digital signal for the purpose of detection
of the structural elements which are characterized by high
concentration of intersections of the levels, in other words,
surrounding peak values of segments.

a) b)

Fig. 8. Comparison of uniform sampling and sampling on level

We will consider a signal of x(t). We will select a set of
lines of level {L1, . . . , Lm} (let for simplicity level spacing
identical and equally to q), then, having applied the described
method, we will receive the discrete sequence of intersec-
tions {x1, . . . , xn} and the appropriate sequence of timepoints
{t1, . . . , tn} (see fig. 9). We will designate interval[ti−1, ti]
for dti.

Fig. 9. Creation of the sequence of intervals between crossings of levels

Depending on activity of a signal the frequency of crossings
will be various as crossings will arise only when there is an
essential change in value of a signal, that is irregularly. The
quicker the initial signal changes, the crossings are located
more closely to each other, the time intervals between them are
shorter. Therefore, the short time intervals surrounding rather
large number of crossings can be surveyed as indicators of
peaks and complexes of peaks. Obviously, the method will be
effective when processing of the signals discharged the wave-
like. Treat similar signals also an ECG signals.

IV. ALGORITHM OF DEFINITION OF A QRS COMPLEX

The traditional system of definition of a QRS complex
includes a set of the components necessary for receiving,
strengthening, processing of a signal and decrease in his
zashumlennost. Use of the systems based on a method of
crossing of levels and processing of unevenly had data [21],
[22], [23] is one of new approaches to detection of QRS
complexes.

As it has been shown in the previous section, short time
intervals between crossings of levels correspond to signal
peaks (fig. 10). This property can be used for detection of
a QRS complex or, at least, localization R peaks.
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Fig. 10. Use of a method of crossing of levels to an ECG signal

We will consider the transformer providing permission in
M bits, then we have 2M−1 levels of quantization. The input
signal always is between two lines of level, for N values of
a low significant bit (LSB) which is defined as

LSB =
2A

2M
,

where A defines the range of input amplitude (tension). When
the input signal crosses the upper or lower line, we remember
counting and we shift pair of levels on one value of LSB.
Then new levels of quantization are compared to an input
signal again. Use of N > 1 smooths an input signal as though
preliminary filtering as in this case after each change of the
direction in an input signal from growth to falling and vice
versa N−1 intersection in the same direction is passed was
executed, and noise with an amplitude it is less, than N values
of LSB, are filtered.

We will look for R peaks among the moments of intersec-
tions of tk. We will define the sliding window in W serial
intersections (taking into account passed in case of N > 1).

D(tk) =

tk+[W2 ]−N+l∑
i=tk−[W2 ]

dti.

The notation of [x] in a formula designates the greatest integral
number which is less or equally x, at the same time is entered
the correction of l:

l =

{
0 W,
1 W.

If the size of D(tk)of doesn’t surpass in advance chosen
threshold value of T , then the moment of crossing of tk is
considered peak.

As the signal of an ECG is influenced by such factors
as reduction of muscles and respiration, the final drawing
can change therefore to reduce sensitivity of an algorithm to
threshold value of T , it is adaptive adapts during processing
of a signal as follows. We will enter two additional estimates:
SP—the changing D size assessment for a signal of R-waves,
and NP—the changing D size assessment for the collateral
peaks which aren’t R-peaks. Then, if the found peak is R-peak,
then

SP = SP − [c1× (SP −D)],

otherwise
NP = NP − [c1× (NP −D)],

and for each found peak value the threshold of T is updated
according to

T = SP + [c2× (NP − SP )].

Values of constants of c1 and c2 are chosen peer 0.25 for
simplicity of integer realization with use of bit operations.

V. REALIZATION OF AN ALGORITHM

For realization of an algorithm the program in language
C ++, providing calculation of the moments of crossing, the
potential moments of peaks and the moments of the beginning
of a QRS complex is written. For definition of the moment
of the beginning of a QRS complex, the return viewing of the
sequence of intervals of dti from the moment of potential peak
is used until size doesn’t exceed the doubled average value in
a chain.

At the same time for focusing on an algorithm, but not
features of realization, in the program arithmetics with a
floating point is used, the organization of calculations with
use of integer arithmetics and bit operations isn’t considered.

Following [23], as entrance values of M , W , N are chosen,
respectively, 7, 7 and 4.

The program reads out from standard input the size of
range of tension (number in a format with the fixed point, the
representing tension expressed in millivolts), then the sequence
of couples of values (each couple from a new line) representing
line representation of a temporary mark (which in the program
isn’t interpreted in any way) and, through a gap, tension size in
a format with the fixed point. As the output data on a standard
conclusion the program prints the sequence of the temporary
marks corresponding to the moments of the beginning of the
found QRS complexes.

VI. POSSIBLE IMPROVEMENTS OF AN ALGORITHM

We will notice that when detecting a QRS complex emer-
gence of various sources of hum, such as muscular contrac-
tions, shift of the ECG basic line due to respiration, the hums
arising at contact to an electrode, especially in case of wearable
devices faces a problem. Other components of signals, such as
P and T waves can also break detection process. Besides, the
main morphological features of a QRS complex vary from
the patient to the patient. Thus, almost all algorithms of QRS
of detection use several types of filtration for suppression of
undesirable parts of a signal. At realization of such filters the
complexity of calculations and power consumption is enlarged.
By means of the surveyed method it is possible to reject the
most part of undesirable hums and signals with an amplitude
less, than a preset value. Thanks to this property, for detection
of a QRS complex the simple algorithm without use of any
auxiliary schemes or calculations can be applied to additional
filtration.

To avoid false detection of QRS because of the fast high T-
waves characteristic of an ECG of some patients, the adaptive
limiting temporary zone in which any found QRS complexes
which are too close to previous are rejected is established. For
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measurement of RR of intervals, it is possible to use the local
timer, or the interval of time can be calculated by summation
of values of dti. This part of an algorithm can be realized by
comparison of a time interval between the current counting
and the previous R-peak with a threshold of the limiting zone
which is chosen PB peer to a half of an average RR interval.
The value of PB is established initially in 1 second (a normal
rhythm) and every time when the R-peak is taped, its value is
adaptive is updated, with use of the following equation:

PB = PB − [c3× (PB −ΔT )]

The value of c3 is chosen 0.125 to simplify realization.
Coefficients are chosen so that all operations of multiplication
can be realized by means of rejection of bits.

VII. EXPERIMENTS

In recent years achievements in the field of apparatus
technologies made possible to collect the larger databases
consisting of a multichannel ECG. The most extensive and
freely available collection of the ECGs wave forms can be
found in the databank PhysioNet [30] representing a set of
databases. This set of databases contains hundreds of an
ECG received from the patients having various heart diseases
and also examples of an ECG of healthy people lasting
from 30 minutes about one days and more. These records
were annotated by experts-clinicians and, in certain cases, are
checked by automatic algorithms. For check of efficiency of
algorithms of definition of QRS and arrhythmias the database
of arrhythmias of MIT-BIH (MIT-BIH Arrhythmia Database)
of PhysioNet bank is used. The database of arrhythmias MIT-
BIH contains 48 half-hour excerpts from two-channel out-
patient records ECG with marks from 100 to 124 and from
200 to 234, received from 47 patients investigated in laboratory
of arrhythmias of BIH during the period from 1975 to 1979.
23 records ECG are chosen in a random way, other 25
records represent less widespread, but clinically significant
arrhythmias. Records are digitized with a frequency of 360 Hz
on the canal with the resolution of 11 bits in the range of 10
mV. Each record was annotated by two or more cardiologists
independently of each other. This base of arrhythmias will
be used for check of efficiency of the surveyed method of
detection of QRS - complexes, based on crossing of levels.

VIII. CONCLUSION

During this work we have implemented the novel algorithm
designed to detect R peaks on an electrocardiogram and we
have developed the system to verify the detectors on a set
of signals from MIT-BIH database. Average sensitivity of the
algorithm approximately equals to 95 percents that is quite
good. The worst case is the 91 percents achieved on the
notoriously 207 signal that is reported to be too hard for well-
known precise methods as well.
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TABLE II. QRS DETECTION PERFORMANCE

TP FN FP Precision Recall F
2273 1 0 0.99956 1 0.99978

1857 15 12 0.991987 0.993579 0.992783

2098 25 89 0.988224 0.959305 0.97355

2078 8 5 0.996165 0.9976 0.996882

2111 124 125 0.944519 0.944097 0.944308

2272 152 336 0.937294 0.871166 0.903021

1326 156 703 0.894737 0.653524 0.75534

1877 106 261 0.946546 0.877923 0.910944

1369 127 444 0.915107 0.755102 0.82744

2453 89 77 0.964988 0.969565 0.967271

1681 16 435 0.990572 0.794423 0.88172

2536 23 3 0.991012 0.998818 0.9949

1791 9 10 0.995 0.994448 0.994724

1108 69 747 0.941376 0.597305 0.730871

1952 3 1 0.998465 0.999488 0.998976

2318 86 79 0.964226 0.967042 0.965632

1532 10 3 0.993515 0.998046 0.995775

2157 264 120 0.890954 0.947299 0.918263

1401 485 592 0.742842 0.70296 0.722351

1448 3 415 0.997932 0.777241 0.873868

2475 4 2 0.998386 0.999193 0.998789

1516 22 1 0.985696 0.999341 0.992471

1598 9 20 0.9944 0.987639 0.991008

2388 216 217 0.917051 0.916699 0.916875

1886 32 43 0.983316 0.977709 0.980504

2118 8 11 0.996237 0.994833 0.995535

2420 269 573 0.899963 0.808553 0.851813

2622 2 29 0.999238 0.989061 0.994123

1665 122 545 0.931729 0.753394 0.833125

2093 878 851 0.704477 0.710938 0.707692

2965 110 41 0.964228 0.986361 0.975169

2454 75 157 0.970344 0.93987 0.954864

2336 123 412 0.94998 0.850073 0.897254

1675 2239 1574 0.427951 0.515543 0.467681

2148 37 113 0.983066 0.950022 0.966262

3246 40 114 0.987827 0.966071 0.976828

1983 65 225 0.968262 0.898098 0.931861

2101 71 92 0.967311 0.958048 0.962658

2037 4 10 0.99804 0.995115 0.996575

2350 18 75 0.992399 0.969072 0.980597

2353 43 114 0.982053 0.95379 0.967715

2551 34 53 0.986847 0.979647 0.983234

1797 213 270 0.89403 0.869376 0.881531

2229 43 27 0.981074 0.988032 0.984541

1570 3 1 0.998093 0.999363 0.998728

1778 14 9 0.992188 0.994964 0.993574

2313 398 763 0.853191 0.751951 0.799378

2746 18 6 0.993488 0.99782 0.995649
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