
Analysis of Paradoxes in Fingerprint
Countermeasures

Vafa Andalibi
Indiana University Bloomington

Bloomington, USA
vafandal@indiana.edu

Francois Christophe, Tommi Mikkonen
University of Helsinki

Helsinki, Finland
{francois.christophe, tommi.mikkonen}@helsinki.fi

Abstract—The widespread usage of new user tracking
methods, i.e. web-based fingerprinting, is becoming a serious
privacy concern as third parties try to track users across
different websites. Meanwhile, it is usually difficult or impossible
for users to opt-out fingerprinting if they want to fully benefit the
services provided by the application or website. Several studies
tried to address the privacy issue in browser fingerprinting,
mostly by faking attribute values. However, such configuration
spoofing may lead to inconsistencies that paradoxically make the
user stand out even more. This study analyzes these paradoxes in
browser configuration with the creation of a Markov model
based on a test dataset. Given a target spoofed attribute, the
implemented tool in this study outputs the other attributes that
must be consequently altered, not to cause paradoxical
configuration. Similarly, this tool can suggest a set of random
attributes to be spoofed with suggested values, not creating a
paradoxical configuration. The tool Implemented in this study
can be used by browser extension developers and should help
them spoof browser attributes more sophistically, thus preserving
users' privacy against cross-site web-based browser
fingerprinting.

I.INTRODUCTION

Cookie is the asset for storing information
corresponding to session state, e.g. user’s personal
configurations as well as private data, on client device. The
main purpose for cookies is to identify users and track their
past activities on a website for their convenience and rapidity
of access. Due to the functional nature of cookies, it is
always a privacy and security concern in modern web
browsers and so it is possible to disable cookies.
Nevertheless, a new method of tracking users was recently
proposed by anti-fraud and advertising companies which
employs fingerprinting.

As the large-scale experiments conducted in [1], [2]
shows, web-based fingerprinting is a serious privacy
concern. There are two main reasons behind the motivation
for device fingerprinting:

Third-party tracking, i.e. tracking users across unrelated
websites to build up a user profile allowing efficient and
accurate advertisement targeting. Fraud prevention, i.e. web-
based fingerprinting is a powerful tool for finding related
transaction. The gathered database can be used to blacklist
fraudulent users. Moreover, illegal sharing of accounts can
be detected using fingerprinting.

The fingerprint of a device is a combination of system
attributes that can be queried and accessed from the browser.
This combination has usually a high likelihood to be unique
and therefore can be used as a device identifier. A natural
best practice for web-based fingerprinting is to select
attributes based on their stability, i.e. attributes that seldom
change or at least change very gradually. These attributes,
generally collected via JavaScript, range over a broad set of
values such as, the User agent header, the Accept header, the
Connection header, the Encoding header, the Language
header, the list of plugins, the platform, the cookies
preferences (allowed or not), the Do Not Track preferences
(yes, no or not communicated), the time zone, the screen
resolution and its color depth, the use of local storage, the
use of session storage, a picture rendered with the HTML
Canvas element, a picture rendered with WebGL, the
presence of AdBlock, and the list of fonts [1].

Although opting-out is possible from third-party
fingerprinting services, there is indeed no guarantee for a
successful opt-out. Even for giving the possibility of a
successful out-out, the fingerprint needs to be computed
anyway, assuming cookies are disabled and that the third-
party is honest. A common approach in building browser
extensions for fingerprint opt-out is to induce a shared
fingerprint, so that all the users with that fingerprint are not
distinguishable [3].

During the data gathering phase of Panopticlick
project[1], Eckersley found that impossible configurations
are reported by the browsers with spoofed configuration. For
instance, such impossible configuration would be a device
claiming to be an iPhone and supporting flash plug-ins at the
same time. Using common browser features was shown to be
effective in Eckersley’s study, therefore providing
extensions to increase privacy added by users is reasonable.
As a case study, members of a cybercriminal forum were
advised to change user-agent by installing and utilizing an
extension for anonymity [4].

Nikiforakis et al. [5] analyzed the most popular browser
extensions that are purposed to spoof user-agent. In their
test, navigator and screen objects, as two most-probed
objects by the fingerprinting libraries, were listed via
JavaScript and subsequently compared with HTTP header
sent with their request. Interestingly, they found that in all
cases, the true identity of the browser, inadequately hided by

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

the extension, is exposable through JavaScript
straightforwardly and many of them were suffering from the
impossible configuration issue. Particularly, they mention
that none of the analyzed extensions try to modify the screen
object. Therefore, impossible screen resolution was reported
by all the users who were browsing on a laptop or
workstation and disguised it as a smartphone, e.g. 4k
resolution on an iPhone.

In this work, we address impossible configurations, i.e.
paradoxes in the configuration resulted from alteration of
browser extensions. A dependency model of the browser
features is created based on the attributes that are used for
device fingerprinting. This Markov chain model implicitly
contains the dependencies between the attributes by simple
terms of probabilities. Hence, this Markov model reveals
two facts about the afore-mentioned paradoxical example.
First, it highlights that alterations of user-agent must be
followed by changing the display resolution. Second, a
possible screen resolution that matches the chosen user-
agent, e.g. 750x1334, is recommended to the developer.
Consequently, web-based device Fingerprinting
countermeasures can follow this model to report consistent
spoofed features.

The structure of this paper is as follows. First, the
related studies and configuration spoofing tools and
extensions are presented. This is followed by the
methodology and subsequent results of the study. The
evaluation of the current tool is finally presented in the last
section.

II. RELATED WORKS

Since the main purpose of this study is to help to build
a successful countermeasure to device-fingerprinting, the
related works presented in this section are focused on
countermeasures. Moreover, web-based device
fingerprinting was presented in introduction.

Many browser plugins are developed with the main
goal of stopping trackers, e.g. Ghostery, AVG Do Not Track,
User-Agent Switcher for Chrome, etc. Main academic
fingerprinting countermeasure studies includes FireGloves
[6], ShareMeNot [7], PriVaricator [8]. The defense of some
of these works are based on blacklisting the trackers. This
approach is not much effective for two reasons: first, not all
trackers are covered in black listing, second, some trackers
can try to obfuscate their scripts, bypassing the blacklisting
filter. Similarly for heuristically updated blacklist, any new
tracker that implements a method that is not covered by that
particular heuristic may not be noticed, as presented in [9],
Mowery et al. describe how to use the blacklist content itself
as an additional fingerprinting element.

Other works, e.g. FireGloves, User-Agent Switcher for
Chrome, and PriVaricator, try to fake the attributes which as
pointed out in [1], [5], usually lead to inconsistencies and
paradoxes that make the user stand out even more. This
corresponds to the issue addressed in this study. This case is
specifically examined in [10] for browsers employing
FireGloves. Nikiforakis et al. [5] suggest not to use any user-
agent-spoofing browser extension but this is in our opinion

rather extreme and the following section presents our
method allowing the use of spoofing without inducing
paradoxes.

III. DESIGN AND IMPLEMENTATION

The dataset analyzed in this study is a MySQL database
provided by AmIUnique fingerprinting project website
(www.AmIUnique.org). This dataset has 16000 records
containing over 30 fingerprinting attributes for the devices
fingerprinted during March 2017, including id, addressHttp,
time, acceptHttp, hostHttp, userAgentHttp, pluginsJS,
connectionHttp, encodingHttp, languageHttp, orderHttp,
platformJS, cookiesJS, fontsFlash, IEDataJS, timezoneJS,
resolutionJS, localJS, sessionJS, resolutionFlash,
rendererWebGLJS, webGLJs, languageFlash, platformFlash,
adBlock, octaneScore, sunspiderTime, pluginsJSHashed,
dntJS, canvasJSHashed, webGLJsHashed, and
fontsFlashHashed. The analysis of this dataset is
implemented in python.

To model the dependency in the fingerprinting
attributes, a Markov model of the data was first created in
the learning phase, which is saved as a python dictionary in a
pickle object for further use. During the learning phase, first,
each of the n columns of the dataset was analyzed separately
and possible unique values were find.

In the next step, with respect to rows containing each of
the unique values, all the remaining n-1 columns where
analyzed to find the values that are possibly linked with
them. However, two main issues remain with this approach.
First, this task can be extremely resource intensive (NP hard)
and optimization of some sort is required. Second, the model
follows a n-factorial nested loop as, for instance, for every
variable in any of the n-1 columns that were previously
bound to the unique variables of the first column, the same
process should be repeated for values of the other n-2
columns and so on.

The former issue is caused by the fact that there might
be many rows in data that are unique. These unique rows are
not useful for our model for two reasons. First, since these
rows are unique, the Markov chain will eventually contain
nodes that are very unlikely to happen and this is counter
intuitive for this work since the goal is to generate a
reasonable and at the same time generic configuration of
attributes. Second, while not useful, these rows significantly
decrease the performance of the model.

To address the first issue, a frequency threshold value
was defined during modeling. This value defines the
minimum frequency of each of the values for a particular
column. In implementation of this study, this frequency
threshold was set to 30. In other words, there must be at least
30 instances of a particular value for an attribute to be
considered and consequently saved as part of this model.
Frequency threshold will inevitably cause skipping several
records with lower frequencies. Therefore, the sum of final
probabilities of possible values of an attribute might not sum
up to 100%. The probabilities of values therefore had to be
normalized to overcome this issue.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 399 --

Regarding the second issue, i.e. repeating the process n!
times, intuitively the model depth should be increased for the
model to be more precise. However, the main objective of
this work is not to generate a detailed and accurate model,
but to generate a generic and reasonable one. Hence, the
depth of the model was set to 2 and the first layer would
again be used as the farther depths. This way, the method
will still be realistic while increasing the performance.

Another major parameter that was applied on the
method was dependency threshold. This parameter was
applied and used after building the model during the data
extraction phase. Suppose the goal is to determine whether
for a value V1, from attribute A1, there is any variable V2
from attribute A2 that is dependent to it. This dependency, if
exists and not addressed, will still cause the reporting of a
near-unique attribute in system's configurations. To
determine the dependency, the probabilities of all possible
values of V2 will be considered and compared with
dependency threshold. If the probability is higher than the
dependency threshold, variables V1 and V2 will be
considered as dependent.

The implemented tool can also recommend a set of
configuration changes that cause a reasonable spoofing. This
task is achieved by walking on the Markov model. As a
change in an attribute's value might lead to a paradox in
another attribute, for each change, the consistency of other
attributes is examined and indirect paradoxical attributes are
determined and reported with suggested values for further
spoofing.

IV. RESULTS

Fig. 1 illustrates two spoofing: suppose a user intends
to spoof the platformJS attribute to hide his browser's real
fingerprint. By changing the platformJS to windows (Fig. 1
left), we notice that the fontFlash should also change to
either of Flash Detected But Not Activated (Click-to-play),
and Flash Not Detected. Any value except these values is a
paradox in browser's configuration. In the second example
(Fig. 1 right), the platformJS is spoofed to iPad. Clearly,
iPad's browser does not support flash and this was one of the
paradoxes that was presented in [5] and here we see that with
a probability of 100%, both the resolutionJS and fontFlash
must be changed to 768x1024x32 and Flash Not Detected
respectively.

In a similar manner, this tool can recommend a reasonable
configuration for spoofing. Recommended configuration has
some direct attributes and few indirect ones. Listing 1
illustrates an example of such configuration. In this listing,
some of the parameters are left without recommended
values. This is due to building up the model based on a small
dataset of 16000 records for over 30 attributes. Hence, we
assume that training the program with a larger dataset would
fix this issue. This issue can also be fixed by reducing the
frequency threshold followed by a performance decrease in
learning phase.

VI. EVALUATION AND CONCLUSION

In this study, an analysis of the paradoxes in web-
browser fingerprinting countermeasure was presented. A

Fig. 1. example of spoofing the platformJS attribute to values would/would not cause paradox. Left: changing the value of platformJS to windows allows two
choices for fontFlash attribute. Right: changing the value of platformJS to iPad, one must change the resolutionS and fontsFlash to 768x1024x32 and Flash
Not Detected respectively, otherwise it would cause a paradox.

Listing 1. output of the program, recommending a
configuration for spoofing
Direct parameter: cookiesJS -> yes
Direct parameter: IEDataJS -> no
Direct parameter: connectionHttp -> close
Direct parameter: sunspiderTime ->
Direct parameter: sessionJS -> yes
Direct parameter: vendorWebGLJS -> Microsoft
Direct parameter: encodingHttp -> gzip, deflate
Direct parameter: octaneScore ->
Direct parameter: hostHttp -> amiunique-backend
Direct parameter: localJS -> yes
Direct parameter: platformJS -> Win32
Indirect parameter: vendorWebGLJS -> adBlock -> no

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 400 --

spoofing-helper tool based on a Markov chain of a sample
dataset was also implemented in python. This script can
work on the two following modes. First, given a value for a
particular attribute, it will inform the developer about the
other attributes that must be changed for consistency.
Second, the script can suggest a set of changes that if
applied, can successfully spoof the configuration of the
browser.

The contribution of this work can be questioned by a
high-security browser like TOR browser, that keeps the
attribute of all its instances the same, hence making the
fingerprinting ineffective. However, this only happens in
ideal case where the users do not install any plugins and do
not try to tweak the settings. Moreover, this strong privacy
of TOR browser as a fingerprinting countermeasure comes at
the expense of severe negative effect on usability and in
many exceeds the use of non-oppressed users.

Although this script is mainly purposed to be used as a
complementary tool for spoofing against fingerprinting, it
can also be used for detecting paradoxes as well. For
instance, one can input this tool with a configuration of a
browser, and by extracting the probability of its attributes
given the value of others, the total probability of the
configuration can be calculated. If the configuration lacks
consistency and is naïvely spoofed, the paradoxes will cause
the total probability to be zero. Of course, for the result to be
accurate a large dataset is required that contains many of
possible combinations of the attributes.

As an interesting future work, the presented tool in this
study can be extended and implemented as a browser
extension which can re-identify the users who spoofed their
configuration to avoid fingerprinting, i.e. linking a new
fingerprint to an existing one due to lack of sufficient
modification of the attributes.

ACKNOWLEDGMENT

We would like to thank the team of researchers at
AmIUnique.org who generously provided us with one of
their latest fingerprinting databases.

REFERENCES

[1] P. Eckersley, “How unique is your web browser?,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2010, vol. 6205
LNCS, pp. 1–18.

[2] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the
Beast: Diverting Modern Web Browsers to Build Unique Browser
Fingerprints,” in Proceedings - 2016 IEEE Symposium on Security
and Privacy, SP 2016, 2016, pp. 878–894.

[3] “Tor: Cross-Origin Fingerprinting Unlinkability.” [Online].
Available:
https://www.torproject.org/projects/%0Atorbrowser/design/#fingerpri
nting-linkability.

[4] A. Klein, “How Fraudsters are Disguising PCs to Fool Device
Fingerprinting,” 6June2012, 2012.

[5] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens,
and G. Vigna, “Cookieless monster: Exploring the ecosystem of web-
based device fingerprinting,” in Proceedings - IEEE Symposium on
Security and Privacy, 2013, pp. 541–555.

[6] K. Boda, Á. M. Földes, G. G. Gulyás, and S. Imre, “User tracking on
the web via cross-browser fingerprinting,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2012, vol. 7161
LNCS, pp. 31–46.

[7] F. Roesner, T. Kohno, and D. Wetherall, “Detecting and defending
against third-party tracking on the web,” Proc. USENIX Conf.
Networked Syst. Des. Implement., no. Nsdi, p. 12, 2012.

[8] N. Nikiforakis, W. Joosen, and B. Livshits, “Privaricator: Deceiving
fingerprinters with little white lies,” in Proceedings of the 24th
International Conference on World Wide Web, 2015, pp. 820–830.

[9] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Fingerprinting
Information in JavaScript Implementations,” Web 2.0 Secur. Priv.,
pp. 1–11, 2011.

[10] G. Acar et al., “FPDetective: Dusting theWeb for Fingerprinters,”
Proc. 2013 ACM SIGSAC Conf. Comput. Commun. Secur. - CCS ’13,
pp. 1129–1140, 2013.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 401 --

