
Source Code Quality Classification Based On
Software Metrics

Petr Vytovtov
Kalashnikov ISTU

Izhevsk, Russian Federation
osanwevpk@gmail.com

Evgeny Markov
Kalashnikov ISTU

Izhevsk, Russian Federation
zuper_cad@mail.ru

Abstract—Nowadays the software development speed is
raising constantly. Therefore software development companies
need a tool for checking source code quality to increase software
maintainability and decreasing the number of errors in it.
Moreover the systems of automated programming require the
similar tool as well. As a result we have started developing a
library for LLVM compiler which can evaluate source code
quality at compile time and a programmer could receive
information about source code quality and values of software
metrics which are used for evaluating quality. In automated
programming systems our library will be useful as well as a part
of feedback step for increasing quality of generated source code.

I. INTRODUCTION
There are a lot of published works about software quality

and how to evaluate it. For example, in [1] Scott Pressman
defines software quality as a conformity between software
functionality and software requirements. This is a widespread
approach to software quality. In ISO/IEC 25010 [2] software
quality is defined as a combination of functionality, reliability,
usability, efficiency, maintainability, and portability. This is
another popular approach to defining software quality.

However it is possible to consider another way of
evaluating software quality. It is based on source code metrics,
when their values are used for calculating the quality value.
This approach is developed by Thomas J. McCabe [3] (the
cyclomatic complexity number is used for evaluating the
software quality and testing complexity), Maurice Howard
Halstead [4] (he has defined program level, volume and other
measurement for evaluating software), and others. As a result
of this approach there are several hybrid models (e. g.
Maintainability Index or Cocol’s metric) which will be
considered below, but we think existing models do not allow
to evaluate source code and software quality adequately which
will be shown below.

Thus our purpose is to develop a new model for evaluating
source code and software quality which will use values of
basic source code metrics and implement it as a LLVM
library. Also our model should combine two approaches
described above, i. e. it should define software and source
code quality in terms of ISO/IEC 25010 during the
development process using source code measures.

This paper describes the LLVM IR language, the
widespread basic source code metrics and which of them we
chose, the hybrid metrics for evaluating software quality and
why we think it is not enough to use them for evaluating
software and source code quality, our approach to evaluating

source code and software quality, the way to develop dynamic
LLVM library, and the results of using our model.

The research presented in the article is based on our
previous publications about choosing and evaluating basic and
hybrid software source code metrics [5], [6].

II. LLVM IR INTRODUCTION
The LLVM IR [7] is a way of representing source code in

LLVM compiler before translating it into Assembler code, and
it is possible to have an impact on source code with this
representation at compile time (Fig. 1). This impact can
contain optimization and evaluation procedures.

In the compilation process showed on the Fig.1 the source
code is passed to CLang (a LLVM compiler frontend). Here
CLang translates the source code to LLVM IR code and do
optimization using this representation. Next, Clang passes the
LLVM IR code to LLVM compiler which compile it to a
binary file.

Fig. 1. The typical compilation process with LLVM compiler. SC – source
code; IR – LLVM intermediate representation; Asm – representation with
assembler language; MC – representation with machine code; pass – dynamic
library for LLVM compiler; Res – the result of applying our approach.

The LLVM IR is a static single assignment hardware-
independent low-level software source code representation. It
is possible to use one optimization or evaluation tool for
different high-level programming languages and hardware
architectures with this representation. This is why we have
chosen this way of source code representation for our
analysis.

On the one hand the LLVM IR has modules and functions
like high-level programming languages which is useful for
splitting analysis from a whole program to small parts. On the
other hand it uses low-level instructions representation which
makes source code logic analysis easier.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

In our approach we get source code evaluation result at
compile time and save it and write into a separate file for the
next analysis. This way of getting software parameters is
described in Section VI.

Also we have considered two other ways of representing
source code: an abstract syntax tree (AST) of high-level
languages and Assembler language. In case of using AST the
approach is limited with high-level source code
representation. In case of using Assembler language the
simple representation for analysis is but it is limited with
hardware architecture.

III. ANALYZING BASIC SOURCE CODE METRICS
In this section we consider cyclomatic complexity [3],

Halstead complexity measures [4], and some low-level source
code metrics as a base for evaluating software and source
code quality. The detailed review of software and source code
measures is made earlier by Chernonozhkin S. K. [8] which
we used in our measures analysis.

The process of evaluating software and source code
quality is described in Section V.

A. Halstead complexity measures
Halstead described in his monograph 12 source code

metrics: the number of distinct operators, the number of
distinct operands, the total number of operators, the total
number of operands, the program vocabulary, the program
length, the calculated program length, the volume, the
difficulty, the effort, the time required for program, the
number of delivered bugs. We have analyzed these metrics for
detecting which of them are useful for our approach. For this
we have got 6 simple functions for calculating greatest
common divisor written in C [9] (gcd1, gcd2, gcd3, gcd4,
gcd5, and gcd6 respectively), translated them to LLVM IR,
and compared values of Halstead complexity measures.

TABLE I. BASIC HALSTEAD MEASURES FOR C-PROGRAMS

 n1 N1 n2 N2 n N N’

gcd1 8 11 3 10 11 21 28

gcd2 5 7 2 7 7 14 13

gcd3 6 7 3 6 9 13 20

gcd4 4 4 2 5 6 9 10

gcd5 8 10 2 9 10 19 26

gcd6 20 48 6 45 26 93 101

TABLE II. BASIC HALSTEAD MEASURES FOR LLVM-PROGRAMS

 n1 N1 n2 N2 n N N’

gcd1 9 12 20 43 29 64 114

gcd2 9 24 21 51 30 75 120

gcd3 9 20 20 42 29 62 114

gcd4 9 17 19 37 28 54 109

gcd5 8 26 24 53 32 79 134

gcd6 13 88 76 190 89 278 522

First of all we have got the number of operators and
operands for C (Table I) and LLVM IR (Table II)
representations of test functions. Also we have removed

operands which are used only twice (one write, one read) and
calculated these metrics for cleared code (Table III).

TABLE III. BASIC HALSTEAD MEASURES FOR CLEARED LLVM-PROGRAMS

 n1 N1 n2 N2 n N N’

gcd1 9 21 6 19 15 40 44

gcd2 9 24 7 27 16 51 48

gcd3 9 20 6 18 15 38 44

gcd4 9 17 5 13 14 30 40

gcd5 8 26 3 17 11 43 28

gcd6 13 88 7 67 20 155 67

Here n1 – the number of distinct operators, N1 – the total
number of operators, n2 – the number of distinct operands, N2
– the total number of operands, n – the program vocabulary, N
– the program length, N’ – the calculated program length.

Next we have calculated the Pearson correlation
coefficients for showed datasets (Table IV). It is clear from
Table IV that it is better to use a standard representation of C-
code with LLVM IR than cleared representation. Also we have
chosen only the number of operators and operands (n1, n2,
N1, N2) and the calculated program length (N’) because the
program vocabulary (n) and the program length (N) have
linear dependence on the basic parameters of source code.

TABLE IV. THE PEARSON CORRELATION COEFFICIENTS BETWEEN C-
REPRESENTATION AND LLVM-REPRESENTATION, AND C-REPRESENTATION

AND CLEARED LLVM-REPRESENTATION

 n1 N1 n2 N2 n N N’

llvm 0.9 0.97 0.94 0.99 0.97 0.99 0.98

llvm-c 0.9 0.97 0.52 0.97 0.74 0.99 0.78

More complex Halstead measures use the program volume
metric which has nonlinear dependence on the program length
and the program vocabulary. Therefore we must test this
measure for LLVM IR representation.

TABLE V. VOLUMES VALUES FOR LLVM IR REPRESENTATIONS OF TEST
FUNCTIONS

 V V* V**

gcd1 310 11 15

gcd2 368 11 15

gcd3 301 11 15

gcd4 259 11 15

gcd5 395 11 15

gcd6 1800 11 15

Then, Halstead defines the volume (V), the potential
volume (V*), and the bound volume (V**). Here the potential
volume defines the average value of the program volume, and
the bound volume defines the maximum value of the program
volume. Therefore we calculated volumes for LLVM IR
representations of our test functions (Table V). It is clear from
the table that the program volume and its derivative measures
are not useful for analyzing LLVM IR code.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 506 --

B. The cyclomatic complexity
The cyclomatic complexity is the most widespread source

code measure. Nowadays software engeneers use it
everywhere for evaluating source code quality and
complexity. But Thomas J. McCabe defined the cyclomatic
complexity as a measure for evaluating the number of possible
program executing paths. Therefore the cyclomatic
complexity shows the complexity of testing process, not
source quality.

Although you should not use the cyclomatic complexity as
a measure of source code and software quality it is possible to
use it as a part of a hybrid model of source code quality
because the number of possible executing paths in program
influences to the software quality but does not defines it.
Therefore we have chosen the cyclomatic complexity and the
number of nodes and edges of control flow graph for our
model of source code quality.

C. Low-level source code metrics
Also we have chosen the volume of required RAM and the

volume of the whole required memory (RAM + CPU
memory) as parameters for our model. These values are
helpful for evaluating source code quality. It is defined and
proved in [5].

Thus we have chosen 10 measures as parameters for our
source code quality model: the number of distinct operators,
the number of distinct operands, the total number of operators,
the total number of operands, the calculated program length,
the cyclomatic complexity, the number of nodes in control
flow graph, the number of edges in control flow graph, the
volume of required RAM, and the volume of required
memory at all.

IV. HYBRID SOFTWARE QUALITY METRICS
We mentioned above that the cyclomatic complexity is

often used for evaluating software quality. In addition to it
there are the Halstead program difficulty, the maintainability
index (used in Microsoft Visual Studio), and Cocol’s metric.
Let’s consider them in detail.

Halstead defines the program difficulty as quotient of the
potential volume (1) and the real program volume (2) [4]
where N – program length, n – program dictionary, n2

* -
program input/output-parameters. As mentioned above the
measures which are derivative of the program volume cannot
be used with LLVM IR representation. Also this measure is
inversely proportional to the cyclomatic complexity (Fig. 2).

V* = (2 + n2
*)log2(2+n2

*)

V = Nlog2n

(1)

(2)

The maintainability index [10] is used in Microsoft Visual
Studio for evaluating source code and software quality. But it
is designed for calculating readability of source code because
this measure uses the number of code lines, the cyclomatic
complexity, and the Halstead Volume. These metrics show
only one side of source code. Moreover the maintainability
index is inversely proportional to the cyclomatic complexity
for LLVM IR representation (Fig. 3). Therefore it is not
possible to use it for our purposes.

Fig. 2. The graphic representation for the Halstead difficulty and the
cyclomatic complexity for test functions; L – the Halstead difficulty, L* – the
calculated Halstead difficulty; CC – the cyclomatic complexity.

Fig. 3. The graphic representation for the maintainability index anf the
cyclomatic complexity for test functions; CC – the cyclomatic complexity, MI
– the maintainability index.

Also there are several models for Cocol’s metric [11]
where Cocol’s metric is a normalized weight sum of basic
source code metrics. For our purposes only the model of
complexity is interesting. There are 6 input parameters in the
model where the cyclomatic complexity is a base measure.
But this model contains Halstead measures based on the
program volume. The undesirability of using metrics of this
type is shown above.

V. OUR APPROACH
In our approach we offer to combine terms of software

quality from ISO/IEC 25010 and low-level source code static
analysis and to use cluster analysis for classifying program
functions to three groups: Good, Normal, Bad. Functions in
Good group is well developed. Functions in Bad group must
be optimized and improved. Functions in Normal group can
be optimized and improved later.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 507 --

We have decided to divide the process to two steps.
During the first step we predict clusters for functions. During
the second step we do the optimization of our model with
experts’ opinions.

TABLE VI. SOURCE CODE METRICS FOR TEST FUNCTIONS

 N1 n1 N2 n2 N’ n e CC ram All

1 21 8 43 20 110 4 4 2 96 385

2 24 8 51 21 116 4 4 2 64 481

3 20 8 42 20 110 4 4 2 96 385

4 17 9 37 19 109 4 4 2 64 385

5 26 7 53 24 129 7 8 3 64 450

6 88 12 190 76 517 21 27 8 160 1415

The Table VI contains values of source code metrics of our
test functions [9] which we have defined above and calculated
with out dynamic library for LLVM compiler presented in
section VI. We have used these values in K-Means method
(the first step) and got three clusters where functions 1, 3, and
4 are combined to one group, functions 2 and 5 combined to
another group, and function 6 belongs to the third group. The
cluster centers are presented in the Table VII.

If we start to compare the result of cluster analysis and
terms of software quality from ISO/IEC 25010 (the second
step) we will notice that test functions are divided according
to representation of the software and source code quality.

TABLE VII. THE CLUSTER CENTERS FOR TEST FUNCTIONS

 Cluster 1 Cluster 2 Cluster 3

N1 19.33 25 88

n1 8.33 7.5 12

N2 40.67 52 190

n2 19.67 22.5 76

N’ 109.67 122.5 517

n 4 5.5 21

e 4 6 27

CC 2 2.5 8

ram 85.33 64 160

All 385 465.5 1415

Table VII shows that we have high values of chosen
measures for source code with low quality and their low
values for source code with high quality.

Thus we can claim that our approach can be used in
everyday software development tasks which is showed
below.

VI. LLVM COMPILER DYNAMIC LIBRARY DEVELOPMENT
We have chosen LLVM compiler because its intermediate

representation is simple to use in static analysis. The details of

this representation is showed in Section II. All source code
presented in this section is written in C++ using Qt
framework.

LLVM compiler provides capability to use third-part
dynamic library at compile time which is called Pass (Fig. 1).
We have used this capability and created the dynamic library
which calculates values of source code measures chosen
above.

First of all we must create a skeleton of the library
(Algorithm 1). It is necessary for registering our library in
compiler. The source code analysis does in
runOnFunction function. This function is called every
time when the LLVM compiler processes new function in
compiled program. There F is an object of function which is
contains function instructions and arguments. There are
similar functions for modules and basic blocks but we have
focused on analyzing function objects.

In LLVM IR each function is divided to several basic
blocks, and we should iterate through them and analyze
control flow graph and instructions. We analyze control flow
graph for calculating the cyclomatic complexity and the
number of nodes and edges, and instructions for calculating
Halstead measures.

Algorithm 1 The skeleton of the LLVM compiler
dynamic library.

#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LegacyPassManager.h"
#include
"llvm/Transforms/IPO/PassManagerBuilder.h"

using namespace llvm;

namespace {
 struct CQCPass : public FunctionPass {
 static char ID;
 CQCPass() : FunctionPass(ID) {}

 virtual bool
 runOnFunction(Function &F)
 { return false; }
 };
}

char CQCPass::ID = 0;

static void
registerSkeletonPass(const PassManagerBuilder &,
 legacy::PassManagerBase &PM)
{ PM.add(new CQCPass()); }

static RegisterStandardPasses
RegisterMyPass(
 PassManagerBuilder::EP_EarlyAsPossible,
 registerSkeletonPass);

For each basic block we can get its connections to other
basic blocks and build control flow graph (Algorithm 2).

After this we can use simple methods for getting three
function parameters: the cyclomatic complexity, the number
of nodes and edges of the function control flow
graph.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 508 --

Algorithm 2 The process of building the control flow
graph.
++m_basicBlocksCounter;
if (basicBlock.getNumUses() != 0) {

for (User *user : basicBlock.users()) {
 QPoint edge((size_t)user,
 (size_t)&basicBlock);
 if (!m_edges.contains(edge))
 m_edges.append(edge);
 }
}

Algorithm 3 Methods for checking operators and
operands in functions.
void
FeaturesParser::checkOperand(Value *operand) {

if (operand->getType()->getTypeID() ==
 Type::VoidTyID)
 return;

if (m_operands.contains(operand))
 ++m_operands[operand];

else
 m_operands[operand] = 1;
}

void
FeaturesParser::checkOperator(QString opcode) {

if (m_operators.contains(opcode))
 ++m_operators[opcode];

else
 m_operators[opcode] = 1;
}

Algorithm 4 Method for calculating used memory volume
for operands.
unsigned
FeaturesParser::checkType(Value *value) {
 Type *type = value->getType();

switch (type->getTypeID()) {
case Type::HalfTyID:

 return 16;
case Type::FloatTyID:

 return 32;
case Type::DoubleTyID:

 return 64;
case Type::X86_FP80TyID:

 return 80;
case Type::FP128TyID:
case Type::PPC_FP128TyID:

 return 128;
case Type::IntegerTyID: {

 IntegerType *integerType =
 dyn_cast<IntegerType>(type);
 return integerType->getBitWidth();
 }

case Type::PointerTyID:
case Type::VoidTyID:
case Type::LabelTyID:
default:

 return 0;
 }
}

For getting values of Halstead measures we check each
instruction and its return value and operands. For this purpose
we have two functions (Algorithm 3).

The last what we need is information about memory. For
getting it we use the function based on standard values of used
memory with datatypes (Algorithm 4).

Next we write got values into csv-file which we can use
for following cluster analysis.

VII. EXPERIMENTAL RESULTS
In our experiments we have took Mozilla Firefox browser

source code which contains 1349921 functions. We have
analyzed them and split to three classes with K-Means method
(Table VIII). We have got 1349321 function in the first group,
284 in the second group, and 316 in the third one. Next we
have done the same for LLVM compiler source code which
contains 868436 functions and got 868415 functions in the
first group, 4 functions in the second group, and 17 functions
in the third one. The clusters centers is presented in Table IX.
Some huge values in these table is a result of few functions in
groups.

TABLE VIII. THE CLUSTER CENTERS FOR MOZILLA FIREFOX BROWSER
FUNCTIONS

 Cluster 1 Cluster 2 Cluster 3

N1 23.92 15.97 3060.55

n1 6.84 7.18 17.94

N2 55.55 23.03 7905.95

n2 25.13 16.12 2679.99

N’ 163.11 85.36 31475

n 3.46 6.29 332.82

e 3.22 3.29 477.4

CC 1.76 4.29497e+09 146.57

ram 89.23 87.89 3969.32

All 222.5 88.47 30091.33

TABLE IX. THE CLUSTER CENTERS FOR LLVM COMPILER FUNCTIONS

 Cluster 1 Cluster 2 Cluster 3

N1 20.21 17817 13682.36

n1 6.83 15.25 13.94

N2 51.1 51773.5 39063.06

n2 25.98 17583 13184.77

N’ 161.76 248190 182112.88

n 2.5 723.25 2174.88

e 2.01 1226 3719.77

CC 1.52 504.75 1546.88

ram 80 6072 3072

All 160.96 562696.25 215996.94

Next we calculated the Pearson correlation coefficients
between cluster centers of functions from Mozilla Firefox
browser and functions from LLVM compiler (Table X).

From this result we can predict that it is possible to
classify functions from LLVM compiler with cluster centers
from Mozilla Firefox browser and vise versa. For LLVM
compiler functions we have got 868292 functions in the first
group, 0 functions in the second group, and 144 functions in
the third one. For Mozilla Firefox functions we have got

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 509 --

1349628 functions in the first group, 1 function in the second
group, and 292 function in the third one.

TABLE X. THE PEARSON CORRELATION COEFFICIENTS BETWEEN CLUSTERS
FOR MOZILLA FIREFOX BROWSER AND LLVM COMPILER

 Mozilla Firefox functions

Cluster 1 Cluster 2 Cluster 3

LLVM
functions

Cluster 1 0.98 -0.28 0.96

Cluster 2 0.92 -0.17 0.9

Cluster 3 0.94 -0.20 0.99

Next we have combined the data for both projects and
calculated cluster centers for their functions (Table XI) and
the Pearson correlation coefficients between them (Table XII).
From 2218351 function we have 2218049 functions in the
first group, 284 function in the second group, and 24 functions
in the third one.

TABLE XI. THE CLUSTER CENTERS FOR BOTH PROJECTS FUNCTIONS

 Cluster 1 Cluster 2 Cluster 3

N1 22.88 15.97 14342.79

n1 6.84 7.18 15.08

N2 54.89 23.03 40012.79

n2 25.83 16.12 13597.54

N’ 166.85 85.36 18824.64

n 3.13 6.29 1729.79

e 2.82 3.29 2896.71

CC 1.69 4.29497e+09 1168.92

ram 86.16 87.89 4349.33

All 202.24 88.47 285890.5

TABLE XII. THE PEARSON CORRELATION COEFFICIENTS BETWEEN CLUSTERS
FOR MOZILLA FIREFOX BROWSER, LLVM COMPILER, AND BOTH OF THEM

 All functions
Cluster 1 Cluster 2 Cluster 3

LLVM
functions

Cluster 1 0.99 -0.28 0.91

Cluster 2 0.94 -0.2 0.99

Cluster 3 0.9 -0.17 0.98

Mozilla
Firefox

functions

Cluster 1 1 -0.27 0.94

Cluster 2 -0.27 1 -0.19

Cluster 3 0.96 -0.23 0.97

The values calculated during cross analysis are similar to
initial result of cluster analysis and we can affirm that our
approach is right for purposes of software and source code
quality classification and can be used in daily software
development. But it needs some improvements.

However we cannot determine exactly which source code
quality group each cluster shows. We can make only
assumptions. In the further work we will do expert survey for
solving the problem.

VIII. FURTHER WORK
In the previous section we have described the experiment

of analyzing source code of two big open source projects and
showed that our approach can be used for analyzing software
and source code quality. However we highlighted that there
are some problems with it.

Firstly, in Table VIII and Table IX we can see several huge
values. As a result in Table X some correlation coefficients
may be disputable and they require clarification. It is a
problem of few functions in groups 2 and 3. Therefore we
should increase the number of analyzed projects and functions
for fixing it.

Secondly, we cannot affirm that our approach is right
without expert survey. It is necessary because there is no
universal definition of quantification of software and source
code quality and we should average opinions on it from
different experts.

Thirdly, the expert survey can show us that we need to add
and (or) remove some metrics from our model. The first what
we will do is combining the model presented in this paper and
the results of our previous model for evaluating functions time
complexity [6]. It can help us to improve software and source
code quality evaluating.

Thus our next work will be focused to increasing the
number of analyzed software, adding the time complexity
model to the model described in this paper, making the expert
survey for clarification, and combining processes of
calculating metrics values and evaluating source code quality.

IX. CONCLUSION
In this paper we have described our approach for

evaluating software quality with its source code and its
integration into compiling process with LLVM compiler and
presented the model and tool for it.

The experimental results have showed that our research
direction is right but the approach needs some improvements
which is defined in Section VIII.

Thus we have a working method for evaluating software
and source code quality which needs small improvements.
The source code of our dynamic library for LLVM compiler is
licensed under terms of GNU GPLv3 and free available on
GitHub [12].

REFERENCES
[1] Pressman, Scott. Software Engineering: A Practitioner's Approach

(Sixth, International ed.), McGraw-Hill Education Pressman, 2005.
[2] ISO/IEC 25010:2011 – Systems and software engineering –

Systems and software Quality Requirements and Evaluation
(SQuaRE) – System and software quality models, Web:
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=35733.

[3] Thomas J. McCabe, “A Complexity Measure”, IEEE Transactions
on Software Engineering, Dec. 1976, pp. 308–320.

[4] Halstead, Maurice H. Elements of Software Science. Amsterdam:
Elsevier North-Holland, Inc., 1977.

[5] Vytovtov P. K., Markov E. M., M. Aiman Al Akkad, “Analysis of
Software Code Metrics for Defining Their Priority for Cocol's
Metric”, Instrumentation Engineering in the XXI Century.
Integration of Science, Education and Production, Nov. 2014, pp.
543-546.

[6] Vytovtov P. K., Markov E. M., “Neural Network Development for
Classifying Algorithms by Time Complexity”, Young researches –

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 510 --

the acceleration of scientific and technological progress in the XXI
century, Apr. 2016, pp. 872-876.

[7] LLVM Language Reference Manual, Web:
http://llvm.org/docs/LangRef.html.

[8] Chernonozhkin S. K., The support methods and tools for
high-quality software development, 1998.

[9] test-functions-for-halstead-complexity-measures.c – GitHub Gist,
Web:https://gist.github.com/osanwe/2c4e958d088617f4cc3182a505
f8cb58.

[10] Code Metrics – Maintainability Index, Web:
https://blogs.msdn.microsoft.com/zainnab/2011/05/26/code-metrics-
maintainability-index/.

[11] S. V. Swezdin, “Problems of measurement of code quality”, Bulletin
of the South Ural State University. Series: omputer technologies,
automatic control, radio electronics, 2 (178) / 2010, pp. 62-66.

[12] osanwe/CQCPass – GitHub, Web:
https://github.com/osanwe/CQCPass.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 511 --

