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Abstract—Nowadays the software development speed is 
raising constantly. Therefore software development companies 
need a tool for checking source code quality to increase software 
maintainability and decreasing the number of errors in it. 
Moreover the systems of automated programming require the 
similar tool as well. As a result we have started developing a 
library for LLVM compiler which can evaluate source code 
quality at compile time and a programmer could receive 
information about source code quality and values of software 
metrics which are used for evaluating quality. In automated 
programming systems our library will be useful as well as a part 
of feedback step for increasing quality of generated source code. 

I. INTRODUCTION 
There are a lot of published works about software quality 

and how to evaluate it. For example, in [1] Scott Pressman 
defines software quality as a conformity between software 
functionality and software requirements. This is a widespread 
approach to software quality. In ISO/IEC 25010 [2] software 
quality is defined as a combination of functionality, reliability, 
usability, efficiency, maintainability, and portability. This is 
another popular approach to defining software quality. 

However it is possible to consider another way of 
evaluating software quality. It is based on source code metrics, 
when their values are used for calculating the quality value. 
This approach is developed by Thomas J. McCabe [3] (the 
cyclomatic complexity number is used for evaluating the 
software quality and testing complexity), Maurice Howard 
Halstead [4] (he has defined program level, volume and other 
measurement for evaluating software), and others. As a result 
of this approach there are several hybrid models (e. g. 
Maintainability Index or Cocol’s metric) which will be 
considered below, but we think existing models do not allow 
to evaluate source code and software quality adequately which 
will be shown below. 

Thus our purpose is to develop a new model for evaluating 
source code and software quality which will use values of 
basic source code metrics and implement it as a LLVM 
library. Also our model should combine two approaches 
described above, i. e. it should define software and source 
code quality in terms of  ISO/IEC 25010 during the 
development process using source code measures. 

This paper describes the LLVM IR language, the 
widespread basic source code metrics and which of them we 
chose, the hybrid metrics for evaluating software quality and 
why we think it is not enough to use them for evaluating 
software and source code quality, our approach to evaluating 

source code and software quality, the way to develop dynamic 
LLVM library, and the results of using our model. 

The research presented in the article is based on our 
previous publications about choosing and evaluating basic and 
hybrid software source code metrics [5], [6]. 

II. LLVM IR INTRODUCTION 
The LLVM IR [7] is a way of representing source code in 

LLVM compiler before translating it into Assembler code, and 
it is possible to have an impact on source code with this 
representation at compile time (Fig. 1). This impact can 
contain optimization and evaluation procedures. 

In the compilation process showed on the Fig.1 the source 
code is passed to CLang (a LLVM compiler frontend). Here 
CLang translates the source code to LLVM IR code and do 
optimization using this representation. Next, Clang passes the 
LLVM IR code to LLVM compiler which compile it to a 
binary file. 
 

Fig. 1. The typical compilation process with LLVM compiler. SC – source 
code; IR – LLVM intermediate representation; Asm – representation with 
assembler language; MC – representation with machine code; pass – dynamic 
library for LLVM compiler; Res – the result of applying our approach. 

The LLVM IR is a static single assignment hardware-
independent low-level software source code representation. It 
is possible to use one optimization or evaluation tool for 
different high-level programming languages and hardware 
architectures with this representation. This is why we have 
chosen this way of source code representation for our 
analysis. 

On the one hand the LLVM IR has modules and functions 
like high-level programming languages which is useful for 
splitting analysis from a whole program to small parts. On the 
other hand it uses low-level instructions representation which 
makes source code logic analysis easier. 
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In our approach we get source code evaluation result at 
compile time and save it and write into a separate file for the 
next analysis. This way of getting software parameters is 
described in Section VI. 

Also we have considered two other ways of representing 
source code: an abstract syntax tree (AST) of high-level 
languages and Assembler language. In case of using AST the 
approach is limited with high-level source code 
representation. In case of using Assembler language the 
simple representation for analysis is but it is limited with 
hardware architecture. 

III. ANALYZING BASIC SOURCE CODE METRICS 
In this section we consider cyclomatic complexity [3], 

Halstead complexity measures [4], and some low-level source 
code metrics as a base for evaluating software and source 
code quality. The detailed review of software and source code 
measures is made earlier by Chernonozhkin S. K. [8] which 
we used in our measures analysis. 

The process of evaluating software and source code 
quality is described in Section V. 

A. Halstead complexity measures 
Halstead described in his monograph 12 source code 

metrics: the number of distinct operators, the number of 
distinct operands, the total number of operators, the total 
number of operands, the program vocabulary, the program 
length, the calculated program length, the volume, the 
difficulty, the effort, the time required for program, the 
number of delivered bugs. We have analyzed these metrics for 
detecting which of them are useful for our approach. For this 
we have got 6 simple functions for calculating greatest 
common divisor written in C [9] (gcd1, gcd2, gcd3, gcd4, 
gcd5, and gcd6 respectively), translated them to LLVM IR, 
and compared values of Halstead complexity measures. 

TABLE I. BASIC HALSTEAD MEASURES FOR C-PROGRAMS 

 n1 N1 n2 N2 n N N’

gcd1 8 11 3 10 11 21 28

gcd2 5 7 2 7 7 14 13

gcd3 6 7 3 6 9 13 20

gcd4 4 4 2 5 6 9 10

gcd5 8 10 2 9 10 19 26

gcd6 20 48 6 45 26 93 101
 

TABLE II. BASIC HALSTEAD MEASURES FOR LLVM-PROGRAMS 

 n1 N1 n2 N2 n N N’

gcd1 9 12 20 43 29 64 114

gcd2 9 24 21 51 30 75 120

gcd3 9 20 20 42 29 62 114

gcd4 9 17 19 37 28 54 109

gcd5 8 26 24 53 32 79 134

gcd6 13 88 76 190 89 278 522
 

First of all we have got the number of operators and 
operands for C (Table I) and LLVM IR (Table II) 
representations of test functions. Also we have removed 

operands which are used only twice (one write, one read) and 
calculated these metrics for cleared code (Table III). 

TABLE III. BASIC HALSTEAD MEASURES FOR CLEARED LLVM-PROGRAMS 

 n1 N1 n2 N2 n N N’

gcd1 9 21 6 19 15 40 44

gcd2 9 24 7 27 16 51 48

gcd3 9 20 6 18 15 38 44

gcd4 9 17 5 13 14 30 40

gcd5 8 26 3 17 11 43 28

gcd6 13 88 7 67 20 155 67
 

Here n1 – the number of distinct operators, N1 – the total 
number of operators, n2 – the number of distinct operands, N2 
– the total number of operands, n – the program vocabulary, N 
– the program length, N’ – the calculated program length. 

Next we have calculated the Pearson correlation 
coefficients for showed datasets (Table IV). It is clear from 
Table IV that it is better to use a standard representation of C-
code with LLVM IR than cleared representation. Also we have 
chosen only the number of operators and operands (n1, n2, 
N1, N2) and the calculated program length (N’) because the 
program vocabulary (n) and the program length (N) have 
linear dependence on the basic parameters of source code. 

TABLE IV. THE PEARSON CORRELATION COEFFICIENTS BETWEEN C-
REPRESENTATION AND LLVM-REPRESENTATION,  AND C-REPRESENTATION 

AND CLEARED LLVM-REPRESENTATION 

 n1 N1 n2 N2 n N N’

llvm 0.9 0.97 0.94 0.99 0.97 0.99 0.98

llvm-c 0.9 0.97 0.52 0.97 0.74 0.99 0.78

 

More complex Halstead measures use the program volume 
metric which has nonlinear dependence on the program length 
and the program vocabulary. Therefore we must test this 
measure for LLVM IR representation. 

TABLE V. VOLUMES VALUES FOR LLVM IR REPRESENTATIONS OF TEST 
FUNCTIONS 

 V V* V**

gcd1 310 11 15

gcd2 368 11 15

gcd3 301 11 15

gcd4 259 11 15

gcd5 395 11 15

gcd6 1800 11 15
 

Then, Halstead defines the volume (V), the potential 
volume (V*), and the bound volume (V**). Here the potential 
volume defines the average value of the program volume, and 
the bound volume defines the maximum value of the program 
volume. Therefore we calculated volumes for LLVM IR 
representations of our test functions (Table V). It is clear from 
the table that the program volume and its derivative measures 
are not useful for analyzing LLVM IR code. 
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B. The cyclomatic complexity 
The cyclomatic complexity is the most widespread source 

code measure. Nowadays software engeneers use it 
everywhere for evaluating source code quality and 
complexity. But Thomas J. McCabe defined the cyclomatic 
complexity as a measure for evaluating the number of possible 
program executing paths. Therefore the cyclomatic 
complexity shows the complexity of testing process, not 
source quality. 

Although you should not use the cyclomatic complexity as 
a measure of source code and software quality it is possible to 
use it as a part of a hybrid model of source code quality 
because the number of possible executing paths in program 
influences to the software quality but does not defines it. 
Therefore we have chosen the cyclomatic complexity and the 
number of nodes and edges of control flow graph for our 
model of source code quality. 

C. Low-level source code metrics 
Also we have chosen the volume of required RAM and the 

volume of the whole required memory (RAM + CPU 
memory) as parameters for our model. These values are 
helpful for evaluating source code quality. It is defined and 
proved in [5]. 

Thus we have chosen 10 measures as parameters for our 
source code quality model: the number of distinct operators, 
the number of distinct operands, the total number of operators, 
the total number of operands, the calculated program length, 
the cyclomatic complexity, the number of nodes in control 
flow graph, the number of edges in control flow graph, the 
volume of required RAM, and the volume of required 
memory at all. 

IV. HYBRID SOFTWARE QUALITY METRICS 
We mentioned above that the cyclomatic complexity is 

often used for evaluating software quality. In addition to it 
there are the Halstead program difficulty, the maintainability 
index (used in Microsoft Visual Studio), and Cocol’s metric. 
Let’s consider them in detail. 

Halstead defines the program difficulty as quotient of the 
potential volume (1) and the real program volume (2) [4] 
where N – program length, n – program dictionary, n2

* - 
program input/output-parameters. As mentioned above the 
measures which are derivative of the program volume cannot 
be used with LLVM IR representation. Also this measure is 
inversely proportional to the cyclomatic complexity (Fig. 2). 

 

V* = (2 + n2
*)log2(2+n2

*) 

V = Nlog2n 

(1) 
 

(2) 
 

The maintainability index [10] is used in Microsoft Visual 
Studio for evaluating source code and software quality. But it 
is designed for calculating readability of source code because 
this measure uses the number of code lines, the cyclomatic 
complexity, and the Halstead Volume. These metrics show 
only one side of source code. Moreover the maintainability 
index is inversely proportional to the cyclomatic complexity 
for LLVM IR representation (Fig. 3). Therefore it is not 
possible to use it for our purposes. 

Fig. 2. The graphic representation for the Halstead difficulty and the 
cyclomatic complexity for test functions; L – the Halstead difficulty, L* – the 
calculated Halstead difficulty; CC – the cyclomatic complexity. 
 

 

Fig. 3. The graphic representation for the maintainability index anf the 
cyclomatic complexity for test functions; CC – the cyclomatic complexity, MI 
– the maintainability index. 
 

Also there are several models for Cocol’s metric [11] 
where Cocol’s metric is a normalized weight sum of basic 
source code metrics. For our purposes only the model of 
complexity is interesting. There are 6 input parameters in the 
model where the cyclomatic complexity is a base measure. 
But this model contains Halstead measures based on the 
program volume. The undesirability of using metrics of this 
type is shown above. 

V. OUR APPROACH 
In our approach we offer to combine terms of software 

quality from ISO/IEC 25010 and low-level source code static 
analysis and to use cluster analysis for classifying program 
functions to three groups: Good, Normal, Bad. Functions in 
Good group is well developed. Functions in Bad group must 
be optimized and improved. Functions in Normal group can 
be optimized and improved later. 
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We have decided to divide the process to two steps. 
During the first step we predict clusters for functions. During 
the second step we do the optimization of our model with 
experts’ opinions. 

TABLE VI. SOURCE CODE METRICS FOR TEST FUNCTIONS 

 N1 n1 N2 n2 N’ n e CC ram All

1 21 8 43 20 110 4 4 2 96 385

2 24 8 51 21 116 4 4 2 64 481

3 20 8 42 20 110 4 4 2 96 385

4 17 9 37 19 109 4 4 2 64 385

5 26 7 53 24 129 7 8 3 64 450

6 88 12 190 76 517 21 27 8 160 1415
 

The Table VI contains values of source code metrics of our 
test functions [9] which we have defined above and calculated 
with out dynamic library for LLVM compiler presented in 
section VI. We have used these values in K-Means method 
(the first step) and got three clusters where functions 1, 3, and 
4 are combined to one group, functions 2 and 5 combined to 
another group, and function 6 belongs to the third group. The 
cluster centers are presented in the Table VII. 

If we start to compare the result of cluster analysis and 
terms of software quality from  ISO/IEC 25010 (the second 
step) we will notice that test functions are divided according 
to representation of the software and source code quality. 

TABLE VII. THE CLUSTER CENTERS FOR TEST FUNCTIONS 

 Cluster 1 Cluster 2 Cluster 3

N1 19.33 25 88

n1 8.33 7.5 12

N2 40.67 52 190

n2 19.67 22.5 76

N’ 109.67 122.5 517

n 4 5.5 21

e 4 6 27

CC 2 2.5 8

ram 85.33 64 160

All 385 465.5 1415
 

Table VII shows that we have high values of chosen 
measures for source code with low quality and their low 
values for source code with high quality. 

Thus we can claim that our approach can be used in 
everyday software development tasks which is showed  
below. 

VI. LLVM COMPILER DYNAMIC LIBRARY DEVELOPMENT 
We have chosen LLVM compiler because its intermediate 

representation is simple to use in static analysis. The details of  
 
this representation is showed in Section II. All source code 
presented in this section is written in C++ using Qt 
framework. 

LLVM compiler provides capability to use third-part 
dynamic library at compile time which is called Pass (Fig. 1). 
We have used this capability and created the dynamic library 
which calculates values of source code measures chosen 
above. 

First of all we must create a skeleton of the library 
(Algorithm 1). It is necessary for registering our library in 
compiler. The source code analysis does in 
runOnFunction function. This function is called every 
time when the LLVM compiler processes new function in 
compiled program. There F is an object of function which is 
contains function instructions and arguments. There are 
similar functions for modules and basic blocks but we have 
focused on analyzing function objects. 

In LLVM IR each function is divided to several basic 
blocks, and we should iterate through them and analyze 
control flow graph and instructions. We analyze control flow 
graph for calculating the cyclomatic complexity and the 
number of nodes and edges, and instructions for calculating 
Halstead measures. 

 

Algorithm 1 The skeleton of the LLVM compiler 
dynamic library. 

#include "llvm/Pass.h" 
#include "llvm/IR/Function.h" 
#include "llvm/IR/LegacyPassManager.h" 
#include
"llvm/Transforms/IPO/PassManagerBuilder.h" 

using namespace llvm; 

namespace { 
    struct CQCPass : public FunctionPass { 
        static char ID; 
        CQCPass() : FunctionPass(ID) {} 

        virtual bool 
        runOnFunction(Function &F) 
        { return false; } 
    }; 
} 

char CQCPass::ID = 0; 

static void 
registerSkeletonPass(const PassManagerBuilder &, 
                     legacy::PassManagerBase &PM) 
{ PM.add(new CQCPass()); } 

static RegisterStandardPasses 
RegisterMyPass( 
        PassManagerBuilder::EP_EarlyAsPossible, 
        registerSkeletonPass);
 

 

For each basic block we can get its connections to other 
basic blocks and build control flow graph (Algorithm 2). 

After this we can use simple methods for getting three 
function parameters: the cyclomatic complexity, the number 
of nodes and edges of the function control flow  
graph. 
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Algorithm 2 The process of building the control flow 
graph. 
++m_basicBlocksCounter; 
if (basicBlock.getNumUses() != 0) { 

for (User *user : basicBlock.users()) { 
        QPoint edge((size_t)user, 
                    (size_t)&basicBlock); 
        if (!m_edges.contains(edge)) 
            m_edges.append(edge); 
    } 
} 

 

Algorithm 3 Methods for checking operators and 
operands in functions. 
void 
FeaturesParser::checkOperand(Value *operand) { 

if (operand->getType()->getTypeID() == 
            Type::VoidTyID) 
        return; 

if (m_operands.contains(operand)) 
        ++m_operands[operand]; 

else 
        m_operands[operand] = 1; 
} 

void 
FeaturesParser::checkOperator(QString opcode) { 

if (m_operators.contains(opcode)) 
        ++m_operators[opcode]; 

else 
        m_operators[opcode] = 1; 
} 

 

Algorithm 4 Method for calculating used memory volume 
for operands. 
unsigned 
FeaturesParser::checkType(Value *value) { 
    Type *type = value->getType(); 

switch (type->getTypeID()) { 
case Type::HalfTyID: 

        return 16; 
case Type::FloatTyID: 

        return 32; 
case Type::DoubleTyID: 

        return 64; 
case Type::X86_FP80TyID: 

        return 80; 
case Type::FP128TyID: 
case Type::PPC_FP128TyID: 

        return 128; 
case Type::IntegerTyID: { 

        IntegerType *integerType = 
                dyn_cast<IntegerType>(type); 
        return integerType->getBitWidth(); 
    } 

case Type::PointerTyID: 
case Type::VoidTyID: 
case Type::LabelTyID: 
default: 

        return 0; 
    } 
} 

 

For getting values of Halstead measures we check each 
instruction and its return value and operands. For this purpose 
we have two functions (Algorithm 3). 

The last what we need is information about memory. For 
getting it we use the function based on standard values of used 
memory with datatypes (Algorithm 4). 

Next we write got values into csv-file which we can use 
for following cluster analysis. 

VII. EXPERIMENTAL RESULTS 
In our experiments we have took Mozilla Firefox browser 

source code which contains 1349921 functions. We have 
analyzed them and split to three classes with K-Means method 
(Table VIII). We have got 1349321 function in the first group, 
284 in the second group, and 316 in the third one. Next we 
have done the same for LLVM compiler source code which 
contains 868436 functions and got 868415 functions in the 
first group, 4 functions in the second group, and 17 functions 
in the third one. The clusters centers is presented in Table IX. 
Some huge values in these table is a result of few functions in 
groups. 

 

TABLE VIII. THE CLUSTER CENTERS FOR MOZILLA FIREFOX BROWSER 
FUNCTIONS 

 Cluster 1 Cluster 2 Cluster 3

N1 23.92 15.97 3060.55

n1 6.84 7.18 17.94

N2 55.55 23.03 7905.95

n2 25.13 16.12 2679.99

N’ 163.11 85.36 31475

n 3.46 6.29 332.82

e 3.22 3.29 477.4

CC 1.76 4.29497e+09 146.57

ram 89.23 87.89 3969.32

All 222.5 88.47 30091.33
 

TABLE IX. THE CLUSTER CENTERS FOR LLVM COMPILER FUNCTIONS 

 Cluster 1 Cluster 2 Cluster 3

N1 20.21 17817 13682.36

n1 6.83 15.25 13.94

N2 51.1 51773.5 39063.06

n2 25.98 17583 13184.77

N’ 161.76 248190 182112.88

n 2.5 723.25 2174.88

e 2.01 1226 3719.77

CC 1.52 504.75 1546.88

ram 80 6072 3072

All 160.96 562696.25 215996.94
 

Next we calculated the Pearson correlation coefficients 
between cluster centers of functions from Mozilla Firefox 
browser and functions from LLVM compiler (Table X). 

From this result we can predict that it is possible to 
classify functions from LLVM compiler with cluster centers 
from Mozilla Firefox browser and vise versa. For LLVM 
compiler functions we have got 868292 functions in the first 
group, 0 functions in the second group, and 144 functions in 
the third one. For Mozilla Firefox functions we have got 
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1349628 functions in the first group, 1 function in the second 
group, and 292 function in the third one. 

TABLE X. THE PEARSON CORRELATION COEFFICIENTS BETWEEN CLUSTERS 
FOR MOZILLA FIREFOX BROWSER AND LLVM COMPILER 

 Mozilla Firefox functions

Cluster 1 Cluster 2 Cluster 3

LLVM 
functions 

Cluster 1 0.98 -0.28 0.96

Cluster 2 0.92 -0.17 0.9

Cluster 3 0.94 -0.20 0.99

  

Next we have combined the data for both projects and 
calculated cluster centers for their functions (Table XI) and 
the Pearson correlation coefficients between them (Table XII). 
From 2218351 function we have 2218049 functions in the 
first group, 284 function in the second group, and 24 functions 
in the third one. 

TABLE XI. THE CLUSTER CENTERS FOR BOTH PROJECTS FUNCTIONS 

 Cluster 1 Cluster 2 Cluster 3

N1 22.88 15.97 14342.79

n1 6.84 7.18 15.08

N2 54.89 23.03 40012.79

n2 25.83 16.12 13597.54

N’ 166.85 85.36 18824.64

n 3.13 6.29 1729.79

e 2.82 3.29 2896.71

CC 1.69 4.29497e+09 1168.92

ram 86.16 87.89 4349.33

All 202.24 88.47 285890.5
 

TABLE XII. THE PEARSON CORRELATION COEFFICIENTS BETWEEN CLUSTERS 
FOR MOZILLA FIREFOX BROWSER, LLVM COMPILER, AND BOTH OF THEM 

 All functions 
Cluster 1 Cluster 2 Cluster 3

LLVM 
functions 

Cluster 1 0.99 -0.28 0.91

Cluster 2 0.94 -0.2 0.99

Cluster 3 0.9 -0.17 0.98

Mozilla 
Firefox 

functions 

Cluster 1 1 -0.27 0.94

Cluster 2 -0.27 1 -0.19

Cluster 3 0.96 -0.23 0.97
 

The values calculated during cross analysis are similar to 
initial result of cluster analysis and we can affirm that our 
approach is right for purposes of software and source code 
quality classification and can be used in daily software 
development. But it needs some improvements. 

However we cannot determine exactly which source code 
quality group each cluster shows. We can make only 
assumptions. In the further work we will do expert survey for 
solving the problem. 

VIII.  FURTHER WORK 
In the previous section we have described the experiment 

of analyzing source code of two big open source projects and 
showed that our approach can be used for analyzing software 
and source code quality. However we highlighted that there 
are some problems with it. 

Firstly, in Table VIII and Table IX we can see several huge 
values. As a result in Table X some correlation coefficients 
may be disputable and they require clarification. It is a 
problem of few functions in groups 2 and 3. Therefore we 
should increase the number of analyzed projects and functions 
for fixing it. 

Secondly, we cannot affirm that our approach is right 
without expert survey. It is necessary because there is no 
universal definition of quantification of software and source 
code quality and we should average opinions on it from 
different experts. 

Thirdly, the expert survey can show us that we need to add 
and (or) remove some metrics from our model. The first what 
we will do is combining the model presented in this paper and 
the results of our previous model for evaluating functions time 
complexity [6]. It can help us to improve software and source 
code quality evaluating. 

Thus our next work will be focused to increasing the 
number of analyzed software, adding the time complexity 
model to the model described in this paper, making the expert 
survey for clarification, and combining processes of 
calculating metrics values and evaluating source code quality. 

IX. CONCLUSION 
In this paper we have described our approach for 

evaluating software quality with its source code and its 
integration into compiling process with LLVM compiler and 
presented the model and tool for it. 

The experimental results have showed that our research 
direction is right but the approach needs some improvements 
which is defined in Section VIII. 

Thus we have a working method for evaluating software 
and source code quality which needs small improvements. 
The source code of our dynamic library for LLVM compiler is 
licensed under terms of GNU GPLv3 and free available on 
GitHub [12]. 
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