
Method and Tools for Automated End-to-end Testing
of Applications for Sailfish OS

Andrey Vasilyev, Ilya Paramonov, Sergey Averkiev
P.G. Demidov Yaroslavl State University

Yaroslavl, Russia

{Andrey.Vasilyev, Ilya.Paramonov}@fruct.org, exanimoso@yandex.ru
Abstract—The automated end-to-end testing of applications

allows to detect regressions early during the development and
provide solid foundation for future modifications. However, im-
plementation of such tests for mobile applications on Sailfish OS
platform is related to some issues, especially when the application
contain custom QML components written in C++. In the paper
the authors present a method to resolve these issues, including
two approaches to provide custom QML types in the testing
environment and corresponding architectural considerations that
make the code testable. The authors also describe an open source
tool for running end-to-end tests on the integration server that
supports the described method and supplements tooling of the
Sailfish OS SDK.

I. INTRODUCTION

Application testing is one of the key elements of successful
software development [1]. It allows to ensure correctness
of functions of the application under development, prevent
error proliferation, decrease risks by capturing regressions
on early stages and dealing with them in a timed manner,
and so on. End-to-end testing is a variety of testing method
aimed at checking correctness of the application flow from
the user’s point of view. Usually end-to-end testing involves
typical scenarios of the application usage, and the possibility
to execute these scenarios according to their specification is
considered as passing the test.

Sailfish OS is a rather new, promising operating system
mainly targeted at mobile platforms. According to the offi-
cial website (https://sailfishos.org), it is positioned as a “true
independent mobile OS,” based on open source and devel-
oped by the Finnish company Jolla Ltd. and the Sailfish OS
community. Since application development for Sailfish OS
is primarily realized using Qt Framework (https://www.qt.io),
most of testing means provided by this framework are also
suitable for testing Sailfish OS applications. However, there
are some specificities that make end-to-end testing of mobile
applications for this platform not so straightforward as it could
be expected. Additionally, at the moment there is no official
guide on how to combine the available tools to organize such
testing fully automatic to effectively leverage the developers’
efforts.

In this paper we try to overview the possible troubles of
automated end-to-end testing of applications for Sailfish OS
and propose a method that can be used to organize such kind of
testing applicable for a rather wide class of mobile applications
using a combination of existing tools. We also discuss some
architectural details that should be considered to make the
application painlessly testable. We also take up questions of

making our method ready for continuous integration that gains
more and more important role in modern software engineering
practice [2].

The paper is structured as follows. Section II presents the
idea of automated end-to-end testing in details and contains
overview of the related work, mainly including approaches
available on other platforms. In Section III we describe our
method of automated end-to-end application testing for Sail-
fish OS and consider two architectural models of a rather
common Sailfish OS application with explanation on how
to apply the method when each of these models is utilized.
Section IV contains a detailed description of the organization
of such an application including structures of project, QML
extensions, and test runner. Section V is devoted to execution
of the tests on a continuous integration server and presents
the tool developed by the authors of this paper to facilitate
this process for developers and system administrators. In
conclusion we briefly overview the main results of the paper
and formulate the future work directions.

II. BACKGROUND AND RELATED WORK

The purpose of the end-to-end testing is to check that the
application allows the user to perform specified scenarios, e.g.,
add a new record, calculate statistics, generate a report, and so
on [3]. These kind of tests can be executed either manually or
automatically.

During the manual testing one goes through a scenario
and performs the steps described in a reference sheet. While
the manual testing can be beneficial in terms of variety of
checks, which the tester can perform, such an approach is often
inefficient, error-prone, and expensive.

To overcome these issues testers resort to automation
techniques and tools that allow to describe scenarios to be
tested in the form of either half-formalized texts or just testing
code that can be executed automatically. The main obstacle
in development of these tools is due to the necessity for test
tool to perform actions in the way the end user does, whereas
many environments and frameworks for software development
are simply not designed to allow such interactions. This issue
affects the quality and flexibility of the corresponding testing
tools, in turn, holding back their adoption. That is why, the area
of test automation is a popular topic of modern research [4].

Despite all these issues, nowadays there are many rather
mature tools useful for automated end-to-end testing.
For example, Selenium (http://www.seleniumhq.org)
is a standard de facto for automated testing of

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



web applications [5]. Another example is Robotium
(https://github.com/RobotiumTech/robotium) — the most
advanced framework for end-to-end testing for Android
OS [6]. The maturity of these tools is reflected by the fact
of existing of “cookbooks” (e.g., [7]) that provide developers
with ready-to-use recipes on how to solve typical testing
tasks.

Unfortunately, this is not the case regarding automated
end-to-end testing of applications for Sailfish OS, mostly due
to its insufficient prevalence. However, as it is shown in the
following sections, the majority of the required tools exists
and the most of obstacles on the way of such testing can be
successfully overcome.

III. METHOD OF AUTOMATED END-TO-END APPLICATION
TESTING FOR SAILFISH OS

A. Tools for automated testing using Qt framework

As it is already mentioned, mobile applications for Salifish
OS are developed using the Qt framework. The user interface
of the application is developed using the Qt Quick technology
that is targeted at rapid application development using the
declarative QML language for interface description and the
high-level JavaScript language for domain-level logic imple-
mentation. If needed, computation-intensive and custom QML
components missing in the core library can be implemented in
C++.

The Qt framework provides tools to run tests written for
QML components. It consists of a QML library called QtTest
and the qmltestrunner tool [8]. The latter one is used to run
tests written using the foremost library. The tests using this
library are developed as follows. The developer creates a
separate QML file that imports the component to be tested
and the QtTest library. The component under test is usually
declared as a root element of the test, but this is not mandatory.
The TestSuite component is declared as a child of the root
component in current file.

Then, the developer creates functions in the declared Test-
Suite component. Functions starting with test_ or tst_ are
treated as tests to be run by the test runner. To execute actions
on behalf of the user, including button pressing, swiping, and
typing on the keyboard, the functions provided by QtTest and
QML language are used. QtTest also provides methods to
assert statements, skip tests, sleep for a certain amount of time,
and wait for an item to be rendered.

To run tests the developer passes paths to the created QML
files as arguments of the testing tool. It collects tests from
all files and execute them. Results of the execution can be
formatted in a human-readable format or presented in one of
common unit test report formats.

B. Issues of end-to-end testing of Sailfish OS applications with
standard tools

Unfortunately, the application of the approach described in
the previous section faces some issues when applied to end-to-
end testing of mobile applications for Sailfish OS. Particularly:

• QML components declared in the root of the cre-
ated QML document are not recreated for each test.

Therefore, the developer has to restore the state of the
element under test manually or create it dynamically.

• The functions to interact with QML components pro-
vided by QtTest are of low-level, e.g. they allow to
emulate mouse move, mouse press, key click, mouse
wheel and so on. To test a typical mobile application
such a set is not enough, therefore the developer
should write his/her own high-level functions to make
tests easier to read and maintain. For example, func-
tions to scroll a list to the specified element, find
element showing some text, long click on the element
are very much desirable but they are missing in QtTest.

• Sailfish OS platform that uses custom library called
Silica to provide the user interface. This library is
available only for Sailfish OS and cannot be easily
used on other platforms. This fact prevents developers
from running tests on the developer’s computer used
to develop an application and forces them to run tests
either on the emulator or on the real device. Here
emerges the additional task of deployment of the tests
on such platforms.

• The tool can be easily used to test QML-only compo-
nents depending on built-in QML types and installed
QML libraries, whereas testing of custom C++-based
QML components is complicated. The main reason
is that native components require extra setup to be
available during the testing opposed to just invoking
tests along the pure QML components.

The first two issues can be solved rather straightforward.
The way of coping with the third one is touched upon in
Section V. Regarding the last issue, the developer can resort to
one of two approaches: to use the qmltestrunner tool or create
separate executable using a special harness. They are described
in details in the following two subsections.

C. Using the qmltestrunner tool for testing custom C++-based
QML components

When using this approach, qmltestrunner executes tests
contained in QML files. In order to use custom QML com-
ponents written on C++ in tests, the developer should create a
QML Extension plugin that incorporates the components and
register it in the QML engine.

The application uses the QML engine to setup the envi-
roment for instantiating custom QML components. It is used
to search and load basic QML components of the QtQuick
library.

Most of the basic QML components are implemented using
C++ language for performance reasons. During the initializa-
tion of the QML engine it looks for a native QML Extensions
in special directories and initializes them. A set of directo-
ries can be configured using the C++ addImportPath()
method on the QQmlEngine class instance with path to
the QML Extension as method parameter or environment
variable QML2 IMPORT PATH. The first one can be used
in the application to set the directory where to load the QML
Extension from, the latter one during the execution of the tests
to allow qmltestrunner to search for QML Extension in the
specified path.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 473 ----------------------------------------------------------------------------



In order to create a QML extension developer should sub-
class the QQmlExtensionPlugin class. He should override
the registerTypes() method and register custom QML
types there by URI. Developer should provide the directory
where plugin should be installed and URI to the plugin within
the directory. With this approach developer is able to register
custom QML components when running qmltestrunner since
the registration code is moved to the plugin.

QML Extensions allow not only register custom QML
types, but provide a method to setup environment in which
those types can be used. Developer may override the
initializeEngine() method to initialize the QML Ex-
tension plugin. This method can be used to set the context
properties of the engine or create application directories. It
takes two parameters: engine instance and URI of the plugin.

D. Involving separate executable for testing custom C++-
based QML components

Another approach proposes creating a separate executable
to run the tests. This allows developer to register custom QML
types without creating a QML Extension plugin. This approach
proposes creating alternative entry point of the application.

Alternative entry point of the application is created
by defining another main function. The function is used
to setup test enviroment and to register custom QML
types in the same way as in registerTypes() and
initializeEngine() methods as mentioned before.

After defining the main function developer should run tests
using it. It is achieved by putting the quick_test_main
macros at the end of the function. It takes a set of arguments
required to setup the tests: argc and argv from main
function parameters, name of the test set shown when running
the tests and location of the directory with the tests.

Tests might be run by executing the created binary and it
does not need any arguments to set. After executing the binary
the tests would run and developer would see the results.

IV. POSSIBLE STRUCTURES OF HYBRID C++/QML
APPLICATION FOR SAILFISH OS TARGETED AT AUTOMATED

END-TO-END TESTING

A. Hybrid QML application

As a reference case for demonstration of the proposed
testing method, we consider a common hybrid application that
can contain QML components written in QML language and
C++ language. The structure of the hybrid project conforms
with the template project generated by the Sailfish OS IDE
and does not include any modifications to the build system.

The core components of the project source code are shown
in Fig. 1. They include build system configuration files, source
code of the application written in C++ and QML languages,
translation files and resources. During the build procedure the
source code written in C++ is compiled to the native binary
code and linked into the executable file. The translation files
are also transformed into the binary form. Files created on
previous steps and all other source components are packaged
into the RPM file for the target device.

After the installation of the RPM file, the application
executable is placed into the /usr/bin/ directory. The name
of the executable matches with the project name. Unmodified
QML source code and binary translations files are placed into
the subfolder of /usr/share/ having the same name of the
project. Resources are placed into the locations needed by the
application launcher. These locations correspond to the Linux
Filesystem Hierarchy standard [9].

QML components developed with the use of C++ language
are simply put into the corresponding folder and specified in
the build system configuration files. Then they are registered in
the QML engine during the application startup sequence before
loading the base QML file. Therefore they are available to all
required parts of the application.

Such an application structure is common enough to cover
most of the applications for Sailfish OS. This structure allows
only testing of QML components that does not depend on the
custom C++ components. This rest of this section explains
how to make such application testable using the approaches
described above.

B. Application with QML extension

In this subsection we describe how to extract C++ compo-
nents into a QML extension and to ship it with the application.
This structure allows to run tests using the qmltestrunner
application.

The structure of the project that utilizes the QML extension
is shown in Fig. 2. The main difference with the reference
project structure is the transformation into the multi-project
structure in terms of qt build system. The base project uses
sub-directories template and simply includes two other projects
into resulting build. It also contains the configuration files for
the build system that is responsible for the creation of the
RPM-archive from the compiled source code.

Most of the contents of the reference application is moved
into the QML application subproject. It includes sources of
the application written using QML language. These source files
must not be changed in any way, there is no need for extraction
of components that depend on components written using C++
language. The subproject also includes translations and other
application resources. These directories are managed by the
QMake build profile for a Sailfish OS application and does
not require extra setup.

The main difference in structure of this subproject with
the reference application lies in the structure of C++ source
code. This application contains only code required to bootstrap
sailfish application and specify path to the custom QML
extension in QML Engine. It must not contain any code that
modifies the system in some way that is required by custom
C++ QML components.

The last subproject is the QML extension project. It is
configured as a library project and contains all the code written
using C++ language that the original project contain. Except
the starting point should be transformed from the application
setup code to the QML extension according to the rules stated
in the previous section.

It should be noted that QMake build file in the QML
extension subfolder must be modified, so the resulting library

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 474 ----------------------------------------------------------------------------



Project source code structure

Application deployed on the device

QML sources
qml/ directory

rce code structur

urces
ctory

Translations
translations/ directory

re

slationsTrans
ns/ directorynslation

Resources
APPNAME.desktop file

and icons/ directory

Project sou

QML sou
qml/ direc

C++ sources
src/ directory
C+++ sources
src/ directory

Build files
.pro file

and rpm/ directory

Launcher configuration
/usr/share/ directories

d on the device

Launcher configuration
/usr/share/ directories

Shared files
/usr/share/APPNAME/ directory

Application depployeded

Shaared fi
/usr/share/APPPNAM

Application executable
/usr/bin/APPNAME file

Fig. 1. Structure of the project and compiled application

Project with QML extension structureon structure

QML application subproject

Project with QML extensio

QML extension subproject

Application deployed on the device

Build files
.pro file

and rpm/ directory

QML sources
qml/ directory

Resources
APPNAME.desktop file

and icons/ directory

C++ bootstrap
src/ directory

application subpr

rces
tory

roject

Resources
APPNAME.deskto

and icons/ direc

QML a

QMLQML sour
qml/ direc

Translations
translations/ directory

C++C++ bb
src/ d

Build files
.pro file

roject

B ildBuild
.pro f

C++ sources
src/ directory

s

ctory

nsion subprQML exten

C++C++
src/ d

Build files
.pro file

Launcher configuration
/usr/share/ directories

QML Extension
/usr/lib/APPNAME/ directory

Launcher configuration
/usr/share/ directories/ / h / di i

Shared files
/usr/share/APPNAME/ directory

ML Extension
PPNAME/ directoryPPNAME/ di

eployed on the deviceation dApplica

Shaared fi
/usr/share/APP/ / h /APPPNAMPNAM

Application executable
/usr/bin/APPNAME file

Fig. 2. Structure of the project using QML Extension

file would appear in the correct directory. One possible location
of this library is the default location of all QML extensions
for the Qt framework. Another one — the location of library
files for current application. In the provided template we use
the latter approach. Either way the specified file must also
be added to the list of files that should be packaged in the
resulting RPM file.

Summing up the first approach, the developer could easily
split the original project into a multi-project build due to
changes requiring only modification of couple C++ files and
build configuration scripts.

C. Custom test runner

In this subsection we describe how to setup creation of
custom test runner application that is able to use custom QML
components developed in C++ language.

The structure of the project that is able to create custom
executable to run tests is shown in Fig. 3. It is easily can
be seen that the project is also transformed into a multi-
component build in terms of qmake build system. The base
project only includes other two projects into the build process.
It also contains configuration of the packaging system.

The contents of the reference project is moved into the
QML application subproject. It contains all the source code of
the application and mostly unmodified build files. The solely
modification is the separation of list of C++ sources of custom
components into a separate file. This way the list may be
included in another subproject that eases the support of the

project. Thought the proposed change is not mandatory for
this scheme to work.

The test runner subproject is a base scenario only contains
one C++ source code file and one build configuration file. The
source code file simply includes header files of custom QML
components and registers them in the QML Engine. Then it
calls the special harness that is able to run tests and process
application arguments.

If the core application during the initialization procedure
not only registers the QML components, but also modifies the
environment in some way, then these actions must also be
executed during the startup of the custom test runner. This
way the custom QML components will be executed in the
correct environment. One way to ease the support of such code
is the separation of it into a special functions that will be
called during startup of both the original application and the
test runner.

The build system configuration of the second subproject
defines this application as a separate executable project and
specifies that this executable should be placed in the correct
location for the application. The subproject file must also
include common configuration from the application project.
Resulting executable must also be described in the packaging
configuration.

Summing up the second approach, the second approach
also requires developer to split application in a set of projects
that correctly interact with each other.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 475 ----------------------------------------------------------------------------



Project with custom test runner structure

QML application subproject

est runner structure

Test runner subproject

Application deployed on the device

Multi-project build configuration
.pro file

Packaging configuration
rpm/ directory

QML sources
qml/ directory

QML

QMLQ
qml/

Translations
translations/ directory

Translaations
translations// directo

Resources
APPNAME.desktop file

and icons/ directory

n subprojectL applicatiion

L sources
directory

C++ sources
src/ directory

rcesur
toryct

Build files
.pro file

sild files
ro file

Common build files
.pri file

Build files
.pro file

ojectner subproTest runn

Build files
.pro file

C++ sources
src/ directory

Launcher configuration
/usr/share/ directories

Launcher configurationLauncher configuration
/usr/share/ directories

Shared files
/usr/share/APPNAME/ directory

Application deployedA

filesfilesared fiared fi
ME/ directoryPNAM

Application executable
/usr/bin/APPNAME file

d on the device

Application executableApplication executable
/usr/bin/APPNAME file

Test application executable
/usr/bin/TEST_APPNAME file

includes

includes

Fig. 3. Structure of the project using custom test runner

Both approaches allow developer to enable testing of
custom QML components written in C++ language. Both of
them viable for different application structures and different
requirements for the application. If one structure seems less
suitable for a developer at some point, one can switch from
one project structure to another. In-depth analysis of concrete
benefits and disadvantages of each method could be done based
on the results of implementation in a various applications.

V. A TOOL TO RUN TESTS ON CONTINUOUS INTEGRATION
SERVER

In previous section we discussed aspects of writing QML
tests and providing custom QML components written using
C++ language to the test environment. The next major aspect is
consistent execution of those tests in a controlled environment,
i.e. the continuous integration. Such an approach is a very
important as it allows to constantly monitor the state of an
application development and actively react to the detected
issues [10].

Unfortunately, running of end-to-end tests for Sailfish OS
created according to the method described above is not
straightforward, and the main issue lies in the fact that Sail-
fish OS application SDK uses a separate virtual machine for
compiling and execution of applications. It should be noted
that it is not possible to execute QML test depending on Silica
library outside the Sailfish OS.

Sailfish OS SDK provides an IDE that allows developer to
build an application, install it on a device or an emulator and
then execute it. These tools are tightly integrated into the Qt
Creator and can not be called outside of it. Currently there is
no tool outside the IDE that is able to execute required steps
and the official guide to building and deploying application
package contains a set of low-level commands that developer
should manually execute on each machine.

In order to facilitate continuous integration we have de-
cided to develop a special tool that would be able to automat-

ically execute required steps described above, execute tests
and provide results in a required format. The tool should be
able run QML tests for the applications that conform with
structures described in previous section in the environment of
the integration server.

The flow of the tool operation is shown in Fig. 4. The tool
executes the tests, provides results to the integration server,
and shuts down. The scheme contains all major steps that tools
goes through during one cycle of operation.

The tool is supposed to be started in the root directory
of the project that should be tested. Other parameters include
the location of Sailfish OS SDK, name of the application to
launch and whether virtual machines should be shutdown after
the execution of the tool. All these parameters can be either
automatically determined or passed as parameters to the tool.

At the next step the tool tries to start the virtual machines
required to create application packages and execute tests.
These machines are managed by the VirtualBox hypervisor.
The tool manages them through the standard management
application and does not require additional setup. If the virtual
machine already running, the tool tries to check connectivity
via a SSH protocol and proceeds only when the virtual machine
is fully running.

Then tool tries to compile the application and create a
package using tooling in the MerSDK virtual machine. The
tool uses the same tools to compile the project that the IDE
does, so potentially it supports all projects that original IDE
does. The created application package is then transferred to the
Emulator virtual machine. The transferred package is installed
and the package manager ensures that all the dependencies are
met.

If it is required, the tool deletes all data in the user data
location. It might be needed during the active development
stage when internal data formats change frequently, but not
needed when the application have already been provided to
the end-users and migration procedures should be tested.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 476 ----------------------------------------------------------------------------



Initializationnitialization Check MerSDK
VM state

Start
MerSDK VM

Check Sailfish OS
Emulator VM state

Start
Emulator VM

Compile and package
application

and package
lication

Transfer package
to Emulator VM

Install packagep g

Clear application data files
in user directory

Run QML tests

Save report in a file

Shutdown VMs

Is MerSDK
VM shutdown

shutdown

running

Is Sailfish OS
Emulator VM shutdown

shutdown

running

Should remove
user data

remove

keep

Should shutdown VMs
shutdown

do not shutdown

Fig. 4. Operation logic of a tool to enable continuous integration

Then the QML tests provided with the application are run.
The tool assumes that files containing tests are provided along
with the source QML code. Then the selected test running
tool is started, so the results of the tests are written in the
common format that integration server can process. Resulting
file is then transferred from the emulator into the root directory
of the project.

If needed, virtual machines started on the first step are shut
down. It might be reasonable for the continuous integration
server to have them running all the time if tests are frequently
run. If tests are run infrequently there is no need to have virtual
machines running all the time.

The developed tool is available at
https://bitbucket.org/yarfruct/sailfish-os-qml-test-runner
under BSD licence.

VI. CONCLUSION

In this paper we proposed a method for end-to-end testing
of mobile applications targeted at Sailfish OS. It can be applied
to a rather common class of applications that include standard
and custom QML components, as well as C++ code. The
main focus of the paper is on considering two approaches of
code organization to make the application testable with the use
of existing tools (QtTest library and qmltestrunner). Also we
developed an open-source tool to facilitate the process of test
running on the integration server to enable the possibility of
adoption of the continuous integration technique for developer
teams.

The future work may cover creation of the plugin for
Qt creator that would allow to run tests straight out of the
IDE. Such a plugin would improve the developers’ perfor-
mance by decreasing the overhead of the corresponding routine
operations. Another important direction would be to extend
the functionality of the developed tool for running tests on
the continuous integration server to allow execution on real
devices, not only on emulators.

REFERENCES

[1] W. E. Lewis, Software testing and continuous quality improvement.
CRC press, 2016.

[2] B. Fitzgerald and K.-J. Stol, “Continuous software engineering and
beyond: trends and challenges,” in Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering. ACM, 2014,
pp. 1–9.

[3] J. Gao, X. Bai, W.-T. Tsai, and T. Uehara, “Mobile application testing:
a tutorial,” Computer, vol. 47, no. 2, pp. 46–55, 2014.

[4] S. Zein, N. Salleh, and J. Grundy, “A systematic mapping study of
mobile application testing techniques,” Journal of Systems and Software,
vol. 117, pp. 334–356, 2016.

[5] M. N. Mendiratta and R. Kumar, “Relative study of automated testing
tools: Selenium, Quick Test Professional and Test Complete,” IMS
Manthan (The Journal of Innovations), vol. 10, no. 2, 2016.

[6] H. Zadgaonkar, Robotium Automated Testing for Android. Packt
Publishing Ltd, 2013.

[7] U. Gundecha, Selenium Testing Tools Cookbook. Packt Publishing Ltd,
2015.

[8] L. Johansson, “Writing and running qmltestrunner tests,” Master’s
thesis, Häme University of Applied Sciences, 2015.

[9] D. Quinlan, P. Russell, and C. Yeoh, “Filesystem hierarchy standard
version 3.0,” The Linux Foundation, 2015. [Online]. Available:
http://refspecs.linuxfoundation.org/fhs.shtml

[10] M. Meyer, “Continuous integration and its tools,” IEEE software,
vol. 31, no. 3, pp. 14–16, 2014.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 477 ----------------------------------------------------------------------------


