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Abstract—Feedforward discrete-time cellular neural network 
for filtering of impulse noise from two-dimensional (image) 
signals is represented. The parameters of mathematical filter 
model result from approximation problem solution in mean-
square norm. It is shown that the cellular neural network 
surpasses median filter, Volterra filter and perceptron neural 
network in accuracy of image restoration and in simplicity of 
filter implementation. 

I. INTRODUCTION 
One of major problems in the communication theory is 

non-linear filtering of non-Gaussian noise. The impulse noise 
relates to non-Gaussian noise. This noise emerges during the 
switching of different electronic devices, in cases of 
mechanical damages of surfaces of the data storage devices, 
during the operation of internal-combustion engines, under the 
impact of various atmospheric phenomena, etc. Non-Gaussian 
noise distorts the working signals. Its emerging leads to the 
impairment of data transmission in communication channels 
[1–4]. 

Non-Gaussian noise is not cancelled by the methods of 
linear signal processing, so the methods of non-linear signal 
processing are used for non-Gaussian noise suppression, in 
particular, the methods within the framework of the “black 
box” principle. In view of this principle, the methods of 
building multidimensional polynomials and neural networks 
for non-linear devices, such as transformers, filters, 
compensators etc., are developed [5–7].  

In recent years numerous non-linear filters are synthesized 
in the form of neural networks, which are universal 
approximators, and in some cases, they are simpler in 
comparison with multidimensional polynomials [6], [7].  

The solving of an approximation problem results in 
establishing mapping between the input and output signals of a 
device and gaining high accuracy independently of 
computational cost (time, memory and et .) 

In this paper, the cellular neural network is considered as a 
model of non-linear filters for cancelling non-Cassian noise 
(for instance, impulse noise). The synthesis of combined filters 
based on the cascade connection of a median filter and neural 
network is proposed. The mathematical model of combined 
filter, containing the cellular neural network, is compared with 
the models of combined filters, including the perceptron 

network and Volterra series. The numerical results of impulse 
noise filtering from distorted images show the advantage of 
using the cellular neural network over the perceptron network 
and Volterra series. 

The rest of the paper is summarized as follows. In 
Section II, the problem for impulse noise filtering is introduced. 
Section III presents the concept of cellular neural networks. 
Section IV highlights the cellular neural network difference 
from the commonly used neural networks and the description 
of image signals and impulse noise. Section IV consists of 
numerical results of image restoring by various non-linear 
filters. The conclusions are drawn in the last section. 

II. THE PROBLEM OF IMPULSE NOISE FILTERING FOR IMAGE 
RESTORATION 

The problem of synthesizing the digital impulse noise 
filters can be solved within the framework of the “black box” 
principle [2], [5], [6], when filter operator sF  establishes a 
unique relationship between the set of input ( )s n  ( ( )s n S ) 

and output ( )oy n  ( ( )o oy n Y ) signals of device 

( ) ( )o
sy n F s n . 

For nonlinear dynamic system modeling it is required to 
approximate nonlinear operator sF  by nonlinear operator F  

which reflects the input set X  on the output set oY  with error 
, 0 , that is 

)()( nxFny  

where 0, nn G  is the normalized discrete time, nG  is the 
duration of input signals. 

The digital filter synthesis a consists in building a 
mathematical model in the form of operator equation 

( ) ( )y n F s n , 

where ( )y n  is the output signal of the filter model, F  is 

operator approximating sF  on sets S  and oY  under the 
condition 
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( ) ( )oy n y n  

for all ( )s n S , ( )o oy n Y . Here  is the assigned error of 
simulation. 

The parameters of nonlinear operator F  are determined by 
solving the approximation problem 

( ) ( ) mino
D

y n F s n ,                     (1) 

where D  is the parameter set of operator F . In practice, the 
approximation error is usually estimated in the mean-square 
norm. 

The synthesis of combined filters (with an internal 
smoothing median filter (MF)) for image restoration [8]–[10], 
and application of neural networks as approximators [10] 
stipulate combined neural filter structure shown in Fig. 1. Here 
the block MF designates smoothing median filter, the block NN 
denotes neural network. 

 

Fig. 1. The structure of combined neural filter 

The set of signals ( )u n  is interpreted as a set of fragments 
having length m , each of which is the vector composed of 
samples of the input signal at the template area (aperture) 
moving along the image with the step of one cycle.  

The neural network (the block NN depicted in Fig. 1) can 
be specified in the form of cellular neural network. 

III. CELLULAR NEURAL NETWORK 
The cellular neural network (CNN) was introduced by 

Chua and Yang (1988) [11], [12]. It is a recurrent nonlinear 
network in which neurons are locally connected, and dynamics 
is identical for each node. These neurons are commonly called 
cells. The connection with the cells outside the r-neighborhood 
is enabled by the propagation effects of network dynamics. 
The CNN dynamics is described by a set of differential 
equations [13]–[18]. 

Each cell of CNN has an input, an internal state and an 
output. Any one cell is connected only to its neighboring cells. 
Cell located in the position ( , )i j  of two-dimensional M N  

area is denoted as ijC , and its r-neighborhood r
ijN  is defined 

by 

, max , ,1 ;1r
ij klN C k i l j r k M l N , 

where the size of the neighborhood r is a positive integer 
number. 

Set r
ijN is sometimes referred as the (2 1) (2 1)r r  

neighborhood. For the 3 3  neighborhood, r should be 1. 
Thus, the parameter r controls the connectivity of a cell, i.e. 
the number of active synapses that connects the cell with its 
immediate neighbors. 

CNN is entirely characterized by the set of nonlinear 
differential equations associated with cells in network. The 
mathematical model for the state equation of a single cell ijC  
is given by the following relation: 

, ,
( )

( ) ( ) ( )ij
ij ij kl kl ij kl kl ij

r rkl N kl N

x t
x t A y t B u t I

t
,                 

(2) 

where ( )ijx t  denotes the state of cell ijC ; ( )kly t  and ( )klu t  

denote the output and input of cells klC  located in the sphere 
of influence with radius r, respectively; t is the continuous 
time; ,ij klA  and ,ij klB  are the feedback and feedforward 

templates, respectively; ijI  is the bias term.  

In many applications, CNN is isotropic, that is space-
invariant. Isotropic network is characterized by parameters in 
equation (1) which are fixed for the entire neural network. In 
the case of isotropic CNN, for example under 1r , the terms 
of state equation (1) are represented below. 

 Contribution of the feedback synaptic weights ,ij klA  to 
equation (2). In view of space-invariance, we can write 

,
1 1

( ) ( , ) ( )ij kl kl kl
r k i l jkl Nij

A y t A i k j l y t  

1, 1 1, 1 1,0 1, 1,1 1, 1i j i j i ja y a y a y  

0, 1 , 1 0,0 , 0,1 , 1i j i j i ja y a y a y  

1, 1 1, 1 1,0 1, 1,1 1, 1i j i j i ja y a y a y  
1 1

, ,
1 1

k l i k j l
k l

a y  

1, 1 1, 1, 11, 1 1,0 1,1

0, 1 0,0 0,1 , 1 , , 1

1, 1 1,0 1,1 1, 1 1, 1, 1

i j i j i j

i j i j i j

i j i j i j

y y ya a a

a a a y y y

a a a y y y

 

ijA Y ,                                    (3) 

where the matrix A  of the 3 3  dimension is called the 
feedback cloning template, the symbol  denotes the 
summation of dot products (or the sign of vector product), 
henceforth called a template dot product. In discrete 
mathematics, this operation is called “spatial convolution.”  
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The 3 3  matrix ijY  in (2) can be obtained by moving an 

opaque mask with the 3 3  window to the position ( , )i j  of 
the M N  output image Y , henceforth called the output 
image at ( , )C i j . 

An element kla  is called the center (respectively, 
surround) element, the weight or coef cient, of the feedback 
template A , if and only if ( , ) (0, 0)k l  (respectively, 
( , ) (0, 0)k l ). 

 Contribution of the input synaptic weights ,ij klB  to 
equation (2). Following the above notes, we can write 

,
1 1

( ) ( , ) ( )ij kl kl kl
r k i l jkl Nij

B u t B i k j l u t  

1 1
, ,

1 1
k l i k j l

k l
b u  

1, 1 1, 1, 11, 1 1,0 1,1

0, 1 0,0 0,1 , 1 , , 1

1, 1 1,0 1,1 1, 1 1, 1, 1

i j i j i j

i j i j i j

i j i j i j

u u ub b b

b b b u u u

b b b u u u

 

ijB U ,                                    (4) 

where the 3 3  matrix B  is called the feedforward or input 
cloning template, and ijU  is the translated masked input 
image. 

 Contribution of the threshold term to equation (2). In 
view of space-invariance, denote ijI z . 

Using the above notations in (3), (4), space-invariant CNN 
is completely described by state equation 

ij ij ij ijx x zA Y B U .                  (5) 

The output signal of cell ijC  is given by the following 
equation    

( ) ( ( ))ij ijy t f x t ,                               (6) 

where ( )ijy t  denotes the output value of cell ijC , ( )f  is the 
non-linear activation function which is usually specified as the 
unity gain piecewise linear saturation function described by 
expression 

1( ) ( ( )) ( ) 1 ( ) 1
2ij ij ij ijy t f x t x t x t  

and shown in Fig. 2. 

The properties of the piecewise linear saturation function 
shown in Fig. 2 are the following: 

an uniform gain for low and high input signal 
amplitudes, 

quickness of signal conversion, 

implementation simplicity in the analog and digital 
fields using operational amplifiers and VLSI 
technology respectively. 

)(txij

)(tyij

 

Fig. 2. The piecewise linear saturation function 

A signi cant CNN feature is that CNN has two 
independent input capabilities: the generic input and the initial 
state of cells. They are normally bounded by ( ) 1iju t  and 

(0) 1ijx . Similarly, if ( ) 1f  then ( ) 1ijy t . 

CNN is uniquely de ned by three terms of the cloning 
templates , , zA B , which consist of 19 real numbers for the 
3 3  neighborhood ( 1r ). 

One of the simplest CNN subclasses is zero-feedback 
(feedforward) CNN. CNN belongs to the zero-feedback 
subclass if and only if all the feedback template elements are 
zero, i.e., 0A . In view of (5) each cell of the zero-feedback 
CNN is described by expression 

ij ij ijx x zB U .                         (7) 

The discrete CNN model is used for image processing. The 
feedforward CNN description in discrete time domain results 
from expression (7) after following transformations: 

– the approximation of derivative 

( ) ( ) ( )
( ) ( 1)ij ij ij

ij ij
dx t x t x t t

x n x n
dt t

 

where n  is the discrete normalized time. Let us suppose, that 
1t ; 

– the transition from differential equation (6) to recursive 
difference equation 

( ) ( 1) ( 1)ij ij i ijjx n x n x n zB U . 

Eventually, on the bases of (6) and (7) the model of cell 
ijC  in feedforward discrete-time CNN (DTCNN) is described 

as 

( ) jij ix n zB U , 
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( ) ( )ij ijy n f x n .                             (8) 

The structure of cell ijC  in feedforward DTCNN is 
depicted in Fig. 3. 

( 1)klu n

( )ijx n ( )ijy n

r
ijkl N

 

Fig. 3. The structure of cell ijC  in feedforward DTCNN 

Expressions (8) are transformed into the isotropic model of 
DTCNN cell if the parameters of model are fixed for entire 
neural network. 

IV. THE SIGNALS OF IMAGES AND THE CRITERION OF 
FILTRATION ACCURACY ESTIMATION 

Combined neural filters are synthesized on the class of bit-
map (dot element) half-tone images at the resolution measured 
by 256 gray levels, i.e., image is the matrix of integers 
(elements of brightness, pixels) in the interval [0; 255]. In the 
case under consideration, the pixel format is unit8.  

The impulse noise represents switched on and switched off 
pixels (white and black dots in the picture), the emergence of 
which does not depend on the presence of noise spikes in 
adjacent dots. The addition of impulse interference to image 
implies that value q  of the signal sample with probability aP  
is replaced with value 0z  (black), with probability bP  is 
replaced with value 255z  (white), and with probability 
1 ( )a bP P  remains unchanged. Thus, the probability 

density of the impulse noise is described by the following 
expression  

at 0;
( ) at 255;

0 in other cases

a

b

P q
p q P q  

or 

( ) ( ) ( )a bp q P q a P q b , 

where ( )  is the -function. Let us assume that a bP P . The 
impulse noise model described above is referred to as “salt and 
pepper” [4], [9], [10].  

In building operator F  of nonlinear filter, the “unit8” 

format of signals ( )u n U  and ( )o oy n Y  is transformed 
into the “double” format (samples of signals are normalized 
floating-point numbers of double precision in the range 

1;1 ). 

The synthesis of combined neural filter (Fig. 1) with 
internal isotropic feedforward DTCNN, including some 
neurons in hidden layer and referred to as combined DTCNN 
(CDTCNN), is performed in the MATLAB system 
environment. This synthesis involves solving the 
approximation problem (1) in the mean-square norm using the 
error back propagation algorithm [6]. Activation function f  is 
specified in the form of piecewise linear saturation one 
(Fig. 2). The distorted image “Tigers” having the size of 
220 148  pixels is a learning signal.  

The results of CDTCNN filtration are compared with the 
results of combined neural filtration (Fig. 1) with internal two-
layer perceptron network (TLPN), including the hyperbolic 
tangent activation functions, referred to as combined TLPN 
(CTLPN) [10], of combined Volterra filtration [5], [6] and of 
median filtration performed at the 3x3 square aperture [4]. 

The TLPN model is described by equation 

0
1 0

( ) ( )
I m

d dg g
d g

y n G c c G w u n , 

where model input signal is the vector  

0 1 2, , , ..., mu n u n u n u n , 

containing 0 ( ) 1u n , as well as elements, corresponding 
matrix ijU  in (4), from the 3 3  window located around cell 

( , )C i j ; 9m ; G  is the hyperbolic tangent activation 
function; I  is the number of neurons. 

The structure of two-layer perceptron network is shown in 
Fig. 4. 

mu n

)(ny

0u n

1u n

10w

20w

0Iw

1Iw

Imw

21w

mw2

11w
mw1

1c

2c

Ic

0c

 

Fig. 4. The structure of two-layer perceptron network 
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Combined Volterra filter (CVF) is the cascade connection 
of two units: MF with the 3x3 square aperture and Volterra 
filter. The CVF structure has the similar form depicted in 
Fig. 1, but the block NN is replaced with Volterra filter. The 
CVF model is the truncated Volterra series [5], [6]: 

1 1 1
1 2

1 0 0 0 11 2
 ... ,  ,  ..., 

L J J J
r

j j j r
y n h j j j u n j , 

(9) 
where 1 2,  ,  ... , h j j j  is the Volterra kernel of order , 
( 1)J  is the CVF memory length, L is the degree of Volterra 
model. The set of signals ( )u n U  is formed at the output of 
smoothing MF and consists of J-length fragments, each of 
which is built at the aperture moving along the picture with a 
step of one cycle.  

Parameters of the VCF model (9) are defined as a result of 
solving the approximation problem (1) in the mean-square 
norm while using learning image with the size of 220 148  
pixels. The length of learning sequence ( )u n  amounts to 
32560 samples. 

CDTCNN and CTLPN comprise different activation 
functions. The properties of the piecewise linear saturation 
function shown in Fig. 2 are considered above. 

The properties of the hyperbolic tangent activation 
function, which is shown in Fig. 5 and contained in CTLPN, 
are the following: 

– gain control for the input signals of different levels. The 
central function part corresponding to the region of low input 
signal amplitudes has a large slope and a maximum of the 
derivative, so the gain is maximum here. Moving from the 
function central to large absolute values of inputs, the slope of 
the curve and its derivative is decreased, as well as the gain is 
reduced; 

the function is continuous and differentiable over the 
entire range of argument, that is convenient on using 
this function in the gradient algorithms of learning 
network when multiple operations of differentiation are 
required; 
the slow conversion of signal; 
more complicated implementation of the hyperbolic 
tangent activation function as compared with the 
piecewise linear function. 

1

1

0

( ( ))G x n

( )x n

 

Fig. 5. The hyperbolic tangent activation function 

The rate of impulse noise suppression by different filters is 
estimated with the help of error  computed after the 
restoration of a test image having the size of 220 148  pixels 
by the following formula 

2

1

1 ( ) ( )
Q

o

n
y n y n

Q
,                      (10) 

where ( )y n  is the output signal of non-linear filter, ( )oy n  is 
desirable signal, 32 560Q . The test images differ from 
learning one. 

V. IMPULSE NOISE CANCELLING BY NON-LINEAR FILTERS 
The filtration results (error calculated from (10)) obtained 

by synthesized devices are summarized in the Table I, the 
Table II, Fig. 6 and Fig. 7 under various densities p of the 
impulse noise. “Tigers”, “Building” and “Fence” are the 
names of learning and two test images, correspondently. All 
the images have the size of 220 148  pixels. 

Neural filters built on the base of CDTCNN and CTLPN 
comprise two and five neurons in hidden layer under the 
impulse noise density 0.3p  and 0.5p  correspondingly. 
The filtration errors are decreased very slowly at neuron 
numbers higher than mentioned ones. 

CVF model is applied in the form of Volterra 
polynomial (9) of the second degree. 

The number of parameters in neural and polynomial models 
is indicated in the Table III. 

TABLE I. FILTRATION ERROR UNDER P=0.3 

Image CDTCNN CTLPN CVF MF 

Tigers 514 516 534 739 

Building 786 804 835 1039 

Fence 1142 1138 1153 1434 

TABLE II. FILTRATION ERROR UNDER P=0.5 

Image CDTCNN CTLPN CVF MF 

Tigers 771 841 1206 2759 

Building 1083 1186 1712 3014 

Fence 1558 1800 2214 3735 

TABLE III. NUMBER OF MODEL PARAMETERS 

Model Impulse noise density 
0.3 0.5 

CDTCNN 23 56 

CVF 54 54 

The following inferences can be made from the Table I, the 
Table II and Fig. 6. 

At the middle noise density ( 0.3p ), CDTCNN and 
CTLPN comprise two neurons in hidden layer and 23 
parameters. These filters ensure virtually identical 
accuracy of filtration. Thus, differences in the activation 
functions of these filters are not revealed in the case of 
low neuron number. 
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a   b 

    
c   d 

   
e   f 

Fig. 6. Learning image and filtration results: a – initial image, b – distorted 
image, c – CDTCNN result, d – CTLPN result, e – CVF result, f – MF result 

CDTCNN and CTLPN yield higher quality of image 
restoration (Fig. 6, c, d) than CVF model of the second 
degree (Fig. 6, e) and MF (Fig. 6, f). 

    
a   b 

   
c   d 

   
e   f 

Fig. 7. Test image and filtration results: a – initial image, b – distorted image, 
c – CDTCNN result, d – CTLPN result, e – CVF result, f – MF result 

In practice, CDTCNN is more preferable in comparison 
with CTLPN since its hardware implementation is 
simple due to using the piecewise linear saturation 
functions. 
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From the Table II, the Table III and Fig. 7, it should be 
added the following notes. 

At the high noise density ( 0.5p ), when CDTCNN 
and CTLPN contain five neurons in hidden layer, 
CDTCNN with the piecewise linear activation function 
yields higher filtration precision (Fig. 7, c), than CTLPN 
with the hyperbolic tangent activation functions 
(Fig. 7, d), CVF model of the second degree (Fig. 7, e) 
and MF (Fig. 7, f). 

It should be observed that CDTCNN, CTLPN and CVF 
provide different accuracy at the nearly equal 
complexity of these filters (56 parameters of CDTCNN 
and CTLPN, 54 parameters of CVF). 

The use of the hyperbolic tangent activation functions in 
CTLPN negatively affects the image quality (white 
color turns to gray one, as well as there is a bit ripple i.e. 
image loses its smoothness (Fig. 7, d)). 

Indeed, at an equal probability of the impulse noise (for 
instance, white and black dots on images) occurrence, the 
filtration with different gains at low and high amplitudes of 
signals (in the case of the hyperbolic tangent and the logistic 
activation function) is not expedient. 

VI. CONCLUSION 
The problem of non-Gaussian noise filter synthesis is often 

effectively solved within the framework of the "black box" 
principle. According to this principle, the mathematical filter 
model describes the relationship between the sets of input and 
output signals. The model parameters are determined by 
solving the approximation problem using the subsets of input 
and output signals. Considered approach to the synthesis of 
nonlinear filters is general, because it can be applied at various 
kinds of non-Gaussian noise sources. 

Neural filters such as a feedforward cellular neural network 
and a two-layer perceptron network surpass Volterra filter and 
median filter in the accuracy of impulse noise filtration on 
half-tone images. The above-mentioned neural filters yield 
equal accuracy at the middle noise density. The feedforward 
cellular neural network in the standard version (with the 
piecewise linear saturation functions) carries out more 
accurate restoration of images as compared with two-layer 
perceptron network (with the hyperbolic tangent or the logistic 
activation function) at the high noise density. 

It should be emphasized that the hardware implementation 
of the cellular neural network is simpler in comparison with 
two-layer perceptron network since the piecewise linear 
saturation functions used in the cellular network are simpler 
than the hyperbolic tangent activation functions included in 
perceptron network. 
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