
Mobile Edge Computing Services for
Dynamic Quality of Service Control

Evelina Pencheva, Ivaylo Atanasov
Technical University of Sofia

Sofia, Bulgaria

{enp, iia}@tu-sofia.bg

Abstract—Mobile Edge Computing (MEC) provides cloud
computing capabilities in the radio access network. It enables ap-
plications that improve user’s quality of experience and guarantee
maximum utilization of radio network resources. Communication
between MEC services and applications is based on Service-
oriented Architecture (SOA). In this paper, capabilities for de-
ployment of existing Parlay X Web Services in MEC environment
are studied, and a new Web Service that provides access to User
equipment-related radio network information is proposed.

I. INTRODUCTION

Mobile Edge Computing (MEC) is a new technology that
provides IT and cloud computing capabilities within the Radio
Access Network [1]. It appears to be an important ingredient
of 5G networks as it can improve user’s quality of experience
(QoE) and guarantee maximum utilization of radio network
resources [2]. The processing logic is located close to base
station (eNB) which reduces delays and allows timely reaction
of dynamically changes in radio conditions. The vicinity to
end users enables applications with high bandwidth and low
latency requirements. For telecom operators MEC is a new
source for revenue generation opportunities and it reduces
the cost of data delivery while scaling their network [3],
[4], [5]. MEC provides real-time network data such as radio
conditions and network statistics for authorized applications
to offer context-related services that can differentiate end user
experience. A number of applications may be created and
deployed at the mobile network edge like consumer-oriented
services (gaming, augmented and assisted reality, cognitive
assistance), operator and third party services (active device
location tracking, big data, security, enterprise services), and
network performance and QoE improvements (content cashing,
performance optimization, video optimization, etc.) [6], [7].
A number of MEC use cases and deployment options are
presented in [8]. A comprehensive survey of the state-of-the-art
MEC research with a focus on joint radio-and-computational
resource management is provided in [9].

ETSI, the European Telecommunications Standards Insti-
tute, defined MEC reference architecture, where MEC deploy-
ment can be inside the base station or at aggregation point
within Radio Access Network (RAN) [10]. Minimal latency
for many applications can be achieved by integrating MEC
server inside the base station [11], [12].

MEC-service platform provides three types of middleware
services: infrastructure services, radio network information ser-
vices and traffic offload function [13]. Infrastructure services
are used by applications for communications, service discovery

and integration. Radio network information services provide
authorized applications with low level real-time radio and
network information related to users and cells. The traffic
offload function prioritizes traffic and routes the selected,
policy-based, user-data stream to and from applications that
are authorized to receive the data.

Communication between MEC services and applications is
based on Service-oriented Architecture (SOA). The applica-
tions access MEC services and other applications hosted on
the MEC platform through Web Services (WS) Application
Programming Interfaces (APIs). The aim is to reuse the
existing APIs as much as possible.

The survey on MEC related works shows that the research
is focused on MEC applications, but not on MEC services
and the APIs that provide applications with radio resource
management functionality. In this paper, we study the capabil-
ities for deployment of Parlay X Application Driven Quality
of Service (ADQ) WS in MEC environment [14]. We also
propose a new WS that allows authorized MEC applications
to manage User equipment (UE) context based on delivered
radio network information. The functionality of Web Services
is related to one UE and is based on S1AP functions [15]. The
UE-associated services are associated with a UE-associated
signaling connection maintained for the given UE.

The paper is structured as follows. In the next section use
cases are presented where ADQ WS may be used and UE
context information is required. In section III, a mapping of
ADQ WS interfaces onto S1AP protocol is provided. Section
IV presents a WS that allows authorized applications to receive
notifications about UE context related events and to instruct
eNB how to handle them. In section V, some WS implemen-
tation issues are discussed. The conclusion summarizes the
authors’ contribution and outlines the benefits of the proposed
solution.

II. USE CASES OF DYNAMIC QOS CONTROL

As to [13], traffic routing is a MEC platform essential
functionality. This functionality allows authorized applications
to inspect, modify, and shape selected uplink and/or downlink
user plane traffic. Dynamic QoS control on end user con-
nections may be implemented if the MEC platform supports
features UEIdentity and RadioNetworkInformation. If the MEC
platform supports UEIdentity feature it provides applications
with functionality to register a token (representing a UE) or a
list of tokens, and to set packet filters for routing traffic based
on a token representing the UE. If the MEC platform supports

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



RadioNetworkInformation feature, it provides appropriate up-
to-date radio network information at the relevant granularity
(e.g. per UE or per cell, per period of time).

The MEC applications, capable of dynamic QoS control,
are generally aimed at improving performance of the network
and user experience.

Examples of such application are orchestration of video
streams and video optimization.

MEC can save backhaul capacity and provide high level
performance and quality for video streams by locally produced
video content and adding additional information. MEC plat-
form collects data from local production devices and routes
it to video orchestration application. Requests from UE to
receive video are directed to the edge video orchestration
application which routes the selected content to the user.
MEC platform provides service for routing traffic form local
production devices to the user.

MEC can improve user’s QoE and guarantee maximum
utilization of radio network resources by eliminating mobile
content delivery inefficiencies. Video delivery is done via
HTTP streaming, which is based on Transmission Control
Protocol (TCP). TCP is not able to adapt to the changes of
radio channel conditions, which leads to inefficient utilization
of radio resources. An analytic application may derive radio
network information available at the MEC platform and com-
pute throughput guidance values [16]. Using the MEC routing
services, the application may send the optimal bit rate to the
video server to use given the radio conditions for a particular
video stream or user.

Other examples include local content caching at the mobile
edge, mobile backhaul optimization etc.

The dynamic QoS control may be provided by using APIs
of Parlay X ADQ WS and access to UE related radio network
information.

III. APPLICATION-DRIVEN QOS IN MEC ENVIRONMENT

The functionality for inspecting, modifying, and shaping
selected uplink and/or downlink user plane traffic may be
implemented by using Parlay X Application-Driven Quality
of Service WS. ADQ is a service which enables applications
to dynamically change the quality of service (e.g. bandwidth)
available on end user network connections [14]. Changes in
QoS may be applied on either a temporary basis (i.e. for a
defined period of time), or as the default QoS to be applied
for users each time they connect to the network. In the context
of MEC routing service, the ApplicationQoS interface provides
methods for dynamically controlling temporary QoS features
in the network which will be active for a specified period of
time, modifying an active temporary QoS Feature on an end
user connection and self-care like operations. The invocation
of interface operations results in initiation of S1AP procedures
related to EUTRAN Radio Access Bearers (E-RABs).

The applyQoSFeature operation is used by Application
to request a temporary QoS feature to be setup on the end
user connection. Implemented in MEC platform this operation
allows the Application to assign resources on Uu and S1 inter-
faces for one or several E-RABs and to setup corresponding

Data Radio Bearers for a given UE. The operation initiates
E-RAB Setup procedure, as shown in Fig. 1.

Fig. 1. The Application applies specific QoS to a UE connection

The Parlay X ADQ defines only DownStreamSpeedRate
and UpStreamSpeedRate as QoS attributes. We suggest an
extension of QoSFeatureProperties structure with elements in-
dicating QoS parameters of bearers in Evolved Packet System,
namely QoS Class identifier, Allocation and Retention Priority
(ARP), Guaranteed Bit Rate (GBR) and Maximum Bit Rate
(MBR) for GBR bearers and APN Aggregated Maximum Bit
Rate (APN-AMBR) and UE-AMBR (TS 23.203).

Fig. 2. XML scheme related to E-RAB QoS parameters

Fig. 2 shows the XML scheme related to E-RAB QoS
parameters.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 366 ----------------------------------------------------------------------------



When the eNB reports unsuccessful establishment of an
E-RAB, the cause value indicates the reason for unsuccessful
establishment, e.g., “Radio resources not available”, “Failure in
the Radio Interface Procedure.” The respective WS exception
is “Insufficient connection resources.” If the eNB receives
E-RAB Setup Request message containing incorrect E-RAB
ID or QoS parameter values indicating QCI of GBR bearer,
which does not contain GBR QoS information, then the eNB
considers the establishment of the corresponding E-RAB as
failed and the WS generates exception “Invalid input value.”

The modifyQoSFeature operation may be used by Appli-
cation to alter the QoS attributes of an active temporary QoS
feature instance. This operation initiates E-RAB modification
procedure, as shown in Fig. 3.

Fig. 3. The Application modifies the temporary QoS to UE connections

The service exception “Invalid input value” is raised when
the eNB founds incorrect E-RAB ID.

The removeQoSfeature operation may be used by the
Applications to release a temporary QoS Feature, which is
currently active on the end user connection. This operation
initiates E-RAB release procedure, as shown in Fig. 4.

Fig. 4. The Application removes the temporary QoS to UE connections

The getQoSStatus operation falls in the category of a
self-care and may be used to retrieve the status of an end
user connection. The response to this method will contain
information about the characteristics of the active E-RABs
including information about the temporary QoS features that
are currently active on the end user connection.

The getQoSHistory operation returns an historical list of all
QoS transactions previously requested against an end user’s
connection. The transactions to be returned may be filtered
by specifying a QoS Feature identifier, a maximum number
of transactions, a date/time limit, or additional filter criteria.
The additional criteria may include E-RAB QoS information
classified as to QCI, ARP, GBR, etc.

The ApplicationQoSNotificationManager interface is used
by the Applications to manage their registration for notifica-
tions.

The startQoSNotification operation may be used by the
Application to register its interest in receiving notifications

of a specific event type(s) in context of specific end users.
This operation starts monitoring and collecting radio network
information, related to UE E-RABs. The stopQoSNotification
operation is used by the Applications to stop receiving notifi-
cations by canceling an existing registration.

The ApplicationQoSNotification interface provides the op-
erations for notifying the Application about the impact of
certain events on QoS features that are active on the user
connection when these events occurred. The notifyQoSEvent
operation reports a network event that has occurred against
user active QoS features. The QoSEvent type specifies the
events that may occur on any active QoS features on the
user connection(s). The “abnormal connection termination”
event occurs when the dedicated E-RAB established by the
Application are lost. The “normal connection termination”
event occurs when the dedicated E-RAB established by the
Application is released, or when all E-RABs are removed due
to user inactivity (UE context release procedure is performed).
The “temporary QoS feature released event” occurs when a
temporary QoS feature that was active on an established E-
RAB is released because the threshold set by one of the service
attributes (e.g. elapsed duration) has been reached.

Fig. 5 shows an example of Application subscription and
notification about QoS events.

Fig. 5. Subscription for and notification about UE context modification

IV. UE CONTEXT NOTIFICATION WEB SERVICE

The functionality of UE Context Notification Web Service
is based on the following functions of S1 AP:

• Initial Context Transfer function: This functionality is
used to establish an S1UE context in the eNB, to setup
the default IP connectivity, to setup one or more E-
RAB(s) if requested by the MME, and to transfer Non
Access Stratum signaling related information to the
eNB if needed;

• UE Context Modification function: This functionality
allows partly modification of the established UE Con-
text;

• UE Context Resumption function: This functionality
allows keeping the UE Context in the eNB for a
UE in RRC IDLE that has been enabled to use user
plane optimization and to resume the radio connection
without the need to re-establish the UE Context;

• S1 UE Context Release function: This functionality
is responsible to manage the release of UE specific
context in the eNB and the MME.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 367 ----------------------------------------------------------------------------



The UEContextManagement interface allows an authorized
Application to receive notifications about UE context related
events and to indicate how the context should be handled. The
Application is notified in case of the following events:

• Initial context setup;

• eNB-initiated UE context release;

• MME-initiated UE context release;

• UE context modification;

• UE context modification indication;

• UE context suspend;

• UE context resume and release.

The invocation of handleContextSetup operation requests
the Application to inform the MEC server how to handle
the UE context on establishment of initial UE context. The
Application may accept, change or reject the initial UE context
setup (“continue,” “changeQoS” or “reject” action), as shown
in Fig. 6.

Fig. 6. The Application approves initial UE context establishment

The invocation of handleMMEContextRelease operation
requests the Application to inform the MEC server how to
handle the UE context when MME initiates a release of UE-
associated logical S1-connection. The Application may accept
or reject the UE context release.

The invocation of handleContextModified operation re-
quests the Application to inform the MEC server how to handle
the UE context when MME requests to partly modify the
established UE Context. Application may accept, change or
reject the UE context modification.

The invocation of handleContextResume operation requests
the Application to inform the MEC server how to handle the
UE context when eNB requests from MME to resume the UE-
associated logical S1-connection. The Application may accept
or reject the UE context resume.

The UEContextManagementManager interface enables ap-
plications to setup and tear down notification subscriptions
for UE Contexts online. The startContextManagementNotifi-
cation starts notifications to the application for given UE.
The criteria parameter specifies the event specific criteria
used by Application to define the event required. Only events
that meet these criteria are notified. If the criteria parameter
is not present, all UE Context events will be notified. The
Application may end the UE Context notification using the
stopContextManagementNotification operation.

UEContextNotification interface allows the Application
to be notified about UE context related events. When UE

Context events occur in the network, the Application may
be notified of UE context related events. The Application
does not have the ability to influence the UE Context, as
UE Context management continues. Notifications are provided
for Initial context setup, eNB-initiated UE context release,
MME-initiated UE context release, UE context modification,
UE context modification indication, UE context suspend, UE
context resume and release.

The notifyContextSetup operation informs the Application
that the necessary overall initial UE context including E-RAB
context, the security key, handover restriction list, UE radio
capability and UE security capabilities etc. are established. The
notifyENBContextRelease operation informs the Application
that eNB requests the MME to release the UE-associated log-
ical S1 connection due to E-UTRAN generated reasons. The
notifyMMEContextRelease operation informs the Application
that MME orders the release of the UE-associated logical S1
connection due to various reasons, e.g. completion of a UE
transaction. The notifyContextModified operation informs the
Application that MME requests partly to modify the estab-
lished UE Context. The notifyContextModifiedInd operation
informs the Application that eNB requests the modifications
on the established UE Context. The notifyContextSuspend
operation informs the Application that eNB requests to suspend
the UE context, the UE-associated logical S1-connection and
the related bearer contexts in the E-UTRAN. The notify-
ContextResume operation informs the Application that eNB
indicates to the MME that the UE has resumed the suspended
RRC connection and to request the MME to resume the UE
context, UE-associated logical S1-connection and the related
bearer contexts.

The UEContextNotificationManager interface enables ap-
plications to set up and tear down notifications for UE contexts
online. The startContextNotification operation starts notifica-
tions to the Application for given UE. The Application may
end the UE context notification using the stopContextNotifica-
tion operation.

Fig. 7 illustrates subscription for and notification about UE
context modifications.

Fig. 7. Subscription for and notification about UE context modification

V. IMPLEMENTATION ISSUES

The MEC platform needs to translate Web Service mes-
sages into S1AP protocol messages and vice versa. In addition,
it has to maintain synchronized the UE context state models

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 368 ----------------------------------------------------------------------------



as seen by the network and by the Application. Fig. 8 shows
the UE context state model as seen by the Application.

Fig. 8. UE context state model as seen by Application

In AppUnavailable state, the UE context is not available
at the eNB. Upon notification of initial UE context setup,
the Application may accept the establishment of the S1AP
connection without any changes, or may change some E-RAB
related QoS parameters, or may reject the UE context setup. In
AppAvailable state, the UE context is available at the eNB and
the Application may be notified about UE context modification,
suspend or release request and indicate how to handle the
request. In AppSuspended state, the UE context is suspended,
and the Application may be notified about UE context resume
or release request, and instructs the MEC platform about the
necessary action.

We use the mathematical formalism of Labeled Transition
Systems (LTSs) to describe the UE context state models.

An LTS is defined as a quadruple of set of states, set of
inputs, set of transitions, and an initial state.

By CApp = (SApp, InpApp,→App, s
0
App) it is denoted an

LTS representing the Application’s view on device state where:

SApp=
{
AppUnavailable

[
sA1
]
, AppAvailable

[
sA2
]
,

AppSuspended
[
sA3
]}

;

InpApp=
{
handleContextSetupcon

[
tA1
]
, handleContext

Setupchange
[
tA2
]
, handleContextSetuprej

[
tA3
]
,

notifyContextSetup
[
tA4
]
, handleMMEContext

Releasecon
[
tA5
]
, handleMMEContext

Releaserej
[
tA6
]
, handleContextModifiedcon[

tA7
]
, handleContextModifiedchange

[
tA8
]
,

handleContextModifiedrej
[
tA9
]
,

notifyContextModifiedind
[
tA10

]
,

notifyContextModified
[
tA11

]
, notifyContext

Suspend
[
tA12

]
, notifyContextResume

[
tA13

]
,

notifyContextResumecon
[
tA14

]
, notifyContext

Resumerej
[
tA15

]
, notifyENBContextRelease

[
tA16

]
, notifyMMEContextRelease

[
tA17

]}
;

→App=
{(
sA1 t

A
3 s

A
1

)
,
(
sA1 t

A
1 s

A
2

)
,
(
sA1 t

A
2 s

A
2

)
,
(
sA1 t

A
4 s

A
2

)
,

(
sA2 t

A
5 s

A
1

)
,
(
sA2 t

A
16s

A
1

)
,
(
sA2 t

A
17s

A
1

)
,
(
sA2 t

A
7 s

A
2

)
,

(
sA2 t

A
8 s

A
2

)
,
(
sA2 t

A
9 s

A
2

)
,
(
sA2 t

A
10s

A
2

)
,
(
sA2 t

A
11s

A
2

)
,

(
sA2 t

A
12s

A
3

)
,
(
sA3 t

A
13s

A
2

)
,
(
sA3 t

A
14s

A
2

)
,
(
sA3 t

A
15s

A
3

)
,

(
sA3 t

A
5 s

A
1

)
,
(
sA3 t

A
16s

A
1

)
,
(
sA3 t

A
17s

A
1

)}
;

s0App=
{
sA1
}
.

Short notation of state names and input names are given in
brackets. Fig. 9 shows the UE context state model as seen by
the eNB. The model is in compliance with S1AP procedures.

Fig. 9. UE context state model as seen by eNB

By CeNB = (SeNB , InpeNB ,→eNB , s
0
eNB) it is denoted

an LTS representing the eNB’s view on device state where:

SeNB=
{
Unavailable

[
sN1

]
, Available

[
sN2

]
,

Suspended
[
sN3

]}
;

InpeNB=
{
InitialContextSetupfail

[
tN1
]
, InitialContext

Setupres
[
tN2
]
, UEContextRelease

[
tN3
]
,

UEContextReleasecom
[
tN4
]
, UEContext

Modificationres
[
tN5
]
, UEContext

Modificationfail
[
tN6
]
, UEContext

Modificationind
[
tN7
]
, UEContext

Releasefail
[
tN8
]
, UEContextSuspendres[

tN9
]
, UEContextResumeres

[
tN10

]
,

UEContextResumefail
[
tN11

]}
;

→eNB=
{
(sN1 t

N
1 s

N
1 ), (sN1 t

N
2 s

N
2 ), (sN2 t

N
3 s

N
1 ), (sN2 t

N
4 s

N
1 ),

(sN2 t
N
5 s

N
2 ), (sN2 t

N
6 s

N
2 ), (sN2 t

N
7 s

N
2 ), (sN2 t

N
8 s

N
2 ),

(sN2 t
N
9 s

N
3 ), (sN3 t

N
10s

N
2 ), (sN3 t

N
11s

N
3 ), (sN3 t

N
3 s

N
1 ),

(sN3 t
N
4 s

N
1 )
}

s0eNB=
{
sN1

}
.

We use the concept of weak bisimulation to formally verify
the suggested models.

Proposition 1: The labeled transition systems CApp and
CeNB are weakly bisimilar.

Proof: As to definition of weak bisimulation, provided in
[16], it is necessary to identify a bisimilar relation between
the states of both LTSs and to identify respective matching
between transitions.

Let UAppeNB denote a relation between SApp and SeNB ,
where UAppeNB = {(sA1 , sN1 ), (sA2 , s

N
2 ), (sA3 , s

N
3 )}. Then for

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 369 ----------------------------------------------------------------------------



the following network events we identify the respective tran-
sitions between states of CApp and CeNB :

1) In case of unsuccessful initial UE context setup, for
(sA1 t

A
3 s

A
1 ) ∃ (sN1 tN1 sN1 );

2) In case of successful initial UE context setup, for
(sA1 t

A
1 s

A
2 ) ∃ (sN1 tN2 sN2 ), for (sA1 t

A
2 s

A
2 ) ∃ (sN1 tN2 sN2 )

and for (sA1 t
A
4 s

A
2 ) ∃ (sN1 tN2 sN2 );

3) In case of MME initiated UE context release, for
(sA2 t

A
5 s

A
1 ) ∃ (sN2 tN4 sN1 ) and (sA2 t

A
17s

A
1 ) ∃ (sN2 tN4 sN1 );

4) In case of eNB initiated UE context release, for
(sA2 t

A
16s

A
1 ) ∃ (sN2 tN3 sN1 );

5) In case of successful UE context modification, that
is initiated by MME, for (sA2 t

A
7 s

A
2 ) ∃ (sN2 tN5 sN2 ), and

for (sA2 t
A
8 s

A
2 ) ∃ (sN2 tN5 sN2 );

6) In case of successful UE context modification, that
is initiated by eNB, for (sA2 t

A
11s

A
2 ) ∃ (sN2 tN7 sN2 );

7) In case of unsuccessful UE context modification, for
(sA2 t

A
9 s

A
2 ) ∃ (sN2 tN6 sN2 );

8) In case of unsuccessful UE context release, for
(sA2 t

A
6 s

A
2 ) ∃ (sN2 tN8 sN2 );

9) In case of UE context suspend, for (sA2 t
A
12s

A
3 )∃ (sN2 tN9 sN3 );

10) When the UE context is resumed successfully, for
(sA3 t

A
13s

A
2 ) ∃ (sN3 tN10sN2 ) and (sA3 t

A
14s

A
2 ) ∃ (sN3 tN10sN2 );

11) In case of unsuccessful UE context resume, for
(sA3 t

A
15s

A
3 ) ∃ (sN3 tN11sN3 );

12) In case of eNB-initiated release of suspended UE
context, for (sA3 t

A
3 s

A
1 ) ∃ (sN3 tN3 sN1 );

13) In case of MME-initiated release when UE con-
text is suspended, for (sA3 t

A
5 s

A
1 ) ∃ (sN3 tN4 sN1 ) and for

(sA3 t
A
17s

A
1 ) ∃ (sN3 tN4 sN1 );

14) In case of eNB-initiated UE context modification, for
(sA2 t

A
10s

A
2 ) ∃ (sN2 tN7 sN2 ).

Therefore CApp and CeNB are weakly bisimilar.

VI. CONCLUSION

MEC technology distributes cloud intelligence close to the
mobile network edge. It enables delay sensitive and context
aware applications which optimize network resource utilization
and improves end user experiences.

This paper presents a study of capabilities for deployment
of existing Parlay X Application-driven QoS Web Service in
MEC environment. The functionality of ADQ API is mapped
onto S1AP protocol functions for E-RAB management and
context management. Further, we propose a new WS which
provides access to radio network information and allows
management of UE context. WS implementation issues are
considered. We present a method for formal verification of
MEC platform which needs to maintain in synchronized man-
ner state machines representing both the Application and S1AP
protocol view on UE related information.

Reuse of existing API allows application developers and
content providers to flexibly create and deploy innovative ap-
plications and services. The access of up-to-date radio network
information requires development of new APIs which can

alleviate network congestions and can efficiently serve local
purposes.

ACKNOWLEDGEMENT

The research is conducted under the grant of project
DH07/10-2016, funded by National Science Fund, Ministry
of Education and Science, Bulgaria.

REFERENCES

[1] P. Corcoran and S.K. Datta, “Mobile-Edge Computing and the Internet
of Things for Consumers: Extending cloud computing and services to
the edge of the network”, IEEE Consumer Electronics Magazine, vol.5,
no.4, Oct.2016, pp. 73–74.

[2] T. Tran, A. Hajisami, P. Pandey and D. Pompili, “Collaborative Mobile
Edge Computing in 5G Networks: New Paradigms, Scenarios, and
Challenges”, Cornell University Library, arXiv:1612.03184, 2016, pp.
1–9.

[3] Y. Chen and L. Ruchenbusch, “Mobile Edge Computing: Brings the
Value Back to Networks”, IEEE Software Defined Networks Newsletter,
Mar.2016, Web: http://sdn.ieee.org/newsletter/march-2016/mobile-edge-
computing-bring-the-values-back-to-networks

[4] R. Roman, J. Lopez and M. Mambo, “Mobile edge computing, Fog et
al.: A Survey and Analysis of Security Threats and Challenges”, Future
Generation Computer Systems, in press.

[5] M.T. Beck, S. Feld, C. Linnhhoff-Popien and U. Pützschler, “Mobile
Edge Computing”, Informatik-Spektrum, vol.39 (2), 2016, pp. 108–114.

[6] T. Tran, P. Pandey, A. Hajisami and D. Pompili, “Collaborative Multi-
bitrate Video Caching and Processing in Mobile-Edge Computing
Networks”, Cornell University Library, arXiv:1612.01436, 2016, pp.
1–8.

[7] A. Ahmed and E. Ahmed, “A Survey on Mobile Edge Computing”, 10th
IEEE Int. Conf. on Intelligent Systems and Control, 2016, pp. 1–8.

[8] G. Brown, “Mobile Edge Computing Use Cases and Deployment
Options”, Juniper White Paper, 2016, pp. 1–10, Web:
www.juniper.net/assets/us/en/local/pdf/whitepapers/2000642-en.pdf

[9] Y. Mao, C. You, J. Zhang, K. Huang and K. Letaief, “Mobile Edge
Computing: Survey and Research Outlook”, IEEE Communications
Surveys & Tutorials, arXiv:1701.01090 [cs.IT], 2017, pp. 1–30.

[10] ETSI GS MEC 003, “Mobile Edge Computing (MEC); Framework and
Reference Architecture”, v1.1.1, 2016

[11] D. Sarria, D. Park and M. Jo, “Recovery for overloaded mobile edge
computing”, Future Generation Computer Systems, vol.70, 2017, pp.
138–147.

[12] M. Beck, M. Werner, S. Feld and T. Schimper, “Mobile Edge Com-
puting: A Taxonomy”, 6-th Int. Conf. on Advances in Future Internet,
2014, pp. 48–54.

[13] ETSI GS MEC 002, “Mobile Edge Computing; Technical Require-
ments”, v1.1.1, 2016.

[14] 3GPP TS 29.199-17, “Open Service Access (OSA); Parlay X Web
Services; Part 17: Application-driven Quality of Service”, Rel.9, v9.0.0,
2009.

[15] 3GPP TS 36.300, “Evolved Universal Terrestrial Radio Access (EU-
TRA) and Evolved Universal Terrestrial Radio Access Network (E-
UTRAN); Overall description; Stage 2”, Rel.14, v14.0.0, 2016.

[16] A. Jain, A. Terzis, N. Sprecher, P. Szilagyi and H. Flinck, “Mobile
Throughput Guidance Inband Signaling Protocol”, Internet draft, IETF,
2015

[17] A. Chebieb and Y. A. Ameur, “Formal Verification of Plastic User
Interfaces Exploiting Domain Ontologies,” Int. Symp. on Theoretical
Aspects of Software Engineering, Nanjing, 2015, pp. 79–86.

[18] D. Escrig, J. Keiren and T. Willemse, “Games for Bisimulations and
Abstraction”, Cornell University Library, arXiv:1611.00401

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 370 ----------------------------------------------------------------------------


