PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

TRIK Studio: Technical Introduction

Dmitry Mordvinov
St.-Petersburg State University
St.Petersburg, Russia
dmitry.mordvinov@se.math.spbu.ru

Abstract—This paper presents TRIK Studio — an environment
for visual (and textual) programming of robotic kits, which is used
in educational organizations across Russia and Europe. First part
of the article provides overview of the system — its purpose,
features, differences from similar programming environments,
general difficulties of robot programming and solutions proposed
by TRIK Studio. Second part presents implementation details of
TRIK Studio and its most interesting components. This article
combines five fields of study: robotics, domain-specific visual
modeling, education, formal methods and methods of program
analysis. Main contribution of this article is detailed technical
description of TRIK Studio as complex and successful open-
source cross-platform robot programming environment written
in C++/Qt, and first part of the article can also be interesting for
teachers as it provides an overview of existing robot programming
tools and related problems.

I. INTRODUCTION

Current state of school education in computer science turned
out quite like Seymour Papert predicted it to be. In 1967 he
introduced a virtual Logo turtle, that is used to teach students
programming at schools even nowadays. It is less known that
Papert also used a mechanical robot turtle in his experiments,
that was controlled from a computer [1], and that made edu-
cational process much more entertaining. Today Papert’s ideas
are widely spread, a lot of schools are using robots to teach
programming (for instance, in Russia robotics is a part of com-
pulsory education program within the Technology course [2]).
Several robotics educational kits are used, including Lego Mind-
storms NXT, Lego Mindstorms EV3 (http://www.lego.com/en-
us/mindstorms), TRIK (http://www.trikset.com/) etc.

The task of programming a robot is more complex than
programming a virtual turtle: the program will be composed
of motors power and sensor values manipulation instead of
simple movements and turns. Therefore a lot of attention is paid
towards robot programming environments. Many of them are
based on visual, diagram languages since they are more intuitive
and easy to learn than textual ones. Programming in such visual
environments is performed by drag-and-dropping blocks using
mouse and it makes programming available even to small kids,
that cannot read yet.

Popularity of visual languages in educational robotics is
proven by a number of diagram-based programming
environments in this field. The most known are Robolab [3],
NXT-G [4] and EV3- G [ 5], Scratch [6] and Scratch-based

environments (S4A (http://s4a.cat/), mBlock
(http://www.mblock.cc/), Enchanting
(http://enchanting.robotclub.ab.ca), ScrathDuino

(http://www.scratchduino.ru/), Blockly (http://blockly.ru/) and
App Inventor [7], 12Blocks

Yurii Litvinov
St.-Petersburg State University
St.Petersburg, Russia
y.litvinov@spbu.ru

Timofey Bryksin
St.-Petersburg State University
St.Petersburg, Russia
t.bryksin@spbu.ru

(http://onerobot.org/products/12blocks/), Open Roberta [8],
Ardublock (http://blog.ardublock.com/), less known are Robo
PRO [9] for programming robots created with fischertechnik
robotics kits or Program Maker for Scribbler robots and several
tools for preschoolers: Lego WeDo Software [10], Create [11],
Wonder (https://www.makewonder.com/apps/wonder).

For the last decade educational robotics has been and still is a
very promising scientific field, so in 2010s almost every major
university in the world invested in development of projects in
robotics. For example, in 2016 Harvard University presented the
Root platform (http://http://wyss.harvard.edu/viewpage/629/),
Carnegie Mellon University develops and promotes its Arts&Bots
project [11], MIT contributed delivering Scratch environment
[6] and so on. Detailed overview in Russian could be found in
[12], and the authors conclude there that despite the variety of
tools in this field there is no single one that can satisfy the needs
of all educational organizations. Vast majority of such tools
implement only the basic functionality (a visual editor for
diagrams and an ability to run programs on robots autonomously
or in a controlled manner from a computer), but they lack more
advanced tools for teaching programming. Examples of such
tools could be generation of readable textual code from created
diagrams (that will help students to migrate from diagram- based
to code-based programs), tools for debugging a program using
virtual robot simulators or embedded tools for checking
correctness of created programs (which could help teachers
checking students’ tasks). Some tools do have some of these
advanced features, but often only some of them, and most of
such programming environments are proprietary and pretty
expensive for lots of schools.

Almost all aforementioned visual languages are based on
control-flow computational model. Such a model is easier to
comprehend, so it suits the purposes of education well. Never-
theless this model is not the best for programming robots since
they are highly reactive by their nature: a program controlling a
robot is basically a transformation of sensor signals into motor
impulses. Reactive models are best expressed in data-flow
languages [13], where a program consists of a number of “black
boxes”, connected with data channels. Each such “box” (we will
call it block) has a fixed number of inputs and outputs, and its
job is to transform input data into output data (we will call
tokens data transferring through channels). For instance, each
robot’s sensor is represented by a single block, that simply sends
tokens with sensor data to its output. Many researchers note
usability of visual data-flow languages comparing to a textual
ones [13], in particular because of clear visualization of data
flows.

The idea of using data-flow programming languages in

ISSN 2305-7254



PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

robotics is not a novel one, it was adopted in almost every toolset
for programming industrial and laboratory automation systems,
such as LabVIEW by National Instruments [14], Simulink [15]
and Microsoft Robotics Developer Studio [16]. They all have
powerful backends (for example, Microsoft Robotics Developer
Studio is being used on MySpace social network servers, see
http://channel9.msdn.com/Shows/Communicating/CCR-at-
MySpace for details) but are very complex and hard to learn.
Thus they are used only in higher education ([17], [18]). School
experiments with LabVIEW were popular in late 1990s ([19],
[20]), which resulted in adaptations (like Robolab) replacing
data-flow model with control-flow model. So, there is a gap
between simplified languages suitable for education and more
elegant but complex industrial languages. There are attempts to
adapt a data-flow model for educational robotics, for example a
research group from New Zealand proposed the RuRu [21] lan-
guage. Nevertheless, to the best of our knowledge, there is still
no production-ready data-flow-based programming environment
suitable for secondary education today.

Current paper describes TRIK Studio programming envi-
ronment, which attempts to solve the aforementioned problems.
TRIK Studio is widely used in Russian education organizations
(almost a hundred of schools and robotic clubs), several ap-
plications in Great Britain, France and Singapore are known.
This paper presents technical overview of the programming
environment; educational and methodical issues are not dis-
cussed in detail. Main scientific contribution of this article is
a case study — it describes an experience of creating robot
programming environment specifically for school education and
proposes ideas about language design and features which can be
implemented in other such systems. It can also be viewed as an
evidence of feasibility of using general-purpose domain-specific
visual modeling platform to create domain-specific solution for
wide audience.

II.  GENERAL DESCRIPTION

TRIK Studio is an environment that allows to program robots
using diagram-based and textual languages. It emerged as a
further evolution of QReal:Robots [22] project, developed at
Software Engineering chair of Saint-Petersburg State University.
It supports Lego Mindstorms NXT, Lego Mindstorms EV3 and
TRIK robotic kits. Each one of these kits can be programmed
using one of two visual languages (more simple control-flow and
more complex data-flow language) or one of a number of textual
ones. For Lego NXT the programmer can choose between NXT
OSEK C and Russian version of C (simplified for teaching
textual programming), for TRIK — JavaScript, F# [23] or
Pascal ABC.NET [24], for Lego EV3 the single official language
for standard firmware, EV3 virtual machine’s byte code, is
supported.

A program created using one of visual languages (a visual
program) could be executed in one of three modes:

e debugging using a virtual simulator,

e  debugging on a PC while sending commands to a robot
via USB, Bluetooth or Wi-Fi,

e textual code generation mode with subsequent upload
and execution of the program on the robot.

297

In the first mode programs are being interpreted in a two-
dimensional robot model (see Section X). Users are able to
create 2D model of the world surrounding the robot from walls
and colored floor markup. According to TRIK Studio users this
feature is very useful for initial program debugging, before any
interaction with real robots. Our experience shows that this
virtual model editor allows to recreate most of fields and obstacle
courses used in competitions in robotics. Having such a
simulation environment makes possible to learn robotics and
programming even without having real robotic kits. There is also
an experimental support for V-Rep 3D visual simulation
environment [25].

Debugging using a PC (so called inferpretation mode) is
useful as a next step to see how the program behaves on a
robot in real time. In this mode program variables’ values can
be observed in a special window (similar to how it is done in
Watch list windows in almost all textual integrated development
environments, IDEs) and sensor data can be displayed in a form
of graphs.

Code generation mode enables users to move from visual to
textual programs. Generated code is displayed in an embedded
QScintilla-based text editor, that provides a set of common fea-
tures of a code editor: syntax highlighting, code autocompletion,
undo/redo, brackets highlighting etc. TRIK Studio installation
contains everything needed for building and uploading programs
into a robot (a number of cross-compilers, WinSCP, Putty,
etc.), and it makes compilation process and communication with
robots transparent to its users.

TRIK Studio’s user interface is shown on Fig. 1. It displays
a process of debugging a program that passes the maze using
virtual simulation model.

In 2D simulation mode the automatic task checking feature is
available (see Section XI). Task checking program is written in
internal event-based textual language, files containing virtual
world model and task checking program can be distributed as
tasks for students. Based on this feature a remote course has
been launched on Stepik platform containing video lectures on
cybernetics and robotics, numerous small tests and more than 20
tasks on educational robotics (see https://stepik.org/s/7qe3xj4Z).
Each task can be downloaded, solved, checked within TRIK
Studio on a student’s computer, and uploaded to the server where
the checking system will run it on its own tests (similar to ACM
ICPC coding contests).

TRIK Studio is written in C++ using cross-platform Qt
framework (https://www.qt.io/ru/), there are installers for Win-
dows, Linux and Mac OS X operating systems. Because of the
fact that official Lego NXT drivers are not available on Linux and
Mac OS X x64, TRIK Studio contains our own implementation
for them (see Section VI for details). The programming
environment is completely free to use, open- source and is
distributed under Apache License 2.0 license.

Aforementioned features distinguish TRIK Studio from all
other similar tools. In fact among all mentioned in Section I tools
only 12Blocks have a comparable feature set, but it generates
complex and unreadable code (for Lego NXT), does not have
tools for checking tasks, is not free to use and does not have
Russian support in it. Among the TRIK Studio drawbacks we
should mention weak methodological support, limited only by
embedded reference guide in Russian, a set of examples and




PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

1’5“(! TRIK Studio 3.2.0-a1 C:/TRIKStudio/examples/trik/stepic/labyrinth-with-sensors.qrs

File Edit View Tools Settings Help

LD e @ m)|@S-

3

Q Labyrinth [ |

Are there wals fo the front and fo the right?

Regulator

«— false —3=

Ports: M3, M4
@ Delay: 1000 ms Delay| 5 ms
-3 8 .5 . -
Power. 100 % 9
Variable: threshold Condition: sensorA2 <= threshold + 5 8& sensorA1 <= threshold +
Value: 25
Tum left
e >
< >

Debug mode - press Ctrl+1 or click here to switch to edit mode

- O X
2D Robot Model 2
B o - e on
[
Ve ~
'
= |
7 E
4 - _—
Ed B
]
& ¢ <
-]
]
v
O . >
2D Robot Model Watch List
Sensars state 2 X
®
@

ol

Fig. 1. TRIK Studio’s user interface

the remote video course. Less important drawbacks will be
mentioned in the following sections.

The rest of the paper is structured as follows. Sections III
and IV briefly present TRIK Studio visual languages. Section V
overviews the system architecture. Further sections describe
separate TRIK Studio subsystems. Section VI presents robots
communication infrastructure. Section VII describes visual lan-
guage interpreters. The most interesting implementation details of
code generators from control-flow language are provided in
Section VIII. Section IX presents textual languages parsing
subsystem. Section X presents implementation details of 2D
simulation model subsystem. Section XI describes task checking
language and Section XI concludes the paper.

III.  VISUAL LANGUAGE FOR BEGINNERS

The simplified control-flow based language (see Fig.
2)isthe most often used one in TRIK Studio. It is a graph
language, i.e. the program consists of nodes (blocks) and edges
(arrows) , organizing nodes into a directed control flow. To create
a program users drag-and-drop necessary blocks onto the editor’s
scene, set their properties values and connect blocks with arrows.
While being executed each block runs a sequence of basic
commands and passes control to outgoing edges (to all or some of
them depending on the block semantics).

All language blocks are devided into four groups.

e  The first group is for blocks implementing basic algo-
rithmic expressions, like a start and an end of a program
or a subprogram, conditions, switches, arithmetic loops,
blocks for parallel execution and for working with

298

concurrent tasks (e.g. for merging and interrupting
tasks), subprogram call block and a block for textual
programming.

e  The second group combines blocks working with robot
peripherals. These are actions that don’t require waiting.
For example, there are blocks for setting motor pow-
ers, playing sounds, accessing robot video processing
capabilities, synthesizing speach by given text, control-
ling motor encoders and LEDs, sending messages to
other robots (a part of multi-agent interaction support),
working with robot file system, etc.

e The third group consists of blocks, that “freeze” the
control flow. They are a timer block waiting for a given
number of milliseconds (similar to msleep function),
blocks waiting for a given value from a given sensor
or from an operator game pad, and a block waiting for
receiving a message from another robot.

e  And finally, the fourth group contains blocks that pro-
vide drawing functions for basic primitives (the drawing
is being performed on a robot’s screen). Such primitives
are lines, rectangles, ellipses, arcs, text and images.
There are parameters to change color and width of pen
and brush used in drawing. There are also special blocks
that control robot model marker in a 2D simulation
environment. It allows robot model to leave a trace on
a ground while moving, similar to the Logo turtle.

Properties of each block can be set both within the diagram
editor’s scene and using special property editor window. All
block properties (where applicable) support computable expres-




PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

Are there walls to the front and to the right? |

Ports: M3, M4
Delay: 1000 ms

8§ >
Power: 100 %

Variable: threshold
Value: 25

Regulator

false —>»

Delay| 5 ms

Condition: sensorA2 <= threshold + 5 && sensorA1 <= threshold + 5

Turn left

true —>»

Fig. 2. The program of traversing the maze using right-hand rule. The first four blocks initialize the program: set the wall proximity variable,
turn the robot motors on, after that the robot moves for one second to enter the maze. The second four blocks define the main control loop.
Each ten milliseconds the robot checks using its infrared sensors if it can move forward or right (the sensorA2 <= threshold && sensorAl
<= threshold condition). If it can move forward, the movement will be performed using proportional control over the right sensor data (the
“Regulator” subprogram). If there are walls in front of the robot and to the right, it turn 90 degrees left (the “Turn left” subprogram).

sions written in TRIK Studio embedded textual language — a
statically typed Lua dialect. The parsing module for this language
is written using a parser combinator library in C++11, also
created within TRIK Studio project. Type inference of the
resulting abstract syntax tree is performed using slightly
simplified Hindley-Milner algorithm [26].

The domain-specific approach
(DSM-approach) [ 27] w a s employed to create the
described visual language. The editor was created using QReal
DSM platform [28], [29]. Language metamodel was defined
using QReal’s metaeditor, and a module implementing the editor
was automatically generated using QReal’s tools (as some other
technologies like [30]). Plug- ging this module into the QReal’s
platform core a complete visual IDE based on the given language
is obtained. This IDE “inherits” all tools and features of the
DSM platform, including modern user interface, mouse gestures
recognition support for creating diagram elements ([31], [32]),
copy-paste and undo/redo frameworks, zooming tools, tools for
creating several types of edges on diagrams, model explorers,
touch screens support and many more. According to its users
TRIK Studio’s user interface is much more usable and ergonomic
than in any other such programming environment, and we spent
only about three man-days working on it. We believe that it
acknowledges the choice of QReal DSM platform as an
underlying technology, but we have to note that while creating
tool support for TRIK Studio numerous improvements were
made to the QReal platform itself.

IV. VISUAL LANGUAGE FOR ADVANCED USERS

Users that mastered the control-flow language can move
on to a more complex, but more convenient and powerful
data-flow visual language. Unlike control-flow programs where
control is passed according to edges between nodes, in data-flow
programs blocks are executed simultaneously and communicate

299

with each other by sending data tokens via channels. For
instance, a data-flow program can have several entry points
(most often they are robot sensors that send each other data
for processing in chains), while a control-flow program must
always have a single entry point. This language also has blocks
for basic algorithmic expressions, blocks for interaction with
all robot devices, drawing blocks, etc. Almost always data-flow
programs turn out to be more concise than their control-flow
analogues. For example, Fig. 3 shows a proportional controller
implemented in the control-flow language is compared with
proportional-derivative controller implemented in the data-flow
language.

Ports: Mg

Ports: M3 Delay: 30 ms

8 > —

Power: 50.u %

Power: 50-u %

d=sensorAl; Bnd$ u=k*(d-sensorA1)

w2 geta-lolag sold-lok. sald-lo

50U

He| ©

Fig. 3. Controllers implemented in different visual languages

a
o]

To make transition to this “advanced” language simpler
it maintains some kind of conceptual compatibility with the
control-flow language. Blocks can also be organized in a chain
with explicit passing of control, to make it possible most blocks
have a special activation port that ignores all input data and just




PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

executes the block like it was in the control-flow case. So users
can write programs like they used to and move on to using
smaller number of blocks as they gain more experienced.

Expressive power of the language allows to use it for creating
well-known complex robot control systems like Rodney
Brooks’s categorical architecture [33], Johnathan Connell’s
“colony” ar- chitecture [34], Ronald Arkin’s behavioral
navigation [35], or DAMN distributed navigation approach [36].
Proof of this statement worth a separate paper and is not
provided here. Another ideas on this matter could be found, for
example, in [37] o r [ 38].

It worth noting that in the time of writing TRIK Stu-
dio has only experimental support for data-flow language
and it is not included in the officially distributed pack-
age. The source code of the editor and all appropriate
tool support is freely available and could be compiled with
the TRIK Studio’s source code (for the source code see
https://github.com/ZiminGrigory/qreal/tree/DFVPL).

V. GENERAL ARCHITECTURE

This section aims to structure the information given pre-
viously describing TRIK Studio’s architecture: most of the
features described here were already mentioned above. All
diagrams presented here are distilled of numerous architectural
and implementation details that though could be interesting in
a context of such a paper, still left aside limited by the paper
size.

Fig. 4 presents high-level architecture of TRIK Studio.
The system has a number of layers, each one implementing
specific set of functionality and having strictly defined API.
The lowest layer is libraries implementing interaction with real
robots and virtual robot models. They are used to implement a
hierarchy of robot devices (sensors, motors, displays, speakers,
game pads, control buttons, etc.), which in their turn are used
to specify high-level robot models for different robotic Kkits.
Such robot model specifications are grouped into modules that
are plugged into TRIK Studio’s core, where they are used by
other subsystems (e.g. interpreters and code generators that are
structured as plug-in modules too).

TRIK Studio core in its turn is a plug-in module for QReal
DSM platform. It modifies QReal’s user interface, adding sev-
eral toolbars and windows, like 2D simulation window, sensor
configuration window, variable watch list and graphs window,
etc. The core loads all robot model specifications and provides
them to all other subsystems, provides user with information
about interpretation and code generation processes, etc. Along
with modules implementing TRIK Studio tools, visual language
modules (that are created using the QReal platform itself) are also
plugged into the QReal core. Implementation details of lower
layers from Fig. 4 are provided in the subsequent sections.

Making the architecture highly modular allowed to provide
flexible customization of the installation process: users can
explicitly select which components they are interested in and
install only them (for example, if someone has only a Lego
EV3 kit, he or she does not need support for Lego NXT and
TRIK robots, and the target installation will not contain such
files). Furthermore, such an approach is highly compatible with
packet-based software install systems in Linux. The architecture

300

also benefits from such separation since the components become
very low coupled: TRIK Studio’s core, for example, is very
minimalistic, it does not “know” about all features that the IDE
provides and contains only objects and interfaces common to
all robotic kits and models. API of each layer is fixed and well-
documented, so it allows independent community developers to
create extension modules supporting new languages, robotic kits
and tools.

VI. COMMUNICATIONS WITH ROBOT CONTROLLERS

This section discusses the subsystem handling TRIK Studio
interaction with robots over different protocols. It is one of the
lowest abstraction layers shown in Fig. 4. Its API provides the
following operations:

e  changing current transmission medium (currently Blue-
tooth, Wi-Fi and USB are supported),

e  setting device address in terms of a chosen medium
(e.g. COM port number in case of Bluetooth, IP
address or host name in case of Wi-Fi),

e  connecting to and disconnect from a remote device,
e transferring byte arrays to a remove device,
e handling receiving data from a remove device,

e  handling connection status change (i.e. connection setup
or termination events),

e  handling errors.

USB communication is implemented using libusb li-
brary (http:/libusb.org/), Bluetooth communication is based on
QextSerialPort library (https://github.com/gextserialport/),
Wi-Fi communication is implemented over TCP and UDP
protocols using QtNetwork library, complex communication
protocols (like configuration of TRIK robots before running
programs) are built upon Qt State Machine Framework. The
communication process is run in a separate thread to prevent
freezing the main user interface. Particular implementations of
communication mechanisms could be extended and replaced
with other components. For examples, it is done for integrating
TRIK Studio with the official Lego NXT driver. It worth noting
that using this driver is not the only way to communicate with
Lego NXT controllers over USB, TRIK Studio contains our own
implementation of such a driver. Unlike the official one our
driver works over libusb on all supported operating systems.

VII. INTERPRETERS

An interpreter translates visual diagrams into a sequence of
commands for a target device (see Fig. 5). The hierarchy of
devices is build in a way that it does not matter to an interpreter if
it works with a real device of a virtual one. Each device is
represented by a C++ class containing code for interaction with
this device. These device classes are grouped according to
robotic kits they belong to and put in plug-in modules. Device
classes use communication subsystem for data interchange over
physical channels (see Section VI) and 2D and 3D simulators
API when working with virtual robot models.

All interpreters, like all the rest of the environment, are
written in C++/Qt. As input data they receive created diagrams




PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

o -
QReal Kernel

T T
A .
E\O!i TRIK Studio Kernel 2] Visual 2]
o\

' NXTKit 1! EVBKit ! TRIKKit | ! Concrete | | Concrete |
1 1 1 1 1
! NXT : ! EV3 :: TRIK :C:I: Interpreters i Generators E
i| RealRobot |t || Real Robot |1]| Real Robot |1 | 1 l| C {l 1
1 1 1 [ | 1
! P! i [ Control Flow || | 1
i NXT{' ! EV3 {l H TR\K{' :<:|| Interpreter || | !
i| 2D Robot —|!i| 2DRobot |li| 2DRobot |l i L 55 5] E
i i Pl i i
! NXT{l b Evs {l i TR\K{l lai| DataFlow—li i F# 2]
||__3DRoboT_|i 1| 3DRobat 11| 3DRobot—|;™ | Interpreter || ™ 500 |

{4 {4 {4 /4 4

Devices Hierarchy E Generators E
J ﬂ- x Base
2D Simulation Layer E 1D ﬂ' E
il Simulation Physical
Constraints Checker B_| Layer Communication Layer
Fig. 4. High-level TRIK Studio architecture
Control Flow Diagram : implement the behavior of this block. In general such an object
Pors My s My D 20 searches for a ready-to-work robot device that it needs, runs
8- - B85 ) appropriate commands and passes execution to one of the blocks
L il that the current block has an outgoing arrow to (depending on the

block’s semantics). Within this process no difference is made if
the device is a real one or a virtual one, so the same
interpretation code works for execution of a program in two out
of three modes (see Section II).

4

ControlFlowlnterpreter E

If on any step of the interpretation a fork block is met,
the interpreter launches new threads of execution, creating a
new call stack for each of them. If a subprogram call block
is met, its arguments are computed and put into the current
call stack, and the interpretation process is repeated recursively.
When processing any type of final block the interpreter removes
] the top frame from the call stack and the execution is being
" N continued from the proper point of the previous diagram. If

| . .
|'(((<‘ u _ :‘§| we get an empty call st.ack af.ter removing the frame, the
\/ N current execution thread is considered finished. This way the
- interpretation process is going on while the interpreter is able
to find new blocks to process.

DataFlowlnterpreter E

Data Flow Diagram

Fig. 5. Diagram interpretation workflow

An interesting consequence of this approach is that users
can change diagrams during interpretation and changes will be
applied “on the fly”. It is a convenient behavior, for example, for
selecting parameters of a PID controller in a program. Mean-
while, the execution of unchanged diagram parts is optimized:
block implementation objects are cached, the same is true for

The interpreter of control-flow programs starts with finding ~ abstract syntax trees and type inference information for textual
the initial block of the program and then iterates according to programs. Thus, if the program remains unchanged while being
the control flow defined by diagram arrows. Currently executed  interpreted, subsequent control flow to the same parts of the
block is highlighted in the editor to show users execution status. ~ diagram will employ already created objects. Diagram validation
For each block visited special factories create objects that is also performed “on the fly”. If some incorrect fragment is

in an internal representation format. There are two interpreters
implemented in TRIK Studio now: one for control-flow pro-
grams and one for data-flow programs.

301




PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

found, an error message is shown. It could be seen as a drawback
since users get their error messages only when such errors are
reached during interpretation, but this behavior is typical for all
widely used interpreted textual languages.

The data-flow interpreter works in two steps. First, the
interpreted diagram is being validated, implementation objects
for diagram blocks are created (they are used to translate the
diagram into a sequence of robot commands similar to as it was
discussed for the control-flow programs interpreter).
Implementation objects are connected to each other via Qt signals
and slots in the same order as corresponding blocks are connected
on a diagram (the Publisher-subscriber design pattern is used
here). On the second step the interpreter executes each block that
does not have any incoming data flows, and then each such block
in its turn activates blocks that it has outgoing data flows to when
the data tokens are ready. Blocks execution is performed in a
pseudo-parallel way over a centralized message queue. This
implementation detail distinguishes this language from all other
industrial solutions (e.g. in Microsoft Robotics Developer Studio
diagrams are deployed as a set of indepen- dent web services
[16]). We chose this approach because this programming
environment targets low-performance controllers of educational
robots, that don’t embrace true parallel execution of multiple
programs at once. Nevertheless, the language has a process fork
block that is useful while implementing complex control models

mentioned above. This block is a low-level tool for execution
control.

VIII. GENERATORS

One of the most interesting and demanded TRIK Studio
features is generation of well-readable textual code from visual
diagrams. Several languages are supported for code generation:
C, JavaScript, F#, Pascal, Russian version of C [39] and byte
code for Lego EV3 virtual machine. This section presents only
code generators for control-flow programs.

As mentioned before, a visual diagram is built from blocks
and arrows, defining program’s control flow graph [40]. All
algorithmic operators like conditions, loops, switches, etc. are
defined by arrows. For instance, to create an infinite loop one
should create an arrow from a block to one of the previous blocks,
to create while—-do and do-while loops or loops with break
statement inside it is enough to simply connect one block inside a
loop with a block from the outside. It is obvious that each arrow
on a diagram corresponds to a goto statement in the resulting
code. But the code containing goto statements is very hard to
understand, and especially is not suitable for teaching
programming basics, so we decided to avoid using them in
generated code as much as possible. We cannot eliminate goto
statements completely because it is possible to create a TRIK
Studio diagram that could not be expressed using standard
algorithmic operators (there are algorithms for auto- matic
translation of goto- containing programs into structural
programs, but the result is not much better from the teaching
programming point of view). On the other hand, not all modern
textual programming languages support goto statements (for
example, JavaScript does not). We call structural diagrams that
could be expressed using structural algorithmic statements
(if-then, if-then-else, while-do loop, do-while
loop, while-break loop, switch). Code generated from
structural diagrams we also call structural. Otherwise we say that
the

302

diagram (and the code generated from it) is not structural. If
structural code could not be generated from a given diagram,
users are notified with a warning.

Considering these issues implementation of code generation
subsystem in TRIK Studio required solving two non-trivial tasks,
given below in a form of requirements.

e Code generation subsystem should be organized in a
way to minimize time and effort for adding of a new
generator. Preferably it should be possible even for an
external developer to do it.

e For each language (where applicable) the subsystem
should support two generation modes: structural dia-
grams should be translated into structural code, non-
structural diagrams — into non-structural code. The
success of structuring the diagram should not depend
on its size and complexity.

The first task is purely of architectural nature. The solution it
is shown on Fig. 6. The main idea is to divide code generation
process into two steps. First, the diagram is translated into a
representation independent of a target language — a semantic
tree. Semantic trees reorder the control flow graph model into a
tree model regardless of whether the diagram is structural or not.
If it is, a parent node in the semantic tree always corresponds
to an execution block in generated code, and its children nodes
correspond to statements of this block, which exclude goto. An
outline of the code generation process is shown in Fig. 6.

A code generator gets a diagram as input data. First, the
diagram is traversed in a depth-first order by a validation
component. Then, for each computable expression used inside
block property values parsing and type inference procedure is
performed. If the diagram or any code in any property value
contains an error, users are notified and the code generation
process terminates. If the diagram is syntactically correct, it
is passed to a control flow analyzer, that is described below.
Depending on if the diagram can be translated into structural
code or not, an intermediate generator of code-independent
diagram representation is selected, which extracts the semantic
tree from the control flow graph. Finally, the semantic tree
is printed into a target textual language. To achieve it, a
template-based approach is used, so to create a new generator
a programmer has to provide a set of such code templates
and define a generator specification. For example, generation
templates for condition expression in C looks like this:

if (@QCONDITION@Q@) {
Q@Q@THEN_BODY®@Q@

} else {
QQELSE_B(ODY@Q

}

The second task is solved by a control flow analyzer module.
In terms of a textual language the task is rephrased like this: by a
given program containing goto statements create an equivalent
structured program. This problem was solved by researchers in
the code decompilation field ([40], [41]). For example, such an
algorithm based on interval analysis of control flow graph is
presented in [40]. With minor modifications it was implemented
in TRIK Studio. It is briefly described below.




PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

Validator

Control

Analyzer
Flow ¥

Diagram

Control Flow

Ix

Fig. 6. Code generation subsystem’s architecture

Informally speaking, an interval is a part of a control flow
graph with one input and one output. The algorithm aims to
build a nesting tree for all graph intervals and is based on re-
cursive ascend of depth-first search. On each step the algorithm
tries to match a subgraph, outgoing from the current node,
with each of basic interval templates (algorithmic statements
that are used to structure the program). If such a template is
found, the whole subgraph is folded into a single node and the
process continues. The most simple example of such a template
is two intervals connected with an only edge, which matches
with sequential composition. If no template could be found on
any step, the diagram is considered not structural.

IX. TEXTUAL LANGUAGE PARSER AND INTERPRETER

TRIK Studio uses visual languages for robots programming,
but arithmetic expressions, intrinsic function calls and so on are
better represented with textual strings (in fact, NXT-G tries to
use visual blocks even for arithmetic expressions, representing
them as syntax trees, it is very inconvenient). As a textual part of
a language for both visual languages TRIK Studio uses a subset
of Lua 5.3 (https://www.lua.org/), customized for our needs.
The decision to implement our own parser and interpreter of a
textual language was made under these considerations:

e we needed a small textual language with lightweight
syntax and without explicit typing since it shall be used
by non-programmers;

e we needed explicit abstract syntax tree and the ability to
run type inference on it since we were going to generate
code in C or EV3 bytecode, which is strongly typed;

e we needed to be able to customize language syntax if
the need will arise;

e all existing implementations for such languages had
interpreters without access to a syntax tree or a parser
that was not reusable from C++ code;

e since we needed only a subset of a language (arithmetic
expressions without statements, custom function and
type definitions), writing custom parser was not a
difficult task.

The parser and the interpreter were implemented
as a separate library in QReal core, so the resulting
textual language is available not only in TRIK Studio,
but in all other domain-specific solutions based on

303

PN Readable s .
Control Flow LED emantic
—»| Generator = mS Tree
— G -
oto
| Control Flow |—» LIE%D
Generator i
IR

|C Printer || 15 Printer || F# Printer |

Cc_ode JS 2{1@ F#ﬂde
QReal. Parser implementation consists of two parts
— general-purpose parser combinator library and Lua
parser library implemented using parser combinators.
Many projects use ANTLR  (http://www.antlr.org/),

boost.spirit (http://boost-spirit.com/home/), yacc
(http://dinosaur.compilertools.net/yacc/) as tools for parser
development, but we once again created our custom
solution, mainly to avoid additional external dependencies
and complication of a build process — QReal and TRIK
Studio are developed by a large community, and not everyone
is happy to install additional tools and learn how to use them,
especially if their work has nothing to do with syntax analysis
and they are students who do not took formal languages course
yet.

QReal parser combinator library supports recursive-descent
parsers which are able to parse a subset of LL(1) gram-
mars. FOLLOW(«) set is not calculated, so it limits the
expressiveness of resulting grammars, but we were still able
to use Lua 5.3 grammar almost as it is specified, with only
minor modifications related to factorization and left recursion
elimination, which shall be done anyway for LL parsers. For
arithmetic expressions Precedence Climbing algorithm (see
http://www.engr.mun.ca/theo/Misc/exp_parsing.htm for details)
was used, and it also required some minor alterations in Lua
grammar. Custom modifications were made mainly on lexer
level to allow, for example, to use ’!="for inequality in addition
to ’~=" used in Lua. Here is a quick example of production
written in C++ with our library (“statement is ’; or a list
of expressions, optionally followed by ’=" and other list of
expressions”):

// stat ::= ¢;’ | explist [‘=’ explist]
stat = (-LuaTokenTypes: :semicolon
| (explist
& ~(-LuaTokenTypes: :equals & explist)))

For full specification of our
with many irrelevant technical details
https://github.com/qreal/qreal/tree/master/qrtext/src/lua.

parser
see

LuaTokenTypes: :semicolon is a token corresponding to
’;, operator ’-’ creates a simple parser that can parse only
semicolons and excludes semicolons from the AST, “explist”
is a reference parser object, like “stat”, defined elsewhere, ’&’
combines two parsers into a parser which accepts concatenation
of their corresponding strings, 'I" combines two parsers into a

parser that accepts alternative, ’~’ creates an optional parser




PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

from its argument, which shall also be a parser. There are also
operators for adding semantic actions to productions and
assigning parser a name for debug purposes. When all parsers
are combined in such a way, it is enough to call *parse()’ method
of a resulting parser object, giving it a token stream. The parser
combinator library was used for another language in QReal [42],
so it is general enough to support not only Lua.

The parser returns an abstract syntax tree on which the type
inference algorithm is executed, providing types for all variables
and expressions. Type inference uses Hindley-Milner- style [26]
algorithm, simplified for performance reasons and extended to
support overloading and coercion. Type inference is also
generalised and Lua type inferer only defines inference rules for
Lua-specific AST nodes, core type inference functionality is
available for all QReal textual languages.

After type inference is complete, expression is ready to be
evaluated by the interpreter. The interpreter allows to register
intrinsic functions, also it allows to add custom variables with
their values, to use current sensor values in calculations — robot
communication subsystem receives telemetry data from a robot
and injects sensor readings into the interpreter, which uses them
to calculate expressions.

Last notable feature of parsing/interpreting subsystem is
extensive use of caching to avoid parsing or reevaluating expres-
sions as much as possible. Program shall be interpreted in real-
time, so reparsing and reevaluating expressions every several
milliseconds, as required by many control algorithms, would
be severe performance problem. But as mentionen before, a
program can be changed by user during interpretation, values
for some variables may be changed by external code, such
as sensor readings changed by communication subsystem, so
the interpreter keeps track of all changes and uses previously
calculated values if possible.

X. SIMULATOR

2D robot simulation environment is the most stand-alone
TRIK Studio subsystem. Its window is a part of TRIK Studio’s
user interface, but it also can be used separately. The main part
of this environment is an editor for virtual world model. Using a
special menu one can select one of the supported drawing tools
(similar to how it is done in most graphical editors). There
are two main drawing tools: drawing walls (solid objects that
robots cannot move through and that are detected by robots’
ultrasound and infrared sensors) and colored markers on the
floor (elements that are detected by color, light sensors and
virtual robots’ cameras). Colored markers could be drawn in
a shape of lines, cubic Bézier curves, rectangles, ellipses or any
shape drawn using mouse pointer. For each marker users are
able to set their its, color and fill type.

The robot model itself is a differential two-wheeled truck.
Robot model is always shown in this editor, users can place
sensors onto it where they prefer. Regions where sensors scan for
objects are highlighted. A separate panel shows an image of the
chosen controller (Lego NXT, EV3 or TRIK), which users can
interact with: clicking on an image of a button emulates
controller’s button click event, users can manipulate LEDs placed
on controller’s case or output text or images onto the controller’s
screen, for example, using drawing blocks (see Section III).

304

Running the program in the simulation environment is per-
formed in the same editor where users create their models. The
world model can be changed even during program execution,
putting additional walls or colored markers will take immediate
effect on virtual robot’s sensors. Positions and directions of the
sensors themselves can also be changed in any time, which
conforms with changing real robot’s configuration while it is
moving.

The simulation environment is built based on the Model-
View-Controller design pattern. The Model contains serialized
specification of the robot and the world, and it notifies all
other components if any property of any object is changed. The
View is subscribed to these events, all updates are immediately
displayed in the editor or other simulator windows. All user
actions are handled by the Controller component, which uses an
intermediate command stack to be able to undo such commands
on demand.

The simulation environment has two implementations of
robot behavior models: “ideal” and “realistic”. Within the ideal
model all friction forces (for floor and walls) are ignored, and
having constant motor powers the robot continues to move
without any acceleration or slowdown. Any, even slightest
collision with a wall will stop the robot. The realistic model
takes care of thrust and friction force, when crashing into a wall
the robot tries to behave like the real device. Users also have an
ability to add Gaussian noise to sensor data and motor impulses.
Changing between these models is done using checkboxs in the
simulation settings window and could be done even during the
execution of a program.

Time in the simulation environment does not equal com-
puter’s time: there is a special centralized timeline, the speed
of which can be controlled from a special panel. The same
timeline is used in the diagram interpreters to match the work
of timer blocks with virtual time independently of CPU’s time.

XI. AUTOMATIC CHECKING OF SOLUTION CORRECTNESS

Last important subsystem described in this paper is auto-
matic checker of constraints for TRIK Studio programs. This
subsystem allows to turn a world model in a simulator to an
exercise with specified success and failure conditions, which
can be shared among students, and solutions (in a form of visual
programs) can be automatically checked against these success
conditions in the simulator, thus providing feedback without an
intervention from a teacher. To create an exercise one needs to
specify two things:

e  what parts of a simulated world are fixed and can not
be changed by a student (walls and figures on a floor,
robot starting position, sensors and their orientations
and so on);

e program on a special constraints definition language
which specifies success and failure conditions for a
solution.

Constraints are described in a special XML-based defini-
tion language. A program in this language is a set of events
{e1, €9, ..., e, }, where each event ¢; is a triple (id;, ¢;, T;):

e id; — event id: an internal label by which other parts
of a program may refer to this event, can be empty;




PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

e ¢; — condition, under which the event is raised,
a formula in a first-order predicate calculus without
quantification;

e T, — ordered list of triggers [t;,,;,, ..., i, ]. Each
trigger specifies an action that shall be done when event
condition ¢; becomes true.

Each event is specified by its XML node in a program. An
event can be specified in a canonical form, or in a form of a con-
straint. The event in a canonical form is a triple (id;, ¢;, T;). The
event in a constraint form is a triple (id;, ¢;, message;). A con-
straint is interpreted as an event (id;,—c¢;, [fail(message;)]),
where fail(message;) is a trigger that stops simulation and
reports a message; error message. In other words, a constraint
is the event that is raised when given condition is violated and
reports this violation to a user. Events in a form of constraints
are added to a language for pragmatical reasons only, because
it is much more convenient to specify conditions like “robot x
shall not leave area a” or “robot x shall have a set of sensors
s connected” as constraints instead of events. Time limits are a
special case of such constraints. A time limit shall be specified
for each constraint definition program so the constraints checker
will not run the simulation indefinite amount of time if all
constraints are satisfied but success event is never triggered.
The checker verifies that a time limit is set before execution of
a program, and if not, considers it as a semantic error.

Let us briefly describe predicates, function symbols and
elementary triggers used in the language. Predicate symbols are
divided into these groups.

e  Comparison predicates >, <, <, >, =, #.

e  Spatial predicates. They have an “item x is located
inside area y” form.

e Event state predicates  settedUp(id;)  and
dropped(id;), denoting active and inactive events
accordingly. Active events can be raised when their
corresponding condition is satisfied, events in inactive
state will not be raised (and their triggers will not be
executed) even when condition is satisfied.

e Time predicate timer(t), which is initially false, be-
comes true after ¢ ticks of model time and stays true
afterwards.

e  Other “syntactic sugar”.
Function symbols are the following.

e Constants of different types (integer, floating-point,
string, colour, geometrical and so on).

e wariableValue(id) symbol that denotes a value of a
variable with identifier i7d. Variables are internal to
the constraints checking program (i.e. do not represent
simulation state) and can be useful for implementing
complex conditions like counting the times that robot
does some action.

e  Arithmetical and geometrical operations over other
values: for example, an absolute value of a number or
a distance between two points.

e  Comparison of forms of two figures using Levenshtein

305

distance. It is useful to compare images drawn on robot
display to an ideal image specified in an exercise.

e objectState(path) symbol allows to get state of a
simulated robot devices or objects of a simulated
world. path argument shall contain a path to a desired
property in a hierarchy of objects in world model. Such
path will be translated into a sequence of C++ object
property references using Qt Reflection mechanism,
so this symbol provides a bridge between constraints
definition and the simulator environment.

Finally, elementary triggers are the following:

e success, fail(message) control the checker’s state.
First trigger reports exercise as successfully checked,
second reports error and marks simulation result as a
failure;

e triggers that set variable values and change properties
of a simulated world or a robot device (complementary
to objectState function), they allow, for example, to
set random number generator seed to make possible
testing solutions that use random number generator;

e triggers that control event state: every state can activate
or deactivate every other state (including itself), it
allows to specify rather complex checking scenarios,
like visiting waypoints in a correct order within given
amount of time.

An example of a simple program in the constraints descrip-
tion language is given in Listing 1.

Architecturally the constraints checking system is a stan-
dalone module which uses TRIK Studio core and the simulator
model as shared libraries. The simulator model and robotic
kit support in TRIK Studio are frequently extended with new
devices, options and features, so Qt Reflection mechanism is
used to access objects and their properties from constraint
specifications. It allows to extend the TRIK Studio core without
modifications in the constraints checking system itself, new
properties immediately become available from the constraints
description language. The constraints checker subscribes to
events from the simulation model as another view (in MVC
pattern sense) and checks constraints on every tick of model
time. It may seem ineffective, but only active constraints are
checked each timer tick (and only a few constraints are active at
any given time), so constraints checking almost does not affect
the performance.

The described language has proven to be quite effective at
specifying spatial and temporal constraints on a system state. It is
more expressive than, for example, temporal logic or topological
temporal logic languages which are used for specification of
formal constraints on robot behavior in recent works ([43], [44],
[45], [46]). The constraints checking system is also used for
functional testing of TRIK Studio on continuous integration
server. For more information on this (and other details of TRIK
Studio testing) see in [47].

This functionality is also used as an automatic checker of
exercises for MOOC on Stepik platform. Without such checker
it would be impossible to provide feedback to possibly large
number of students, making course much less interactive. From




<!-- Root element, contains all constraints —-->
<constraints>
<!-- Mandatory time limit constraint -->

<timelimit value="2000"/>

<!-- Constraint on robot location -->

PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

<constraint failMessage="Robot left the allowed area!">
<inside objectId="robotl" regionId="myspace"/>

</constraint>

<!-- Success criteria for a program: robot must say "Hello" using speech synthesis

and draw a smile on a screen -->
<event settedUpInitially="true">
<conditions glue="and">
<equals>

<objectState object="robotl.shell.lastPhrase"/>

<string value="Hello"/>
</equals>
<equals>

<objectState object="robotl.display.smiles"/>

<bool value="true"/>
</equals>
</conditions>
<trigger>
<success/>
</trigger>
</event>

</constraints>

Listing 1. Example of constraints specification in TRIK Studio simulator model

a technical point of view the checker is a set of scripts which
launch “headless” interpreter (i.e. interpreter without GUI) on a
correct field with correct constraints. Checker is hooked up into
the Stepik infrastructure and runs in a separate Docker container
when a new solution is submitted. The checker has several fields
and corresponding constraint descriptions for each task (from
one to five), each solution is checked against all those fields to
test that it works in different situations and is not hardcoded.
Fields are hidden from users, but error reporter output does
gets displayed, so students can guess what went wrong (in our
opinion it is better than traditional ACM ICPC system, where
only a number of incorrect test and a general type of error are
reported).

The checker can also send a visual representation of a field
with a trace of a robot to a client. A trace consists of points of a
robot trajectory and values reported by its sensors, and this trace
can be played back by a web application described in [48]. This
web application also allows to actually create solutions for almost
all tasks from the course right in the browser, form a correct
TRIK Studio save file and run it on a server on the checker,
playing back the result, so a student perceives this as “TRIK
Studio in a browser”. This application works standalone, but is
not integrated into the Stepik course yet due to technical
difficulties related to the Stepik infrastructure.

306

CONCLUSION

Technical description of the TRIK Studio robots program-
ming system was presented. TRIK Studio now has about ten
thousand users across the globe, according to Google Analytics
data. Now it supports English, Russian and French languages. It
is open source (https://github.com/qreal/qreal) and has large and
active community developing it. TRIK Studio has about 100K
lines of code (excluding QReal core, which also has size of
about 120K LOC), written in C++ with Qt. Good reception of
TRIK Studio in educational robotics community may be viewed
as a proof that modeling environment created with domain-
specific platform (QReal in this case) can actually compete with
visual programming environments written specifically for robots
programming.

Future work consists of two major development vectors:
improvements of the existing system and new research projects
based on it. Improvement tasks are gathered from teachers,
pupils and students which use TRIK Studio, and there is already
several hundreds of such tasks tracked. For example, support
for new robotic platforms (such as Arduino, STM32), simulator
improvements (more precise physics simulation, multiagent sys-
tems simulation and so on), support for more textual languages
(like Python, Pascal). Research projects that are currently using
TRIK Studio as a technical base include research in domain-
specific visual languages field and formal methods field of
study. For example, we are creating technology to automatically




PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

generate visual domain-specific language using metainformation
from packages of robotic middleware (ROS [49] is currently
considered), that visual language will be able to link middleware
nodes together thus configuring environment for a particular
robot. Research in formal methods aims to formalize semantics
of used visual languages to be able to apply formal verification
and synthesis methods to diagrams.

(1]

[2]

[3]

(4]
[3]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

REFERENCES

S. Papert, Mindstorms: Children, Computers, and Powerful Ideas. New

York, NY, USA: Basic Books, Inc., 1980.

R. Luchin, “TRIK robotics platform: new challenges and new possibil-
ities,” in Proceedings of IV Russian conference "Modern technological
education: from a computer to a robot”, 2016, pp. 36-38, (in Russian).

B. Erwin, M. Cyr, and C. Rogers, “Lego engineer and robolab: Teaching
engineering with labview from kindergarten to graduate school,” Inter-
national Journal of Engineering Education, vol. 16, no. 3, pp. 181-192,
2000.

1. Kelly, Lego Mindstorms NXT-G Programming Guide. Apress, 2007.

L. Valk, LEGO MINDSTORMS EV3 Discovery Book: A Beginner’s Guide
to Building and Programming Robots. No Starch Press, 2014.

M. Resnick, J. Maloney, A. Monroy-Herndndez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, and B. Silverman,
“Scratch: programming for all,” Communications of the ACM, vol. 52,
no. 11, pp. 60-67, 2009.

D. Wolber, “App inventor and real-world motivation,” in Proceedings
of the 42nd ACM technical symposium on Computer science education.
ACM, 2011, pp. 601-606.

B. Jost, M. Ketterl, R. Budde, and T. Leimbach, “Graphical programming
environments for educational robots: Open roberta-yet another one?” in
Multimedia (ISM), 2014 IEEE International Symposium on. 1EEE, 2014,
pp. 381-386.

G. Chang, S. Fan, R. Shue, and W. Lu, “Incorporating the fischertechnik
bricks into undergraduate mechatronics courses,” in EE 2006, Inter-
national Conference on Innovation, Good Practice and Research in
Engineering Education, 2006.

K. Mayerova, “Pilot activities: LEGO WeDo at primary school,” in 3rd
International Workshop, Teaching Robotics, Teaching with Robotics, 2012,
pp. 32-39.

J. Cross, C. Bartley, E. Hamner, and I. Nourbakhsh, “A visual robot-
programming environment for multidisciplinary education,” in 2013 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2013, pp. 445-452.

D. Mordvinov and Y. Litvinov, “Comparison of educational environments
for robots programming,” Computer aided tools in education, vol. 3, pp.
32-49, 2016, (in Russian).

W. Johnston, J. Hanna, and R. Millar, “Advances in dataflow program-
ming languages,” ACM Computing Surveys (CSUR), vol. 36, no. 1, pp.
1-34, 2004.

J. Kodosky, J. MacCrisken, and G. Rymar, “Visual programming using
structured data flow,” in Visual Languages, 1991., Proceedings. 1991 IEEE
Workshop on. 1EEE, 1991, pp. 34-39.

T. H. J.B. Dabney, Mastering simulink. Pearson/Prentice Hall, 2004.

J. Jackson, “Microsoft robotics studio: A technical introduction,” Robotics
& Automation Magazine, IEEE, vol. 14, no. 4, pp. 82-87, 2007.

M. Stefanovic, V. Cvijetkovic, M. Matijevic, and V. Simic, “A
LabVIEW-based remote laboratory experiments for control engineering
education,” Computer Applications in Engineering Education, vol. 19,
no. 3, pp. 538-549, 2011.

Z. Yi, J. Jian-Jun, and F. Shao-Chun, “A LabVIEW-based, interactive
virtual laboratory for electronic engineering education,” International
Journal of Engineering Education, vol. 21, no. 1, pp. 94-102, 2005.

M. Cyr, V. Miragila, T. Nocera, and C. Rogers, “A low-cost, innovative
methodology for teaching engineering through experimentation,” Journal
of Engineering Education, vol. 86, pp. 167-172, 1997.

M. Portsmore, “ROBOLAB: Intuitive Robotic Programming Software to
Support Life Long Learning,” APPLE Learning Technology Review, 1999.

307

[21]

[22]

(23]

(24]

[25]

[26]

(27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

(35]

[36]

[37]

(38]

(39]

[40]

[41]

J. Diprose, B. A. MacDonald, and J. Hosking, “Ruru: A spatial and
interactive visual programming language for novice robot programming,”
in Visual Languages and Human-Centric Computing (VL/HCC), 2011
IEEE Symposium on. 1EEE, 2011, pp. 25-32.

A. Terekhov, Y. Litvinov, and T. Bryksin, “QReal:Robots - An environ-
ment for teaching computer science and robotics in schools,” in ACM
International Conference Proceeding Series, vol. 2013-October, 2013, (in
Russian).

A. Kirsanov, I. Kirilenko, and K. Melentyev, “Robotics reactive pro-
gramming with f#/mono,” in Proceedings of the 10th Central and Eastern
European Software Engineering Conference in Russia. ACM, 2014, p. 16.

L. Doliner, Introduction in Pascal ABC.NET programming. Publishing of
Ural University, 2014, (in Russian).

E. Rohmer, S. Singh, and M. Freese, “V-REP: A versatile and scalable
robot simulation framework,” in Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on. 1EEE, 2013, pp. 1321-
1326.

L. Damas and R. Milner, “Principal type-schemes for functional pro-
grams,” in Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM, 1982, pp. 207-212.

D. Koznov, “Introduction in visual modeling,” Publishing of Intuit.ru,
2008, (in Russian).

A. Kuzenkova, A. Deripaska, K. Taran, A. Podkopaev, Y. Litvinov, and
T. Bryksin, “Tools for rapid development of domain-specific solutions
in QReal metaCASE tool,” Scientific Bulletin of SPbSPU, p. 142, (in
Russian).

A. Kuzenkova, A. Deripaska, T. Bryksin, Y. Litvinov, and V. Polyakov,
“QReal DSM platform-An Environment for Creation of Specific Visual
IDEs,” in ENASE 2013 — Proceedings of the 8th International Conference
on Evaluation of Novel Approaches to Software Engineering.  Setubal,
Portugal: SciTePress, 2013, pp. 205-211.

T. Bryksin, Y. Litvinov, V. Onossovski, and A. Terekhov, “Ubiq Mobile
+ QReal: a Technology for Development of Distributed Mobile Services,”
in 10th Conference of Open Innovations Association FRUCT and the 2nd
Finnish-Russian Mobile Linux Summit: Proceedings. State University of
Aerospace Instrumentation (SUAI), 2011, pp. 27-35.

M. Osechkina, T. Bryksin, Y. Litvinov, and I. Kirilenko, “Mouse gestures
recognition suport in meta-CASE tools,” Software Engineering, no. 5, pp.
52-75, 2010, (in Russian).

M. Osechkina, Y. Litvinov, and T. Bryksin, “Multistroke Mouse Ges-
tures Recognition in QReal metaCASE Technology,” in SYRCoSE 2012:

Proceedings of the 6th Spring/Summer Young Researchers’ Colloquium on
Software Engineering. Perm: ISPRAS, 2012, pp. 194-200.

R. Brooks, “A robust layered control system for a mobile robot,” IEEE
J. Robot. Automat., vol. 2, no. 1, pp. 14-23, 1986.

J. Connell, “A colony architecture for an artificial creature,” DTIC
Document, Tech. Rep., 1989.

R. Arkin, “Motor schema based navigation for a mobile robot: An
approach to programming by behavior,” in Robotics and Automation.
Proceedings. 1987 IEEE International Conference on, vol. 4.  1EEE,
1987, pp. 264-271.

J. Rosenblatt, “DAMN: A distributed architecture for mobile navigation,”
Journal of Experimental & Theoretical Artificial Intelligence, vol. 9, no.
2-3, pp. 339-360, 1997.

J. Simpson and C. Ritson, “Toward process architectures for behavioural
robotics.” in CPA, 2009, pp. 375-386.

O. Banyasad, “A visual programming environment for autonomous
robots,” Master’s thesis, DalTech, Dalhousie University, Halifax, Nova
Scotia, 2000.

A.N. Terekhov, “Russian tools for teaching programming,” Computer
science technologies for the New School, p. 64, (in Russian).
S. Muchnick, Advanced compiler design implementation.
Kaufmann, 1997.

E. Derevenets and E. Troshina, “Structural analysis in decompilation,”
Applied Computer Science, no. 4, 2009, (in Russian).

Morgan

M. Tikhonova and Y. Litvinov, “Code generation for metamodeling “on
the fly” mode in QReal DSM platform,” Proceedings of student conference
“Modern technologies in theory and practice of programming”, pp. 53-54,
2015, (in Russian).




PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

[43]

[44]

[45]

[46]

D. Mordvinov, Y. Litvinov, “Review of formal methods application in
robotics,” Scientific bulletin of SPbSPU. Computer science. Telecommuni-
cations. Control theory., vol. 2016. 1236, pp. 84-107, 2016, (in Russian).

H. Kress-Gazit, G. Fainekos, and G. Pappas, “Where’s waldo? sensor-
based temporal logic motion planning,” in 2007 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE, 2007, pp. 3116—
3121.

D. Bugaichenko, “Development of formal methods for self-tuning multi-
agent systems with timing limitations,” Saint Petersburg State University,
vol. 2010, 2007, (in Russian).

A. Dmitriev, “Adaptation of combined space-temporal logics for machine
learning systems,” Newsletter of Volgograd State Technological University,

308

[47]

(48]

[49]

vol. 16, no. 8 (111), 2013, (in Russian).

D. Mordvinov and Y. Litvinov, “Testing robots programming environ-
ment,” in Proceedings of International conference “Tools and methods
of program analysis”. ~ Saint Petersburg: Publishing of Saint Petersburg
Polytechnic University, 2015, pp. 176-185, (in Russian).

V. Zakharov, “QReal-web: a web-based tool for teaching robots pro-
gramming,” Proceedings of VI Russian conference "Modern technological
education: from a computer to a robot”, pp. 38-39, 2016, (in Russian).

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,”
in ICRA workshop on open source software, vol. 3, no. 3.2, 2009, p. 5.




