
Method of Person Identification Based on Biometric
Characteristics Of Touch Screen Gestures

Kirill Lefyer, Anton Spivak
ITMO University

Saint Petersburg, Russia
{leyfer.kirill, anton.spivak}@gmail.com

Abstract–Vast majority of modern smartphones is equipped
with touch-sensitive screens. Being precise and accurate input
devices, those screens can actually provide a lot of data from user
input gestures to analyze. Having such a data, it is possible to find
unique characteristics of user's input to identify smartpohe's user
just by analyzing their input gestures. This article presents a
study on possible approaches to identification a person by
parameters of touch gestures he or she inputs on the screen of
smartphone.

I. INTRODUCTION

Today smartphones equipped with touch-sensitive displays,
are distributed widely. The touch screen on the smartphones
was first applied in 1992 and has evolved into a fairly accurate
and responsive input device over time. In most modern
smartphones, touchscreen can detect up to 10 simultaneous
taps with a precision up to one pixel, and also allows you to
determine square of each tap area. This allows you to track
each user gesture they leave on the touch screen with high
precision. If we assume that gestures entered by a user on the
touch screen have a set of characteristics unique for each
individual, i.e. a set of some biometric signs, then touch
screen, having all the features listed above, is definitely
capable of recording these characteristics.

The question is whether touchscreen input gestures actually
have those biometric signs. And, if they have, how
representative they are, and how accurate biometric
identification system based on touchscreen can be. The search
for such biometric characteristics and the building of user
identification system are of great interest in terms of
information security as biometrics identification became more
and more common on commodity mobile devices.

To find biometric features in touch gestures, we accumulate
a number of test data. This task can be accomplished with a
client-server application. The client part must be installed on
the test user devices and track all the gestures that are entered
on the touch screen. The server part of the project must store
all the statistics in the database.

After we collect desirable amounts of raw input data, we try
different approaches on data analysis and use best analysis
algorithms to develop user identification system based entirely
on touchscreen gestures.

As a final step, we test our identification system and
propose different ways of improvement of our project.

II. RELATED WORKS

The idea of identifying a smartphone user by biometrics is
not new and has been adopted in various projects and explored
in various studies. Despite the excellent accuracy of the touch
screen, this input device is used quite rarely as a biometric
sensor. However, such projects and studies do exist and some of
them are listed below.

Julio Angulo and Erik Wastlund in [2] have used some
concepts of keystroke dynamics in their touchscreen-based
identification method. This study aims to enforce overall weak
lock patterns (i.e device unlock mechanism utilizes matrix of
dots which should be connected in some order to unlock device)
with biometric features. Using six finger-in-dot variables
(amount of time user holds his finger inside each dot) and five
finger-in-between-dots variables (amount of time user connects
neighbor dots) for each trial, they prepared a total of eleven
variables to feed the classifiers.

Random forests were used as a classifiers due to it's fast
learning process for large datasets, provided average EER of
10.39% with a standard deviation of 3.0%.

This principle evolves in other works, e.g in [3] or [4]. In
former a touchscreen user interface was designed to collect
touch durations. Giving 80 real attempts and 80 fraud attempts
from 10 users, researchers achieved EER (Equal error rate, the
rate at which both acceptance and rejection errors are equal)
2.5% for ANFIS (Adaptive-Network-Based Fuzzy Inference
System, type of classifier). The latter work utilizes and develops
principles of [] to create working biometrics-enhanced lock
pattern unlock screen. In [5] Ala Abdulhakim Alariki et. al.
provide a framework to implement touch-based biometric
identification system.

Other approaches to touch-based biometrics include
implementing keystroke dynamics algorythms on touchscreen-
equipped devices in form of custom onscreen keyboard [6].

As of [7], Christian Holz et al used touchscreen as biometric
sensor to detect shapes of large human body parts, e.g ears,
palms, wrists etc by pressing it against touchscreen. This
research evolved into commercial project called Bodyprint. In
evaluation performed as part of the research with 12
participants, Bodyprint classified body parts with 99.98%
accuracy and identifies users with 99.52% accuracy with a false
rejection rate of 26.82% to prevent false positives. This

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

classifies bodyprint as a reliable biometric user authentication to
a vast number of commodity devices.

All works referenced above utilize active identification – i.e.
they identify user once he tries to unlock his phone. Unlike
those, [8] studies different approaches to create continuous
identification algorythm i.e. identify user while he uses device.
This allows to eliminate unauthorized access even after device
was unlocked.

Project Abacus by Google aimed to eliminate passwords by
substituting it with continuous biometric identification uses
similar principle. Abacus calculates a continuous trust score
using your location, facial recognition, speech input, keystroke
dynamics (i.e how you type), motion created by how you walk
etc. The Abacus demo at Google I/O 2015 showed continiously
calculated trust score on scale of 1 to 100. The initial goal of this
project is to provice these features to millions of android users
just by software update.

III. PROBLEM STATEMENT

In this work, we aim to develop method of identification of
mobile device user based on dynamic biometric characteristics
of touch screen gestures.

Unlike previously noted works, this research aims to
develop continuous user identification system, based on
dynamic characteristics of input gestures generated during
everyday use of mobile device. Unlike most of similar
projects, every gesture user inputs on touchscreen, regardless
of application currently running, will be collected and
analyzed. Weizhi Meng et al in [9] based on same principle,
but our work utilizes application which can be installed on any
“rooted” (i.e with superuser privileges) android device. This
makes finding and involving test users in our project much
easier as it doesn't require to equip each test subject with
custom android device.

Our first goal is to develop software for data collection.
This software should be easily installed on any android device,
should be able to run in background and collect all user input
gestures. Also we should take into consideration performance
and security aspects of this software to reduce performance
overhead and eliminate any private information leakage during
process of collecting test data.

Our next goal is to build different signs from raw input data
and analyze them. Through comparing and / or combining
different classification algorithms we should be able to find
combination of biometric signs and classifiers with best results
for given classification metric.

Finally, we should evaluate results of our identification
method and propose modifications to our identification
method to improve its accuracy and other metrics.

IV. DESCRIPTION AND PRINCIPLE OF OPERATION OF THE
PROJECT TOUCHLOGGER

To collect, store, process and analyze touch gestures data,
we created client-server project named Touchlogger. The
architecture of this project is described below in details.

A. Client part
The client part is an Android application which test users

install on their smartphones. Main goal of client side is to
collect all user generated touchscreen input events. This can't
be achieved with standard Android API, so we tried two
alternative approaches on this problem.

First one was to enhance android framework itself, adding
ability to process, store and upload to server input events
generated by user, i.e. modifying source code of Android and
providing our test users with alternative firmware images, or,
at least, alternative version of some system libraries. This lead
to fork of AOSP's platform_frameworks_base subproject [10],
where we achieved our goals by implementing
WindowManagerPolicy.PointerEventListener class and
registering this new receiver in system via call to
WindowManagerFuncs.registerPointerEventListener(). This
project prooved to be reliable, fast and secure way to collect
user input data and upload it to server.

The main disadvantage of this approach is it's lack of
portability. We didn't come up with any suitable way to
enclose our changes inside one system library that can be
easily embedded into commodity android devices without
reflahing them. Only way of embedding our changes into test
user's devices was providing custom AOSP-based firmware
for each device model, so, different approach was adopted.

Android's input system architecture at it's lowest levels
completely matches Linux'es as former is actually based on
latter [11]. Linux has built-in support of multitouch input
devices, and shares with android same multitouch protocol
[12]. Specifically, android devices use /dev/input/event[X]
character devices to pass raw input data from kernel-space to
user-space and back.

Given standartized multitouch protocol it is fairly easy to
implement touch gestures logging by reading all touch data
directly from character device. Actually, vast majority of
commodity devices already has built-in utility getevent which
allows to read input events from charater device and convert
raw data to more parsing-friendly format.

Of course, Android security system prohibits reading input
events by unprivileged user as it may cause privacy leaks.
Access to input devices is allowed only for users in input linux
group and superuser with kernel SELinux security context. So,
to use this utility on test user devices, root access must be
provided.

To protect user privacy, all input data being send over
network is encrypted.

Current implementation of client-side software is based on
this approach and source code is freely available [13].

B. Server part
The tasks of the server-side include receiving data from a

client, decrypting it and storing it into the database. Server
receives all data in a format of JSON object, which contains
the following fields:

Device ID — unique identifier of a mobile device

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 223 --

DEVICE_MODEL — string combined of board identifier,
manufacturer name, brand and model names of android
device. Basically it is unique identifier of a model of mobile
device.

data — stores encrypted input data, encoded in Base64
format.

IV — initialization vector used in the data encryption. Also
encoded in base64 format.

session_key — symmetric session key used to encrypt data
field. This key itself is also ecnrypted with RSA algorithm
and encoded in base64 format.

New session key is generated each time data transfers from
client to server. First, server decrypts session key with it's own
RSA private key, and then server uses session key and IV
vector to decrypt data field. Device ID is then used as database
key to store input data.

The backend is written in JavaScript using the Node.js
framework. This platform allows to develop a simple server in
quite a short period of time. Mongodb was chosen for a
DBMS. It utilizes document-oriented approach, otherwise
called NoSQL (in oppose to traditional SQL databases) to
store data. The choice was dictated by the need to keep a large
number of nested data, as well as the fact that the document in
Mongodb can be created directly from JavaScript object or
from a document in JSON format. The latter feature has also
greatly simplified and accelerated the development of the
server side.

V. PRELIMINARY DATA ANALYSIS

Nineteen users have been involved in the collection of user
data and therefore installed client side of the project on their
devices. The screens for most test smartphones have a
diagonal of 5 inches and 1920 by 1080 resolution in pixels. As
a result, approximately 200,000 gestures were received in the
total of 14 days of testing.

In order to analyse the data obtained, it is necessary to
classify it in some ways in order to further study individual
classes. In this work, the data was classified as follows:

1) by the amount of fingers involved in touch gesture:

Single-touch gesture

Multi-touch gesture

2) by the type of gesture:

touch (fast and short tap on the screen used to press a
button, checkbox etc)

swype (more long and complex gesture, used to scroll
some list, pan around large web page etc)

To divide all finger gestures on touches and swypes, we
must calculate the length of gesture in pixels. Then we must
find the threshold value for this length so that all gestures that
are less than that value can be attributed to touches, and the
rest of the gestures to swypes. Obviously, developers of

Android OS had faced with the same problem, so we can find
the value of this threshold in the source codes. It is 4 DP (DP-
density-independent pixel, "Pixel-independent density"-an
abstract unit of length, the equivalent of one pixel in a screen
density of 160 dots per inch). On the screen with 1920 by 1080
resolution and 5 inches in diagonal 4 DP is approximately 12
pixels. So, all gestures of more than 12 pixels long will
be considered swypes, and the rest will be classified as
touches.

Given all that classification rules, we now divide all
collected gestures into one- and mutitouch gestures, and divide
single-touch gestures into touches and swypes.

So, multitouch gestures make up 2.3% of the total number
of input events, leaving around 300 such gestures per user for
analysis. This is clearly not enough for a full-fledged study, so
it will be an analysis of one-finger gestures only. Simple
touches are 50.7% of all input data received from users, and
finally swypes are 46.9% of all input events.

Now we need to turn raw input gestures into biometric
signs. To that end we build distributions of collected data on
different characteristics and compared them.

First, we started with distribution on square of touch area. It
is logical to suggest that different users have different fingers
and push against touchscreen with different forse, so
distributions of touch (or swype) square will differ from
person to person. Actually, as shown for two users in Fig. 1,
real situation is quite opposite as distributions are almost
identical.

So this characteristic is so similar among users it can't be
used as a basis for identification system.

Second approach was to calculate distribution of touches on
duration in milliseconds. Each person should have different
patterns of interaction with device, so it might have influence
on that parameter. This parameter indeed shows better results
as shown in Fig. 2.

In this illustration, the x axis holds the duration of touch in
milliseconds, and percentage of gestures of this duration is on
the y axis. At first glance, the form of graphics differs
significantly from one another, thus the distribution of touches
by duration can be used as a biometric sign. However, during
further testing, it became clear that this characteristic changes
over time for given user and thus it is less preferable to build
identification system on top of such sign.

Another promising approach is to analyze different
properties of swypes as they contain more information. First,
we've built distribution of swipes on normalized distance, i.e
distance of gesture in pixels divided by screen diagonal length
in pixels. In Fig. 3 you can see examples of these distributions
for 4 different users.

These graphs have notable differences, and, more
important, if we take input data for given person for different
period of time and build it's distribution on distance, the shape
of graph would barely differ from given in Fig. 3, which
makes that sign good to be used in classification.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 224 --

Also we can see how fast or slow different users input long
gestures on touchscreen. To that end we can build distribution
of user's swipes on duration in milliseconds. This sign may be
considered similar to touch distribution on duration described
above, although in fact swipes contain more information then
simple “taps”, which can make this sign perform better.

Given distributions for 4 different users are shown in Fig. 4.
These graphs have noticeable differences in shape, and more
important, its shapes remain same if we build distribution for
different set of gestures generated by same users.

There are plenty more signs to extract from raw gestures
and analyze, but they're out of scope of this article, so we'll
focus on latter two characteristics.

Fig 1.Touch distribution on touch area square

Fig. 2.Touch distribution on duration

Fig. 3.Swipe distribution on normalized distance

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 225 --

VI. DATA ANALYSIS

From previous section, we took two main characteristics:
swipe distribution on length and duration. To generate
distribution, we use 50 swipes. Example of such distributions
presented in Table I.

TABLE I. EXAMPLE OF TOUCH DISTRIBUTION ON LENGTH

 0 1 2 3 4 ... 47 48 49 User ID

0 0 0.0 0.04 0.14 0.22 ... 0.00 0.0 0.00 1

1 0 0.0 0.08 0.18 0.08 ... 0.00 0.0 0.00 3

2 0 0.0 0.12 0.12 0.06 ... 0.00 0.0 0.00 3

3 0 0.0 0.00 0.00 0.04 ... 0.02 0.0 0.02 4

4 0 0.0 0.06 0.20 0.18 ... 0.00 0.0 0.00 4

In this table we have 5 sample vectors, 50 coordinates each,
and corresponding ID of user this vector belongs to. Here n-th
coordinate of vector represents percentage of gestures with
normalized length between n/N and (n+1)/N, where N is total
amount of vector coordinates. So, basically, it is N-
dimensional vector.

As we can calculate distances between N-dimensional
vectors, we can apply clusterisation methods to divide all
vectors into clusters. The simple yet effective solution would
be KNN, or K nearest neighbors method. To visualize data
output we can reduce dimension of vectors from 50 to 2 still
keeping relative distance between points using t-SNE (t-
distributed stochastic neighbor embedding) [14] algorithm.
Results of this transformation can be seen in fig. 5.

In this picture we can see that extracting precise clusters
from this data would be a challenging task. While gestures of
users 5 and 6 can be distinguished more or less from each
other by this method, gestures of users 2 and 3 are completely
mixed. We can still try KNN method on 50-dimensional
vectors to see results and check whether we can improve
quality of classification by increasing amount of K neighbors.
For metric we choose negative log loss. You can see graph
representing log loss for different value of parameter K in
KNN method.

In this figure we can see that KNN shows fairly good
results for 15+ neighbors.

To improve quality of classification, we should try different
algorithms and compare them. As classification algorithms we
choose KNN, Random forest classifier and boosted trees
classifier. We use AUC (Area Under Curve, by Curve here
means ROC curve, which is Receiver Operating
Characteristic) as metric. Results are presented in table II.

Fig. 5. Vectors relative distances for different users

Fig. 6. Log loss for K neighbors

Fig. 4.Swipes distribution on duration

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 226 --

TABLE II. EVALUATION RESULTS

 KNN Random forest Boosted Trees

AUC dev AUC dev AUC dev

Duration 0.86 0.007 0.85 0.011 0.85 0.008

Normalized
distance 0.79 0.008 0.82 0.005 0.79 0.008

We can definitely see that duration-based characteristic
performs better then distance-based. Also we can see that
results aren't differ much among classification algorithms.
Actually we can try and build voting classifier which would
classify data based on result of other algorithms as inputs.
After evaluating, it shows following results (Table III):

TABLE III. EVALUATION RESULTS FOR VOTING CLASSIFIER

 Voting Classifier

AUC deviation

Duration 0.87 0.007

Normalized distance 0.82 0.006

We can observe slightly improved metrics after
implementing voting classifier.

VII. CONCLUSION

During this research we've implemented open-source input
data collection tool which can be used with slightest
modification in other similar projects. After gathering data
among 19 test users we received approximately 200000 input
gestures, more than half of which were simple taps. We
extracted different characteristics of gestures and focused just
on two on them to perform data analysis and build
classification system. After probing different classification
algorithms we decided to combine them to achieve better
classification metrics, AUC in our case.

These results show us that user input gestures definitely
have unique set of biometric signs and precision of
identification is just a matter of quality of signs and selected
classifier. Howewer, it became obvious that we can't achieve
metrics close enough to other physiological biometrics as
fingerprint or iris scanner. Also these results show that we
can't use our results to build production-ready identification
system yet as false rates are still high. The proposed
improvements are discussed in the next section

VIII. FUTURE WORK

Future work will be dedicated to improvement of user
classification. This include search for better biometric
characteristics in the first place. Current implementation
doesn't take into account most of characteristics described in
related works.

Also, as described in previous section, input data may be
insufficient to achieve high, fingerprint-level error rates, which
means that we should collect other types of information.
Currently we are planning to collect information about
activities user currently working with, information about UI
elements interaction (through accessibility API) and also about
sensor information.

Enhancement of sign vector mean that we have to gather
input information again as old data will be incompatible with
new one due to it's lack of newly gathered info.

REFERENCES

[1] Karim Yaghmour, Embedded Android. Porting, Extending, and
Customizing, O'Reilly Media, 2013

[2] Julio Angulo and Erik Wastlund, “Exploring Touch-screen
Biometrics for User Identification on Smart Phones”, Web:
http://www.it.iitb.ac.in/frg/wiki/images/4/48/113050033_Paper10.pdf

[3] Orcan Alpar, “Intelligent biometric pattern password authentication
systems for touchscreens”, in Expert Systems with Applications, vol
42, Issues 17–18, pp. 6286–6294, 2015

[4] Taekyoung Kwon et al, “TinyLock: Affordable defense against
smudge attacks on smartphone pattern lock systems”, in Computers
& Security, vol 42, pp. 137–150, 2014

[5] Ala Abdulhakim Alariki et al, “Touch gesture authentication
framework for touch screen mobile devices”, in Journal of
Theoretical and Applied Information Technology, vol. 62 No.2, 2014

[6] Georgios Kambourakis et al, “Introducing touchstroke: keystroke-
based authentication system for smartphones”, in Security and
Communication Networks, vol 9, issue 6, pp. 542-554, 2016

[7] Christian Holz, Senaka Buthpitiya, Marius Knaust, “Bodyprint:
Biometric User Identification on Mobile Devices Using the
Capacitive Touchscreen to Scan Body Parts”, in CHI '15 Proceedings
of the 33rd Annual ACM Conference on Human Factors in
Computing Systems, pp. 3011-3014, 2015

[8] Hui Xu, “Towards Continuous and Passive Authentication via Touch
Biometrics: An Experimental Study on Smartphones”, Web:
https://www.usenix.org/system/files/conference/soups2014/soups14-
paper-xu.pdf

[9] Weizhi Meng, “Surveying the Development of Biometric User
Authentication on Mobile Phones”, in IEEE Communications Surveys
& Tutorials, vol 17, issue 3, 2015

[10] platform_frameworks_base forked repository, Web:
https://github.com/BOOtak/platform_frameworks_base

[11] The Android input subsystem overview, Web:
https://source.android.com/devices/input/overview.html

[12] Multi-touch (MT) Protocol, Web:
https://www.kernel.org/doc/Documentation/input/multi-touch-
protocol.txt

[13] Client part of project touchlogger, Web:
https://github.com/BOOtak/touchlogger-client

[14] Laurens van der Maaten, “Visualizing Data using t-SNE”, in Journal
of Machine Learning Research, pp. 2579-2605, 2008

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 227 --

