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Abstract–Vast majority of modern smartphones is equipped 
with touch-sensitive screens. Being precise and accurate input 
devices, those screens can actually provide a lot of data from user 
input gestures to analyze. Having such a data, it is possible to find 
unique characteristics of user's input to identify smartpohe's user 
just by analyzing their input gestures. This article presents a 
study on possible approaches to identification a person by 
parameters of touch gestures he or she inputs on the screen of 
smartphone. 

I. INTRODUCTION

Today smartphones equipped with touch-sensitive displays,  
are distributed widely. The touch screen on the smartphones 
was first applied in 1992 and has evolved into a fairly accurate 
and responsive input device over time. In most modern 
smartphones, touchscreen can detect up to 10 simultaneous 
taps with a precision up to one pixel, and also allows you to 
determine square of each tap area. This allows you to track 
each user gesture they leave on the touch screen with high 
precision. If we assume that gestures entered by a user on the 
touch screen have a set of characteristics unique for each 
individual, i.e. a set of some biometric signs, then touch 
screen, having all the features listed above, is definitely 
capable of recording these characteristics. 

The question is whether touchscreen input gestures actually 
have those biometric signs. And, if they have, how 
representative they are, and how accurate biometric 
identification system based on touchscreen can be. The search 
for such biometric characteristics and the building of user 
identification system are of great interest in terms of 
information security as biometrics identification became more 
and more common on commodity mobile devices.

To find biometric features in touch gestures, we accumulate 
a number of test data. This task can be accomplished with a 
client-server application. The client part must be installed on 
the test user devices and track all the gestures that are entered 
on the touch screen. The server part of the project must store 
all the statistics in the database.

After we collect desirable amounts of raw input data, we try 
different approaches on data analysis and use best analysis 
algorithms to develop user identification system based entirely 
on touchscreen gestures.

As a final step, we test our identification system and 
propose different ways of improvement of our project.

II. RELATED WORKS

The idea of identifying a smartphone user by biometrics is 
not new and has been adopted in various projects and explored 
in various studies. Despite the excellent accuracy of the touch 
screen, this input device is used quite rarely as a biometric 
sensor. However, such projects and studies do exist and some of 
them are listed below. 

Julio Angulo and Erik Wastlund in [2] have used some 
concepts of keystroke dynamics in their touchscreen-based 
identification method. This study aims to enforce overall weak 
lock patterns (i.e device unlock mechanism utilizes matrix of 
dots which should be connected in some order to unlock device) 
with biometric features. Using six finger-in-dot variables 
(amount of time user holds his finger inside each dot) and five 
finger-in-between-dots variables (amount of time user connects 
neighbor dots) for each trial, they prepared a total of eleven 
variables to feed the classifiers. 

Random forests were used as a classifiers due to it's fast 
learning process for large datasets, provided average EER of 
10.39% with a standard deviation of 3.0%. 

This principle evolves in other works, e.g in [3] or [4]. In 
former a touchscreen user interface was designed to collect 
touch durations. Giving 80 real attempts and 80 fraud attempts 
from 10 users, researchers achieved EER (Equal error rate, the 
rate at which both acceptance and rejection errors are equal) 
2.5% for ANFIS (Adaptive-Network-Based Fuzzy Inference 
System, type of classifier). The latter work utilizes and develops 
principles of [] to create working biometrics-enhanced lock 
pattern unlock screen. In [5] Ala Abdulhakim Alariki et. al. 
provide a framework to implement touch-based biometric 
identification system. 

Other approaches to touch-based biometrics include 
implementing keystroke dynamics algorythms on touchscreen-
equipped devices in form of custom onscreen keyboard [6]. 

As of [7], Christian Holz et al used touchscreen as biometric 
sensor to detect shapes of large human body parts, e.g ears, 
palms, wrists etc by pressing it against touchscreen. This 
research evolved into commercial project called Bodyprint. In 
evaluation performed as part of the research with 12 
participants, Bodyprint classified body parts with 99.98% 
accuracy and identifies users with 99.52% accuracy with a false 
rejection rate of 26.82% to prevent false positives. This 
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classifies bodyprint as a reliable biometric user authentication to 
a vast number of commodity devices. 

All works referenced above utilize active identification – i.e. 
they identify user once he tries to unlock his phone. Unlike 
those, [8] studies different approaches to create continuous 
identification algorythm i.e.  identify user while he uses device. 
This allows to eliminate unauthorized access even after device 
was unlocked. 

Project Abacus by Google aimed to eliminate passwords by 
substituting it with continuous biometric identification uses 
similar principle. Abacus calculates a continuous trust score 
using your location, facial recognition, speech input, keystroke 
dynamics (i.e how you type), motion created by how you walk 
etc. The Abacus demo at Google I/O 2015 showed continiously 
calculated trust score on scale of 1 to 100. The initial goal of this 
project is to provice these features to millions of android users 
just by software update. 

III. PROBLEM STATEMENT

In this work, we aim to develop method of identification of 
mobile device user based on dynamic biometric characteristics 
of touch screen gestures.  

Unlike previously noted works, this research aims to 
develop continuous user identification system, based on 
dynamic characteristics of input gestures generated during 
everyday use of mobile device. Unlike most of similar 
projects, every gesture user inputs on touchscreen, regardless 
of application currently running, will be collected and 
analyzed.   Weizhi Meng et al in [9] based on same principle, 
but our work utilizes application which can be installed on any 
“rooted” (i.e with superuser privileges) android device. This 
makes finding and involving test users in our project much 
easier as it doesn't require to equip each test subject with 
custom android device. 

Our first goal is to develop software for data collection. 
This software should be easily installed on any android device, 
should be able to run in background and collect all user input 
gestures. Also we should take into consideration performance 
and security aspects of this software to reduce performance 
overhead and eliminate any private information leakage during 
process of collecting test data. 

Our next goal is to build different signs from raw input data 
and analyze them. Through comparing and / or combining 
different classification algorithms we should be able to find 
combination of biometric signs and classifiers with best results 
for given classification metric. 

Finally, we should evaluate results of our identification 
method and propose modifications to our identification 
method to improve its accuracy and other metrics. 

IV. DESCRIPTION AND PRINCIPLE OF OPERATION OF THE 
PROJECT TOUCHLOGGER

To collect, store, process and analyze touch gestures data, 
we created client-server project named Touchlogger. The 
architecture of this project is described below in details. 

A. Client part 
The client part is an Android application which test users 

install on their smartphones. Main goal of client side is to 
collect all user generated touchscreen input events. This can't 
be achieved with standard Android API, so we tried two 
alternative approaches on this problem. 

First one was to enhance android framework itself, adding 
ability to process, store and upload to server input events 
generated by user, i.e. modifying source code of Android and 
providing our test users with alternative firmware images, or, 
at least, alternative version of some system libraries. This lead 
to fork of AOSP's platform_frameworks_base subproject [10], 
where we achieved our goals by implementing 
WindowManagerPolicy.PointerEventListener class and 
registering this new receiver in system via call to 
WindowManagerFuncs.registerPointerEventListener(). This 
project prooved to be reliable, fast and secure way to collect 
user input data and upload it to server. 

The main disadvantage of this approach is it's lack of 
portability. We didn't come up with any suitable way to 
enclose our changes inside one system library that can be 
easily embedded into commodity android devices without 
reflahing them. Only way of embedding our changes into test 
user's devices was providing custom AOSP-based firmware 
for each device model, so, different approach was adopted. 

Android's input system architecture at it's lowest levels 
completely matches Linux'es as former is actually based on 
latter [11]. Linux has built-in support of multitouch input 
devices, and shares with android same multitouch protocol 
[12]. Specifically, android devices use /dev/input/event[X] 
character devices to pass raw input data from kernel-space to 
user-space and back. 

Given standartized multitouch protocol it is fairly easy to 
implement touch gestures logging by reading all touch data 
directly from character device. Actually, vast majority of 
commodity devices already has built-in utility getevent which 
allows to read input events from charater device and convert 
raw data to more parsing-friendly format. 

Of course, Android security system prohibits reading input 
events by unprivileged user as it may cause privacy leaks. 
Access to input devices is allowed only for users in input linux 
group and superuser with kernel SELinux security context. So, 
to use this utility on test user devices, root access must be 
provided.  

To protect user privacy, all input data being send over 
network is encrypted. 

Current implementation of client-side software is based on 
this approach and source code is freely available [13]. 

B. Server part 
The tasks of the server-side include receiving data from a 

client, decrypting it and storing it into the database. Server 
receives all data in a format of JSON object, which contains 
the following fields: 

Device ID — unique identifier of a mobile device 
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DEVICE_MODEL — string combined of board identifier, 
manufacturer name, brand and model names of android 
device. Basically it is unique identifier of a model of mobile 
device. 

data — stores encrypted input data, encoded in Base64 
format. 

IV — initialization vector used in the data encryption. Also 
encoded in base64 format. 

session_key — symmetric session key used to encrypt data 
field. This key itself is also ecnrypted with RSA algorithm  
and encoded  in base64 format. 

New session key is generated each time data transfers from 
client to server. First, server decrypts session key with it's own 
RSA private key, and then server uses session key and IV 
vector to decrypt data field. Device ID is then used as database 
key to store input data. 

The backend is written in JavaScript using the Node.js 
framework. This platform allows to develop a simple server in 
quite a short period of time. Mongodb was chosen for a 
DBMS. It utilizes document-oriented approach, otherwise 
called NoSQL (in oppose to traditional SQL databases) to 
store data. The choice was dictated by the need to keep a large 
number of nested data, as well as the fact that the document in 
Mongodb can be created directly from JavaScript object or 
from a document in JSON format. The latter feature has also 
greatly simplified and accelerated the development of the 
server side. 

V. PRELIMINARY DATA ANALYSIS

Nineteen users have been involved in the collection of user 
data and therefore installed client side of the project on their 
devices. The screens for most test smartphones have a 
diagonal of 5 inches and 1920 by 1080 resolution in pixels. As 
a result, approximately 200,000 gestures were received in the 
total of 14 days of testing.

In order to analyse the data obtained, it is necessary to 
classify it in some ways in order to further study individual 
classes. In this work, the data was classified as follows:

1) by the amount of fingers involved in touch gesture:

Single-touch gesture

Multi-touch gesture

2) by the type of gesture:

touch (fast and short tap on the screen used to press a 
button, checkbox etc)

swype (more long and complex gesture, used to scroll 
some list, pan around large web page etc)

To divide all finger gestures on touches and swypes, we 
must calculate the length of gesture in pixels. Then we must 
find the threshold value for this length so that all gestures that 
are less than that value can be attributed to touches, and the 
rest of the gestures to swypes. Obviously, developers of  

Android OS had faced with the same problem, so we can find 
the value of this threshold in the source codes. It is 4 DP (DP-
density-independent pixel, "Pixel-independent density"-an 
abstract unit of length, the equivalent of one pixel in a screen 
density of 160 dots per inch). On the screen with 1920 by 1080 
resolution and 5 inches in diagonal 4 DP is approximately 12 
pixels. So, all gestures of more than 12 pixels long will  
be considered swypes, and the rest will be classified as 
touches.

Given all that classification rules, we now divide all 
collected gestures into one- and mutitouch gestures, and divide 
single-touch gestures into touches and swypes.

So, multitouch gestures make up 2.3% of the total number 
of input events, leaving around 300 such gestures per user for 
analysis. This is clearly not enough for a full-fledged study, so 
it will be an analysis of one-finger gestures only. Simple 
touches are 50.7% of all input data received from users, and 
finally swypes are 46.9% of all input events.

Now we need to turn raw input gestures into biometric 
signs. To that end we build distributions of collected data on 
different characteristics and compared them.

First, we started with distribution on square of touch area. It 
is logical to suggest that different users have different fingers 
and push against touchscreen with different forse, so 
distributions of touch (or swype) square will differ from 
person to person. Actually, as shown for two users in Fig. 1, 
real situation is quite opposite as distributions are almost 
identical. 

So this characteristic is so similar among users it can't be 
used as a basis for identification system.

Second approach was to calculate distribution of touches on 
duration in milliseconds. Each person should have different 
patterns of interaction with device, so it might have influence 
on that parameter. This parameter indeed shows better results 
as shown in Fig. 2. 

In this illustration, the x axis holds the duration of touch in 
milliseconds, and percentage of gestures of this duration is on 
the y axis. At first glance, the form of graphics differs 
significantly from one another, thus the distribution of touches 
by duration can be used as a biometric sign. However, during 
further testing, it became clear that this characteristic changes 
over time for given user and thus it is less preferable to build 
identification system on top of such sign.

Another promising approach is to analyze different 
properties of swypes as they contain more information. First, 
we've built distribution of swipes on normalized distance, i.e 
distance of gesture in pixels divided by screen diagonal length 
in pixels. In Fig. 3 you can see examples of these distributions 
for 4 different users.

These graphs have notable differences, and, more 
important, if we take input data for given person for different 
period of time and build it's distribution on distance, the shape 
of graph would barely differ from given in Fig. 3, which 
makes that sign good to be used in classification.
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Also we can see how fast or slow different users input long 
gestures on touchscreen. To that end we can build distribution 
of user's swipes on duration in milliseconds. This sign may be 
considered similar to touch distribution on duration described 
above, although in fact swipes contain more information then 
simple “taps”, which can make this sign perform better.

Given distributions for 4 different users are shown in Fig. 4. 
These graphs have noticeable differences in shape, and more 
important, its shapes remain same if we build distribution for 
different set of gestures generated by same users.

There are plenty more signs to extract from raw gestures 
and analyze, but they're out of scope of this article, so we'll 
focus on latter two characteristics.

Fig 1.Touch distribution on touch area square

Fig. 2.Touch distribution on duration

Fig. 3.Swipe distribution on normalized distance
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VI. DATA ANALYSIS

From previous section, we took two main characteristics: 
swipe distribution on length and duration. To generate 
distribution, we use 50 swipes. Example of such distributions 
presented in Table I. 

TABLE I.  EXAMPLE OF TOUCH DISTRIBUTION ON LENGTH

 0 1 2 3 4 ... 47 48 49 User ID

0 0 0.0 0.04 0.14 0.22 ... 0.00 0.0 0.00 1

1 0 0.0 0.08 0.18 0.08 ... 0.00 0.0 0.00 3

2 0 0.0 0.12 0.12 0.06 ... 0.00 0.0 0.00 3

3 0 0.0 0.00 0.00 0.04 ... 0.02 0.0 0.02 4

4 0 0.0 0.06 0.20 0.18 ... 0.00 0.0 0.00 4

In this table we have 5 sample vectors, 50 coordinates each, 
and corresponding ID of user this vector belongs to. Here n-th 
coordinate of vector represents percentage of gestures with 
normalized length between n/N and (n+1)/N, where N is total 
amount of vector coordinates. So, basically, it is N-
dimensional vector. 

As we can calculate distances between N-dimensional 
vectors, we can apply clusterisation methods to divide all 
vectors into clusters. The simple yet effective solution would 
be KNN, or K nearest neighbors method. To visualize data 
output we can reduce dimension of vectors from 50 to 2 still 
keeping relative distance between points using t-SNE (t-
distributed stochastic neighbor embedding) [14] algorithm. 
Results of this transformation can be seen in fig. 5. 

In this picture we can see that extracting precise clusters 
from this data would be a challenging task. While gestures of 
users 5 and 6 can be distinguished more or less from each 
other by this method, gestures of users 2 and 3 are completely 
mixed. We can still try KNN method on 50-dimensional 
vectors to see results and check whether we can improve 
quality of classification by increasing amount of K neighbors. 
For metric we choose negative log loss. You can see graph 
representing log loss for different value of parameter K in 
KNN method. 

In this figure we can see that KNN shows fairly good 
results for 15+ neighbors. 

To improve quality of classification, we should try different 
algorithms and compare them. As classification algorithms we 
choose KNN, Random forest classifier and boosted trees 
classifier. We use AUC (Area Under Curve, by Curve here 
means ROC curve, which is Receiver Operating 
Characteristic) as metric. Results are presented in table II.  

Fig. 5. Vectors relative distances for different users

Fig. 6. Log loss for K neighbors

Fig. 4.Swipes distribution on duration

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 226 ----------------------------------------------------------------------------



TABLE II. EVALUATION RESULTS

 KNN Random forest Boosted Trees

AUC dev AUC dev AUC dev

Duration 0.86 0.007 0.85 0.011 0.85 0.008

Normalized 
distance 0.79 0.008 0.82 0.005 0.79 0.008

We can definitely see that duration-based characteristic 
performs better then distance-based. Also we can see that 
results aren't differ much among classification algorithms. 
Actually we can try and build voting classifier which would 
classify data based on result of other algorithms as inputs. 
After evaluating, it shows following results (Table III): 

TABLE III. EVALUATION RESULTS FOR VOTING CLASSIFIER

 Voting Classifier

AUC deviation

Duration 0.87 0.007

Normalized distance 0.82 0.006

We can observe slightly improved metrics after 
implementing voting classifier. 

VII. CONCLUSION

During this research we've implemented open-source input 
data collection tool which can be used with slightest 
modification in other similar projects. After gathering data 
among 19 test users we received approximately 200000 input 
gestures, more than half of which were simple taps. We 
extracted different characteristics of gestures and focused just 
on two on them to perform data analysis and build 
classification system. After probing different classification 
algorithms we decided to combine them to achieve better 
classification metrics, AUC in our case. 

These results show us that user input gestures definitely 
have unique set of biometric signs and precision of 
identification is just a matter of quality of signs and selected 
classifier. Howewer, it became obvious that we can't achieve 
metrics close enough to other physiological biometrics as 
fingerprint or iris scanner. Also these results show that we 
can't use our results to build production-ready identification 
system yet as false rates are still high. The proposed 
improvements are discussed in the next section 

VIII. FUTURE WORK

Future work will be dedicated to improvement of user 
classification. This include search for better biometric 
characteristics in the first place. Current implementation 
doesn't take into account most of characteristics described in 
related works.

Also, as described in previous section, input data may be 
insufficient to achieve high, fingerprint-level error rates, which 
means that we should collect other types of information. 
Currently we are planning to collect information about 
activities user currently working with, information about UI 
elements interaction (through accessibility API) and also about 
sensor information.

Enhancement of sign vector mean that we have to gather 
input information again as old data will be incompatible with 
new one due to it's lack of newly gathered info.
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