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Abstract—In current times, trading success depends on choos-
ing a correct strategy. Algorithmic trading is often based on
technical analysis - an approach where the values of one or several
technical indicators are translated into buy or sell signals. Thus,
every trader’s main challenge is the choice and use of the most
fitting trading rules. In our work, we suggest an evolutionary
algorithm for generating and selecting the most fitting trading
rules for interday trading, which are presented in the form of
binary decision trees. A distinctive feature of this approach is the
interpretation of the evaluation of the current state of technical
indicators with the help of dynamic ranges that are recalculated
on a daily basis. This allows to create long-term trading rules. We
demonstrate the effectiveness of this system for the Top-5 stocks
of the United States IT sector and discuss the ways to improve
it.

I. INTRODUCTION

Today, many investors’ success is a result of the correct
choice of strategy. There are numerous factors that influence
the dynamics of the stock market. In stock trading, two
approaches are used for predicting the price of a certain stock:
technical analysis and fundamental analysis. In fundamental
analysis, the indicators of most importance are dividend policy,
enterprise value, and profit and sales values. The technical
analysis, in its turn, is based on analyzing the behavior of
the price of the asset and calculating additional indicators,
which, when following certain patterns, help in identifying
the direction of the current trend. Surely, a trader should be
guided by a number of technical indicators. Combinations of
the indicator and the corresponding value can create numerous
buy/sell rules. Considering that, the trader can make assump-
tions concerning the asset’s prospects [1].

Identifying these patterns is a nontrivial problem. AI meth-
ods are frequently used in development of an optimal trading
strategy. They can either optimize pre-determined strategies or
generate new ones and optimize them later. There is a large
number of studies that present a method for determining the
winning strategy that is based on neural networks [2], [3]. In
paper [4], using Bayesian networks is suggested as a basis
for trading decision making. The agent approach is also quite
popular [5], [6]. It introduces a domain of decision-making
agents. For example, in paper [7] the agents are considered to
be a population, and the best agent is selected by a genetic
algorithm. One of the most convenient representations of a
trading strategy is binary decision trees [8], [9], [10]. After

the best tree is determined, it can be used as an adviser
for making decisions regarding the current market situation.
Methods that employ this data structure are widely used [11],
[12]. In particular, in reference [10] decision trees are used
to classify the current market action (BUY, HOLD, SELL).
This approach uses immutable decision trees, and it is bound
by specific indicators. In turn, in the system presented in
reference [13], an evolutionary algorithm constructs a binary
decision tree based on mathematical functions, constants, and
technical indicators. Despite this approach’s good adaptivity to
the current market environment, its focus on constant values
limits the time of result validity to short-term.

In our study we use a similar approach to making trading
decisions. A genetic algorithm constructs an optimal decision
tree based on historical data. This tree can be later translated
into trade system rules. In this case, the tree is represented by
a set of rules that depict the current market environment. In
contrast to references [10] and [13], technical indicator states
are classified on the basis of their dynamic ranges. This allows
to extend the time of rule validity to long-term. However, we
had to modify the structure of the decision tree.

A more detailed description of the structure of the tree can
be found in Section II. Section III contains the description
of the steps of the genetic algorithm for constructing a set
of optimal decision trees. The principles of choosing the best
individuals are listed in Section IV, and the analysis of their
efficiency is presented in Section V.

II. DECISION TREE

A decision tree is a directed acyclic graph whose leaf nodes
contain decisions. In this case, they can be buy or sell signals.
The process of determining the decision starts from the root of
the tree. Depending on the node’s value, there is a transition
either to its right or left child. As a result, a leaf at the end
is taken. This strategy representation can be convenient in the
translation of certain trading systems into finite rules, because
this way buy and sell signals can be reduced to a conjunctive
normal form. The problem of (finding) the best binary decision
tree is an NP-complete problem [14], which is why heuristics
are used for finding a solution.

The node of the tree is a predicate that determines transition
to one of its children. In every non-terminal node, the value of a
technical indicator is compared to a certain level to see whether
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they match. Indicators most commonly have real values, but
their current state can be associated with a certain level. This
approach was introduced in paper [15]. In other words, at
a given time, a technical indicator can have one value from
the enumeration: {VERY LOW, LOW, MEDIUM, HIGH, VERY
HIGH}. In Fig. 1 you can see an example of decision tree.

Fig. 1. Simple decision tree

The tree can also be presented as a trivial algorithm:

Algorithm 1 Simple trading algorithm

if A is HIGH then
if B is LOW then
if C is MEDIUM then

BUY
else

SELL
end if
else

BUY
end if
else
if D is VERY LOW then
if C is LOW then

SELL
else

BUY
end if
else
if B is VERY HIGH then

BUY
else

SELL
end if
end if
end if

After every iteration of this algorithm either a BUY or
SELL signal will be received. However, the actual trading
action (Buy, Sell, Hold) depends on the direction of the current
position. Transitions between the corresponding position states
are defined in Table I.

Note that we do not use “HOLD” as a signal. Generally,
its presence reduces the number of trades and, thereby, lowers
the trading fee. However, this way the time of position hold
increases, and, consequently, so do the financial risks. In our
work, we use a simplified algorithm, and we focus on exiting
the position as fast as possible.

TABLE I. TRADING ACTION ON SIGNAL

Current position Signal Next position Trading action

Out of position BUY Long Buy stock

Out of position SELL Short Sell stock

Long BUY Long Hold

Long SELL Out of position Sell stock

Short BUY Out of position Buy stock

Short SELL Short Hold

III. GENETIC ALGORITHM

We use a genetic algorithm for determining the best tree.
All evolutionary steps are involved.

A. Initialization

The initial population is generated randomly with a preset
offspring size. Every node is constructed by selecting a random
indicator and associating it with a random level. After that,
its offspring is created and so on. The height of the tree is
determined by the number of indicators available. After this
height has been reached, generation of non-terminal nodes is
halted by creation of random leaf nodes.

B. Selection

The individuals that fit the most are selected for the so-
called next generation, which is created with the purpose of
further tree modification by genetic operators. This selection
is performed via roulette wheel selection. For the each tree the
probability of being chosen is:

pi =
fi∑n

j=1 fj
, (1)

where fi is the fitness function of the Ti tree.

C. Fitness function

The objective function is calculated via trading simulation
using historical data. It presents the profit margin as a percent-
age.

fi = (
FinalBalance

StartBalance
− 1) ∗ 100, (2)

where StartBalance is the amount of money in the beginning
of the simulation, and FinalBalance is the amount of money
at the end. It should be noted, that total stock return, except
any dividends paid, has the same value. Therefore, we make
assumptions that fi and return are equal.

D. Genetic Operators

Here, the genetic operators are constructed by analogy with
the paper [13]. They include the crossover operator and the mu-
tation operator. Because of these two operations, the principles
of inheritance and self-adaptivity can be achieved. Considering
the specifics of tree data structures, these operations are based
upon both terminal and non-terminal node manipulations.

The crossover operator takes an input of two parent trees
that are chosen via roulette wheel selection with the probability
determined by the formula (1), and outputs two offspring trees
that are members of the next generation. These offspring trees,
in their turn, are created by choosing a random node in both
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Fig. 2. Crossover operator

parent trees and swapping subtrees starting from these nodes.
The mutation operator is a unary operator. It is intended for
protecting the generation (presented as a set of trees) from
premature convergence. It is based on the same approach as
the crossover operator, which is selecting and swapping two
random nodes in the tree. It is worth noting that the nodes do
not have to be of the same type.

Fig. 3. Mutation operator

Removing excess nodes is an important step after using
these operators. In terms of mathematical logic it can be inter-
preted as removal of redundant disjuncts. A typical example
of such redundancy is presented in Fig. 4. When visiting node
IND1 is LOW, we already know that the predicate is false,
because we have transitioned to this node from IND1 is HIGH.
Excess node removal is performed via replacing nodes. In this
case, the true-way of the root node will link to the false-way
of the IND1 is LOW node. After creating a new generation,
the excess node removal algorithm 2 is run for each tree that
had been modified by crossover or mutation. As the result, a
tree either retains its structure, or, if an unnecessary predicate is
found in a node, nodes are replaced according to the algorithm
below. The output is an optimized tree that works the same way
as the original one.

Algorithm 2 Tree optimization algorithm

Input: T - decision tree
Output: Optimized tree
for node in T do
for rch in node.RightChild do
if (rch.Index = node.Index) then
if (rch.V alue = node.value) then
rch = rch.Right

else
rch = rch.Left

end if
end if

end for
for lch in node.LeftChild do
if (lch.Index = node.Index
and lch.V alue = node.V alue) then
lch = rch.Left
end if

end for
end for
return T

This algorithm is based on traversing the tree and searching
for nodes that do not influence the result. In this case Index
is the name of the indicator, V alue is its value, LeftChild
and RightChild are its offsprings.

This kind of an algorithm may seem quite time-consuming
at first, but in the process of calculating the fitness function
(the trading simulation), calculating redundant predicates can
drastically hinder the performance.

Fig. 4. Optimization process

E. General algorithm

Considering the aforementioned factors, we can now con-
struct a general algorithm:

• Step 1. Determining the parameters of the genetic
algorithm: n is the population size, m - population
part intended for the mutation operator, l - population
part intended for the crossover operator, p - the number
of generations.

• Step 2. Calculating the ranges for dividing indicator
values into levels (Subsection IV-F).

• Step 3. Generating the initial population. Calculation
of the objective function fi by the formula (2) for each
individual.
CurrentGen = 0

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 93 ----------------------------------------------------------------------------



• Step 4. Creating a new generation. Selecting the
survivors via roulette wheel selection.
CurrentGen = CurrentGen+ 1

• Step 5. Creating the offspring. Selecting the par-
ents via roulette wheel selection and generating the
offspring by the crossover operator. The number of
parents cannot exceed l% from the population.

• Step 6. Application of the mutation operator to ran-
domly selected m% of the population.

• Step 7. Calculating the fitness function fi for every
individual by formula (2).

• Step 8. Optimizing the trees obtained with crossover
and mutation. (Algorithm 2).

• Repeat steps 4-8 while CurrentGen < p.

The purpose of the developed genetic algorithm is finding the
best trading strategies for detecting the most efficient one at the
training stage. For the sake of simplicity, our system analyses
market close results and generates signals for the next trading
day. In other words, every day after the trading session has
closed the system decides whether to buy, sell or do nothing
with the stock.

IV. TRAINING

During training the system receives an input of trading
decision trees from the last generation of the general genetic
algorithm, evaluates their performance by certain metrics and
identifies the most efficient trading strategy for further forward-
testing. The best trading system will be selected for each stock.

A. Input Data

As the object of our research we have chosen stocks
of the five largest IT companies (Table II). The training
dataset includes the price data for the last 9 years (2007-
2015). Therefore, the selection of the best-trained trees was
performed on a set of 2268 signals.

TABLE II. IT COMPANIES

Company name Revenue (billions) Symbol
Apple Inc. $233.7 AAPL

Alphabet Inc. $74.99 GOOG

Amazon.com $107.0 AMZN

Microsoft $93.58 MSFT

IBM $82.46 IBM

B. Parameter settings

The main parameters of a genetic algorithm are the number
of generations and the number of individuals in a single gener-
ation. As these parameters increase, the quality of the decision
improves, but the total working time grows significantly. Thus,
it is necessary to select the optimal parameters in terms of the
return to working time ratio.

Average returns for each of the 5 stocks and working time
for 100, 200, 250 and 300 individuals are listed in Table III.
As you can see, the number of individuals being higher than
200 brings about minor fluctuations of returns. However, the

TABLE III. POPULATION METRICS

Size Average returns Average time
100 23.8% 177s

200 35.6 % 358s

250 36.2 452s

300 35.0 546s

TABLE IV. GENERATIONS WITH BEST RETURNS

Instrument Generation number
AMZN 19

AAPL 16

IBM 14

MSFT 21

GOOG 19

working time is increased significantly. In turn, Table IV lists
the experiments that used 25 generations for determining the
best indicator in terms of profit. Thus, the best decision is
reached in less than 20 generations in the majority of cases.
System parameters are listed in Table V.

It should be noted that the most labor-intensive operations
are the excess nodes removal algorithm (Algorithm 2) and the
indicator level calculation (Subsection IV-F). The time spent
downloading the price data and computing the statistics is not
included in the measurements.

C. Hardware and Software Setups

The setup used in our experiments:

• Python 2.7

• Intel® Core™ i5 2700 Mhz

• OS X Yosemite 10.10

• 8GB (DDR3) RAM

We used the pandas module for receiving, storing and pro-
cessing price data [16]. We also used the NumPy extension
for calculating indicator values since it is optimized for vector
computations [17].

D. Metrics

In addition to the main metric that is the return value,
the following metrics have been introduced for analyzing the
results:

1) Sharpe ratio is the indicator of strategy efficiency,
introduced by W.F. Sharpe [18]. It assesses the ratio
between profit and possible risk. It is calculated as
follows:

SharpeRatio =
rp −Rf

δ(x)
, (3)

where rp stands for average earnings, Rf is a risk-
free rate (e.g. a bank deposit) and δ(x) is the standard
deviation of the earnings.

TABLE V. PARAMETER SETTINGS

Parameter Value
Population size 200

Number of generations 20

Crossover rate 0.35

Mutation rate 0.05
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2) Maximum drawdown is the maximum balance de-
crease from its local maximum, expressed as a per-
centage. It allows to estimate the maximum capital
loss when working with a given strategy.

3) Profit/loss trades ratio.
4) Returns as a percentage is calculated by formula (2).

E. Indicators

Below we describe the indicators that the system uses for
its trading recommendations:

1) Relative strength index (RSI). This oscillator com-
pares the number of recent increases of the price
of the asset with the number of its decreases and
presents this information as a number from 0 to 100.
It is calculated as follows:

RSI = 100− 100

1 + U/D
, (4)

where U is the number of positive price changes, and
D is the number of negative price changes during the
considered period .

2) Stochastic oscillator (STO) shows a state of the
current price relative to the price range of a certain
period. It is a percentage which is calculated accord-
ing to the formula:

STOt =
Ct − Ln

Hn − Ln
· 100, (5)

where Ct is the current price, Ln is the lowest price
for the past n periods, and Hn is the highest price
for the past n periods.

3) Chaikin oscillator (CHO). It helps predict the behav-
ior of the Accumulation/Distribution indicator. This
indicator takes into account changes of price and trad-
ing volume. At first, the Accumulation/Distribution
(A/D) indicator is calculated:

A/Di =
(Close− Low)− (High− Close)

High− Low
×

×V olume−A/Di−1,
(6)

where A/Di - current day A/D value,
Close - closing price,
Low - minimum day price,
High - maximum day price,
V olume - trading volume for this day,
A/Di−1 - A/D indicator value for the previous day.

After that, the value of the oscillator is:

CHO = EMA(A/D, 3)− EMA(A/D, 10), (7)

where EMA(A/D, n) is a n-periodic exponential mov-
ing average of the A/D indicator.

F. Indicator levels

As mentioned earlier, the numerical values of the in-
dicator are divided into 5 levels from V ERY LOW to
V ERY HIGH . Ranges of data levels are calculated using
sliding time intervals. Each trading day d previous trading days

are reviewed and maximum and minimum values of a given
indicator are identified. These values determine the boundaries
of the general range. Further, this range is divided into 5
non-intersecting parts of the same size that are assigned the
names: VERY LOW, LOW, MEDIUM, HIGH, VERY HIGH. The
depth of the sliding time interval d identifies that period in the
past during which the dynamics of indicator behavior are still
essential for the current day. This depth is chosen empirically,
based on the specifics of the behavior of price of a particular
asset. For the sake of simplicity, in our study d is the duration
of training (in this case, 2268 trading days). It is obvious that
range calculation is separate for each indicator. For example,
the AMZN indicator ranges of the 251st trading day of 2016
are presented in Tables VI, VII, VIII.

TABLE VI. RSI RANGES

Level Range
VERY LOW < 0.200

LOW [0.200; 32.562)
MEDIUM [32.562; 64.924)

HIGH [64.924; 97.286)
VERY HIGH ≥ 97.286

TABLE VII. STOCHASTIC RANGES

Level Range
VERY LOW < 4.149

LOW [4.149; 36.078)
MEDIUM [36.078; 68.007)

HIGH [68.007; 99.937)
VERY HIGH ≥ 99.937

TABLE VIII. CHAIKIN RANGES

Level Range
VERY LOW < −49.076M

LOW [−49.076M; 252.943M)
MEDIUM [252.943M; 554.962M)

HIGH [554.962M; 856.981M)
VERY HIGH ≥ 856.981M

G. Output

After the end of the training process, we have obtained
the most efficient strategies for each stock. In every case the
Sharpe ratio is positive, except for AAPL, i.e. the profitability
of these strategies exceeds the risk-free variant. In two partic-
ular cases the Sharpe ratio is greater than one, which shows
the high efficiency of the investment portfolio (Fig. 5).

Max drawdown value stays within 10-30% with the excep-
tion of GOOG, for which it amounts to 55% (Fig. 6).

The profit/loss trades ratio is presented in Table IX.

TABLE IX. PROFIT/LOSS TRADES RATIO AFTER TRAINING

Symbol Profit trades Loss trades
AAPL 51.46% 48.54%

GOOG 57.83% 42.17%

AMZN 60.10% 39.90%

MSFT 60.05% 39.95%

IBM 54.79% 45.21%

In particular, the highest average number of profitable
trades was reached using the AMZN trading strategy presented
in Fig. 7. Total profit has also shown positive results. Return
values of the stocks are shown in Fig. 8.
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Fig. 5. Sharpe ratio after training

Fig. 6. Max drawdown after training

V. FORWARD TESTING

Forward testing is designed for a rough estimate of the
behavior of a formed strategy in real life. After each stock has
had the fittest trading strategy that was trained with the series
of prices from 2007-2015 selected for it, the strategy is then
tested on price data of the whole year of 2016. The results and
the profit differences are shown in Table X.

TABLE X. PROFITABILITY FOR THE UNTRAINED PERIOD

Symbol Returns Max drawdown Difference with
training

AAPL 11.1403% 6.6287 0.1058%

GOOG 3.7996% 5.2853 -53.3520%

AMZN 29.4216% 3.2461 10.7826%

MSFT 3.8532% 5.1864 -29.0845%

IBM 11.1735% 6.8542 -61.7575%

In the majority of cases “virtual” profitability degrades
dramatically. However, the strategies remained efficient. This
factor is represented by the value of the Sharpe ratio (Fig. 9).
Despite its worsening, in all cases it exceeds the rate of risk-
free return. Maximum drawdown values stayed within 7%.

Fig. 7. Sample profitable AMZN trading strategy

Fig. 8. Return values after training

VI. CONCLUSION AND FUTURE WORK

The advantages of our approach are:

1) The simplicity of the generated rules. Representing
a strategy as an understandable decision making
tree provides the simplicity of the realization of
mechanical trading systems. The resulting trees can
be interpreted as either logical formulae or rules for
a trading terminal.

2) Extensibility. The predicates in the rules do not
depend on absolute values, interpreting the real value
of an indicator as a level relative to the current
state (from V ERY LOW to V ERY HIGH). Simi-
lar rules can be applied to any indicators and datasets.
Most approaches so far do not possess this quality.

For a variety of instruments the presented algorithm shows
a low annual rate. It is obvious that the efficiency of the
constructed trading strategies depends on the set of technical
indicators and their parameters being used. It is necessary to
automate the selection of optimal indicator parameters, and
then research the applicability of other technical indicators.

There is also the problem of selecting the parameters of
the genetic algorithm itself, since right now they are chosen
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Fig. 9. Sharpe ratio for the untrained period

empirically. Moreover, it is necessary to investigate the influ-
ence of the fitness function selection on profit increase and
risk decrease of the resulting trading strategy.
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