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Abstract—Low-precision data types for embedded 
applications reduce the power consumption and enhance the 
price-performance ratio. Inconsistence between the specified 
accuracy of a designed filter or controller and an imprecise data 
type can be overcome using the -operator, an alternative to the 
traditional discrete-time z-operator. Though in many cases it 
significantly increases accuracy, sometimes it shows no advantage 
over the shift operator. So the problem of choice between delta 
and shift operator arises. Therefore, a study on -operator 
applicability bounds is needed to solve this problem and provide  

-operator efficient practical use. In this paper we introduce a 
concept of the -operator applicability criterion. The discrete 
system implementation technique with discrete-time operator 
choice is given for the low-precision machine arithmetic. 

I. INTRODUCTION 
The standard technique for the linear dynamical system 

hardware representation is the shift operator z. The design of 
z-systems is based on well-known discretization methods like 
bilinear transform or zero-pole matching and is fully 
formalized now. However, the use of low-precision arithmetic 
results in high round-off errors and may strongly affect the 
performance of the designed system. To increase the accuracy 
an engineer has to use longer data types. This lowers some 
other valuable properties of the system: the power 
consumption, the speed of calculations and the overall system 
cost [1]. If the chosen hardware is FPGA, system will require 
more LUT’s and DSP blocks. If the system is based on a 
microprocessor a more expensive and less power-efficient chip 
will be needed. 

The -operator was introduced [2] as an alternative to the 
shift operator. Zeros and poles of the -operator discrete-time 
system behave differently from those in the z-operator system 
and do not converge to 1 or 0 as the sample period decreases. 
Experiments have shown that the -operator may significantly 
enhance digital systems parameters. For example the paper [3] 
considers an implementation of an optimal sliding-mode 
control system with the -operator. The resulting system much 
rarely suffers from self-oscillations than the shift operator 
based system. A study [4] compares two implementations of 
PID-controllers, based on   z-operators respectively. It is 
shown that the difference equation coefficients for the - 
system are less affected by machine word length restrictions. 

Paper [5] describes the -operator LQR controller 
implementation. Custom data type with only five mantissa bits 
provided an accuracy compared to the shift operator-based 
LQR controller with the IEEE single floating point datatype. 

Though papers dedicated to -operator shows incessant 
interest to this mathematical tool over the years, the question 
about -operator applicability limits still has no exact answer. 
The problem is that -operator implementation requires some 
complication of the system but not every system converted 
from z to  domain shows the significant increase of accuracy. 

Known recommendations on the choice between z and -
operator are unsatisfactory fuzzy. In the most of studies, e.g. in 
papers [6], [7], the -operator is introduced without any 
specific methodic of application. Some other publications state 
that the operation frequency of the system should be 
considerably lower than the Nyquist frequency for the chosen 
sample rate. Early papers are full of optimism and predict total 
change of discretization operator paradigm [8] that did not 
happen in fact. Thus, the discrete operator choice technique is 
important to be developed. A technique for some special cases 
of dynamical systems was considered in early paper [9]. The 
present article generalizes some obtained results and presents a 
set of solutions for a discrete operator choice problem. Section 
II introduces the general concept of delta operator preference 
criterion. Section III reviews the roundoff error influence on 
discrete filter behavior. Section IV discusses the performance 
of different discrete filter types with normalized frequency. 
Section V presents an enhanced algorithm for discrete operator 
selection with an improved choice criterion. Finally, 
conclusions are presented in Section VI. 

II. THE CONCEPT OF DELTA OPERATOR PREFERENCE CRITERION 
Definition of the -operator is given in [10], [11]. Briefly, 

z s
def

sTe  determines the z-operator through Laplace operator s, 

then 1zdef
 defines -operator through z-operator. Symbol 

 denotes a certain coefficient that can be almost arbitrary 
number. The prime idea was to establish sT  i.e. sample 
period [10], later it was shown in [12] that the choice 

Nnn ,2  is often more feasible for hardware 
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implementation. To simplify the computations and for the 
floating-point implementation the value 1  is also 
acceptable. 

Conversion from z-domain to -domain can be performed 
through the algebraic transformation of coefficients using the 
general formula 
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for the denominator. Here 
m
l

 denotes binomial 

coefficients: 

!mlm!
l!=

m
l , 

,i ia  — denominator coefficients of z- and -system 
respectively, ,i ib — numerator coefficients, n  — system 
(section) order. 

The performance of two operators is illustrated by the 
following example. Assume an embedded hardware 
supporting single precision floating point numbers operations. 
Synthesize 2nd order low-pass elliptic filter with the following 
specs: passband ripple 410 dB, stopband attenuation 40 dB, 
normalized passband edge 0,03s  (case 1) and 002,0s  
(case 2). Frequency response errors for both operators 
compared to the double precision counterpart are plotted in 
Fig. 1. 
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In both cases mantissa has the length of 23 bits, but this is 
not sufficient for z-operator to show the same performance in 
the case 2 as in the case 1 while -system shows no loss of 
accuracy. Also, it is obvious that -operator is unnecessary in 
the case 1. The question is: under what conditions  the -
operator is  more precise than z? 

 
Fig. 1. Frequency response errors plots for z-operator and -operator 

The given example clearly shows that operator preference 
criterion depends on the normalized filter frequency. 
According to this observation, the generalized discrete 
operator choice algorithm is: 

1) Check the condition 1op   (operation frequency is 
considerably lower than the Nyquist frequency). If it is true, 
there may be a reason for -operator application. 

2) Find the value ||||/|||| EES z  where ||||  denotes a 

certain norm and , EEz  — frequency response error 

estimations. If *SS , where *S is specified level, the 

-operator is preferable for this system. Further we assume
1*S , which corresponds to the |||||||| EEz  case. 

Determination of the -operator preference regions allows 
to roughly estimate the -operator applicability for a certain 
discrete system at the initial design stage and can be useful in 
engineering. Moreover, from the mathematical point of view, 
this issue is of fundamental importance. The investigated 
regions provide a quantitative measure for the number of 
systems which are represented by means of the -operator  
more precisely comparing to the shift operator. This will 
clarify which cases of successful -operator application are a 
kind of engineering luck and which are reasonable. In paper 
[9] the given criterion was formulated in the following way. 
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Consider a discrete system with the state space matrix A . It 
has better accuracy in -domain with 97% probability when 
eigenvalues of A lie inside the P  region. On z-plane, the 

region P  has approximately elliptic shape with the center in 
the origin of coordinates and axles 15.1,66.0  — see Fig. 2. 
If the system has real eigenvalues then its preference region is 
the segment 0,66.0  on the real axis. 

 
Fig. 2. Delta operator preference region outlined with the white border on z-
plane. The black border outlines the unit circle 

However, described discrete operator choice criterion is 
not very convenient in practice especially when implementing 
systems described as transfer functions. Also paper [9] does 
not answer the question how much the desired criterion is 
influenced by selected data type. 

Following sections study the roundoff error with respect to 
the data and discrete operator type and define the condition 

1op  more strictly. 

III. THE ROUNDOFF ERROR IN FILTER COEFFICIENTS 
A computer representation error rE  of real number r  can 

be calculated as 

2
),

2
mod(][)( rrrrEr ,  (3) 

where  is the computer relative accuracy for number r  or 
smallest representable number, and square brackets denote the 
computer number. The main idea of formula (3) is that 
roundoff error appears when «superfluous» bits are truncated 
to fit mantissa length with ),mod(r  function. The maximal 
error ][rrEr  equals 

2
max r

r
E , 

because  ),mod(r  gives values on the interval )[0; . Notice 

that the error is equal to 0 in nodal points 
2

r . The 

described form of error can be illustrated through experimental 
data – see Fig. 3. For the given specification ]31;1[r , 

82  (8 bits for mantissa) values were taken. 

 

Fig. 3. Experimental estimation of a truncation error 

This experimental study shows that there is no dependence 
between mantissa length and discrete operator preference 
criterion. Strict proof is given below. 

Consider the following lemma. 

Frequency response error bounds lemma: denote 

a
b

a
bH

)(
)()( ,  — relative accuracy for number 0.5. Let 

0)(lim
0

H , as well as nominator and denominator 

0lim
0 bE , 0lim

0 aE  for both z- and -models. Then 

formulae for error upper bounds of z- and -models frequency 
response errors are valid: 

)sgn( 1.5|)(|
2)(5,1)(limsup

0 aa
AE z , (4) 

)sgn(1
)(2)(limsup

0 a
AE .  (5) 

Here and below E  — error estimation, )(HA  — exact 
frequency response. 

Proof of the lemma is based on the limit properties 

1lim
0

z ,    

0lim
0

,    

and further considering the particular cases for the 1st and 2nd 
order sections. Other orders are impractical because first and 

1 1.002 1.004 1.006 1.008 1.01

1

1.005

1.01

r

[r]

 

 

r
[r]

r

1 1.002 1.004 1.006 1.008 1.01
-2

-1

0

1

2
x 10

-3

E
r

r

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 48 ----------------------------------------------------------------------------



 
 

second order sections are common for linear systems 
implementation to avoid high round-off error in coefficient 
representation due to their wide range in high-order sections. 

Theorem 1. Let complex frequency response for the 
frequency  to be equal /)(H where ,  — 
complex values for nominator and denominator of system 
transfer function H ; similarly abH z /)( . Then when 

*,K , where *,K  — known real numbers, the 
value 

01 sup
sup

lim
E
E

S z  

does not depend on relative accuracy , i.e. on mantissa 
length of data type. 

Proof is based on the fact that estimations sup(E) contain 
 as a coefficient, and division operation cancels it. Consider 

four probable cases. 

1) Case 0lim,0)(
0 bEH  

When condition K  on account of  smallness is 

true, that ||)sgn( 1.5|| aaa , from where using (4) 

||
25.1limsup

0 a
Ez , 

and when *K  the formulation 1)sgn(1 a  is 
correct, then 

2limsup
0

AE . 

Therefore, 

AaaA
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Note, that the equation (6) does not depend on . 

2) Case 0lim,0
0 bEA  (case is representative e.g. for a 

notch filter). 

Because of the inaccuracy of computer representation the 
real response values 0,0 zAA . 

For the z-system 

||
2limsup

0 a
Ez , 

if zA , that is quite likely from the case conditions. 

For the -system 

2
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In the real system 02 , though 
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and does not depends on . 

3) Case 0lim,0
0 bEA , which is representative for low-

pass and high-pass filters, where numerators converge to 
integer numbers. Then 

||
5,1limsup

0 a
AEz , 

0limlimsup
00

AE , 

and equation 
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does not depend on . 

4) Case 0lim,0
0 bEA corresponds the trivial condition 

0H . 

Conclusions of proven theorem have practical importance. 

1) In most cases 5,1 , i.e. 
1a  differs from -2 by more 

than one least significant bit and 2a  differs from 1 also by 
more than one bit. Consequently, relations of upper bounds of 
z- and -system errors does not depend on  or data type. 
With data precision growth accuracy increases for the both z- 
and -model. Having  and T specified there is no reason to 
increase mantissa length for z-model if -model shows better 
performance on the same data type. 

2). When extremely high frequencies or extremely low-
precise data types are presented, i.e. 5,1 , -model 
preserves accuracy proportional to  

2suplim
0

AE , 
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and z-model error is commensurable to the frequency response 
magnitude making it practically unusable: 

3
1

0
1suplim AEz

. 

In these cases -operator makes possible to build discrete 
systems which cannot be implemented with usual techniques. 

IV. THE PERFORMANCE OF DIFFERENT FILTERS WITH 
NORMALIZED FREQUENCY 

Let us examine dependence of S and 1S  on cutoff 
frequency  for the 2nd order Butterworth lowpass filter 
implemented in 16-bit arithmetic. The feature of this filter type 
is exact definition of z-model numerator coefficients (they 
both converge to -1), so estimation 

5,1
5,1

1 a
S  

is of interest. We obtained the formula through division of (4) 
by (5) and common factors cancellation. 1S  estimation plot is 

shown on Fig. 4. Square sign notes the point 5,1a . One 

can see that when 5,1a  1S  decreases almost linearly as  

increases. When 5,1a  the plot is horizontal because 1S  

does not depend on . The general shape of 1S  

approximately replicates )()( EES z  but when 

5,1a  estimation of 1S  is overstating. Thus, estimation of

1S  helped us to investigate behavior of criterion S  but it 
could not be recommended for practical error evaluation. 

 

Fig. 4. S and 1S  dependence to cutoff frequency  

Fig. 5 represents the numerical error estimations for both 
operators. 

 

Fig. 5. The plot of zE  and E  

One can notice that in regions where -operator is 
generally better z-operator shows better accuracy for some  
values. Local maxima of -coefficients roundoff error and 
local minima of z-system error are located at these points. So 
variation of  or, similarly, sampling rate or the specified 
cutoff frequency of the filter should be taken into account for 
development of the efficient discrete system synthesis 
algorithm. 

Some experiments were performed to find * values for 
different 2nd order filter types. Denote complex conjugate 
poles of the discrete system as jr12  (obviously, it 
depends on ). It is found that value 

)(1)(1)( 21 rrR  can serve as another -operator 
preference criterion. When 6.0R  filter implementation with 
-operator shows better precision with probability of 95%. Fig. 

6 represents this graphically. 

 
Fig. 6. R( ) riterion for different filter types 

However, this criterion is not applicable in general case of 
transfer functions with undefined cutoff frequency. 
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V. ENHANCED ALGORITHM FOR DISCRETE OPERATOR  
SELECTION  

To visualize general -operator preference criterion we 
consider value  

E
zE

E  

for systems obtained as a discrete transform of continuous 
systems with two complex conjugate poles 2,1 jr  and 
transfer function 

2
1 2

1( )H s
s a s a

. 

Using Tustin transform find )(zH  and then )(H . 
Coefficients are normalized in such a way that 1 remains a 
leading order variable held constant. Then a mantissa length 
was decreased to 8 bits (according to theorem 1, data type 
does not affect value S , so width was chosen randomly), 
frequency responses were calculated on the interval ];0[  and 
compared with double precision system frequency  
response. 

As a result the surface ),( TTS  under the complex plane 
);( TT  was built, where T  denotes sampling time. In Fig. 7 

the preference region bound line separates the level 1S . The 
points on the complex plane correspond to the values 1S  
and determine the desired -operator preference region. One 
observation makes -operator preference criterion very simple: 
the most valuable part of the region is located inside the unit 
circle 1)()( 22 TT  with center in the origin. Statistical 
nature of the criterion admits this assumption. 

 

Fig. 7. Delta operator preference region on the complex continuous plane 

Thus, an enhanced operator selection algorithm follows: 

1) Decompose continuous system into second order 
sections. 

2) Check the characteristic polynomial roots to be inside  
preference region S . If this condition is satisfied, -
operator must be chosen. 

3) If sampling frequency  variation is acceptable in 
certain neighborhood * , find the local minimum and 
maximum for criterion S . If 

max
min

1 S
S

, 

 -operator must be chosen, else z-operator. If precise value of 
S  is impossible to find (estimation of S  is calculated), then 
-operator must be chosen using condition 1S . 

Let us consider 2nd order low-pass elliptic filter with the 
following specs: passband ripple 410 dB, stopband attenuation 
40 dB, normalized passband edge 0.03cut  (case 1) and 

002.0cut  (case 2) with ),( TTS -criterion. Remind these 
specs from section 1 and formulae (1) and (2). Continuous 
filter equation using kHzf samp 1  with 0.03cut  is: 

632

62

1 107023.310709.2
107022.301.0)(

ss
ssH . 

The polynomial roots of filter denominator are 
ir 6.13705.13502,1 . The point 37.1,35.1  is not in 

the unit circle and z-operator is preferable. When 002.0cut  

422

42

2 106454.110806.1
10645.101.0)(

ss
ssH , 

denominator polynomial roots are ir 372.9103.902,1 , 
and 091.0,09.0  indicates that system will have better 
performance with -operator. These results completely 
conform to data from section 1. 

 

 

Fig. 8. Logarithmic error relation S10log  and unit circle criterion  
response 
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For the study extension filters from section 4 were 
implemented in floating-point arithmetic using z- and 
-operator. Fig.8 illustrates some of the highpass filters tests. 

One can see the correspondence of two plots (a) and (b): 
criterion steps off near the points where S10log  lines cross 
zero line the first time. This matches frequencies where 
-systems start to lose their advantage over z-systems. 

VI. CONCLUSION 
We investigated the influence of normalized cutoff 

frequency , filter type and machine arithmetic precision on 
discrete dynamical models accuracy when implementing 
models with z- and -operators. It was found that there always 
exists a specific cutoff frequency  < * where -operator 
model becomes more precise than z-model regardless to data 
type. Though this enhancement may not be very appreciable in 
absolute values, e.g. the magnitude error of frequency 
response 510 for z-model and 810  for -model, when low-
precision data representation is used such thousandfold 
superiority significantly increases accuracy. We proposed a 
simple criterion to answer the question which discrete operator 
is preferable for a given continuous model and discretization 
time. This criterion was examined experimentally on a set of 
IIR filters. The research of obtained z/ -models showed that in 
a most cases proposed choice criterion is valid. Future work 
will be dedicated to the development of the best fixed-point 
scaling technique for -models. 
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