
Syntax Description Synthesis
Using Gradient Boosted Trees

Arseny Astashkin, Kirill Chuvilin
Moscow Institute of Physics and Technology (State University), Moscow, Russia

Institute of Computing for Physics and Technology, Protvino, Russia

arseniy.astashkin@phystech.edu, kirill@chuvilin.pro

Abstract—The article considers partially formalized text doc-
uments. For such documents, it is not possible to construct a
formal grammar. Therefore, an external syntax description is used
to build the syntax tree. The problem is the high labor intensity
and the high professional requirements for manual preparation of
such descriptions. It is proposed to use machine learning methods
to automate this process. The training set is composed using
the documents with known syntax description. Each document
is represented as a syntax tree using the TEXnous parser. Each
node of these trees represents a syntax element, and the set of
nodes forms the training set. A way of a single syntax element
description is proposed so that a formal description of the syntax
elements constitutes the space of classes. In the article, this space
is limited to the set of parser modes used during the documents
analysis. A set of scientific articles is used for the experiments.
XGBoost implementation of gradient boosted trees is chosen for
result classification problem.

I. INTRODUCTION

Text files are broadly applicable in the modern information
technologies: data storage and transmission (XML, JSON),
data viewing (HTML, CSS, Markdown, BBCode, Textile), data
processing (C/C++, Python, JavaScript, Cnumber of and many
other programming languages). The contents of such files are
structured with a special markup.

Data of each type is described by the own way of markup.
It is necessary to know the rules of such markup to understand
what information is contained in files. Usually, these rules are
called the format or the (computer) language. Examples are
the programming languages, markup languages, specification
languages, etc. The format is responsible for the way of data
pieces are arranged and shaped and for the information of text
document source elements.

But the syntax (or grammar) of language must be somehow
described too. It often allows a relatively large amount of
possible structures that nevertheless consist of repeating units.
Because of this specificity, it is feasible to describe the struc-
ture of some blocks via other using a valid recursion. This ap-
proach is the basis for formal systems of syntax determination
such as Backus — Naur Form (BNF) [1], extended Backus —
Naur Form (EBNF) [2], the syntax diagrams [3]. The BNF and
the EBNF describe grammar using text structures, the syntax
diagrams are a visual interpretation of the EBNF.

The presence of a formal grammar for a language allows
one not only to get a standardized file format but also to
automate the process of analyzing them. The items describing
the grammar are called syntax elements. The set of syntax
elements is the syntax description.

In this research, a text document is called structured text
document if an abstract syntax tree can be built for it. The
document analysis involves the construction of such a tree.
The algorithm, which builds a syntax tree for a structured text
document, is called parser. It turns out that a formal grammar
allows to automatically build a parser [4].

However, there are relevant types of text documents that are
not completely formalized. We call them partially formalized
text documents. In general, the problem can be formulated as
follows: a full formal grammar for partially formalized docu-
ments cannot be constructed [5]. It means both the absence
of strict standardization and the inability to build a parser
automatically by known methods.

II. BACKGROUND

A. Parsing problems of LATEX documents

Examples of partially formalized text documents are files
in the LATEX format, the motivation to research the parsing
process of which is described in detail in work [6]. All the
source code of a file consists of blocks; each block may be
a symbol, a command or an environment. The structure of
the documents used in this work, described in more detail in
section II-B. The following four facts are the source of the
parsing problem for LATEX documents.

1) The signature of LATEX commands and symbols isn’t
defined in general terms. The number of parameters
and the methods for separating parameters for differ-
ent commands may differ notably.

2) The signature and the set of commands and symbols
are both defined by the style files. LATEX style files
may contain formatting and design rules, overdeter-
mined symbols, commands and environments.

3) The signature and the set of available commands and
symbols both are determined by context.

4) TEX does not imply that any syntax tree exists. LATEX
is the most popular package of macro extensions for
TEX and TEX is a computer typesetting system devel-
oped by Donald Knuth [7], [8]. TEX provides tools
for structuring and decoration of texts, but only LATEX
appends commands and environments that together
can form an abstract syntax tree. LATEX-documents
accept “pure” TEX fragments, but such precedents
are mostly exceptions and must be moved to the
style file if the markup is qualitative. In this study,
such fragments of source code can be interpreted as
a separate terminal nodes of the syntax tree.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

The most common way of LATEX documents processing is
the using of compilers: latex, pdflatex, tex4ht, etc.
This approach means the sequential analysis of the source
code according to the rules of the compiler. But this loses
information about the overall structure of a document, since
the TEX compiler does not imply that the syntax tree exists. The
construction of syntax trees for LATEX documents is necessary
to solve a number of problems. This is the most fully illustrated
in the research [9].

The research related to the parsing of LATEX documents
was already done and there are several implementations: on
Python — plasTEX [10], on Perl — LATEX::Parser [11], on
Java — SnuggleTEX [12], on JavaScript — TEXnous [13].
LATEX::Parser and SnuggleTEX deal only with the defined sets
of macros so they can process only special documents. This is
not acceptable for the problems stated in [6] since different
publishers have different styles and significantly different
macro sets. Due to the peculiar properties of the format
analysis, there is a need to external resources. plasTEX and
TEXnous deal with it. Taking into account the abilities of the
result syntax tree postprocessing, we select TEXnous parser
which produces lexeme type (the logical sense) for each tree
node. This feature makes possible the intelligent mining for
the task of automatic correction [9].

TEXnous data structures and algorithms are fully covered
by [6]. In this section, we give the observation of the parts
carefully dealing with syntax elements: the structure of a
document and the way of an item description. Such kind data
along with a document source are used by the parser to build
the syntax tree. Each node of the tree corresponds to one of
the syntax elements.

B. Structure of a LATEX document

This section describes how the documents in the LATEX
format are perceived in this work. It is well-established heuris-
tics allowing to formalize the syntax tree notion for such
documents. It must be said automating that comments are
allowed in the LATEX source code as string parts starting with
not escaped %. It is assumed that they are removed during the
preprocessing.

LATEX symbol is a set of consecutive characters. A symbol
could be a terminal or contain parameters. Typical representa-
tives of terminal symbols are numbers and letters. Dash symbol
’’--- is also a terminal. An example of a symbol with

a parameter is an equation in $$#1$$ notation. Here #1 is

the parameter meaning the equation body in this case.

The space symbol should be noted separately. It is equiv-
alent to any number of contiguous space or tab characters
and, perhaps, a newline character. If the set of consecutive
whitespace characters have more than one newline characters,
this set is equivalent to a set of two line breaks and is perceived
as a symbol of the paragraph separator. It is the well-known
specificity of a LATEX publishing system.

A LATEX command is a character sequence of the form
\command_name pattern. Required command_name
part must be a sequence of letters, which can end with an
asterisk. Optional pattern part has the same format as

LATEX symbol and can also contain parameters. An example of
a command that is used to highlight text in bold: \textbf#1.

LATEX environment is a sequence of characters of the form:
\begin{environment_name}begin_command_pattern
environment_body
\end{environment_name}end_command_pattern.
environment name has the same format as command_name. It is
generally accepted for the documents in the LATEX format
that all the input content is placed inside the document
environment.

Regardless of its nature (symbol, command or environ-
ment), each block has a purpose (logical sense), which is called
the lexeme type.

Taking the logical sense of elements into account is im-
portant not only in the subsequent intellectual analysis of files
but also is used for parsing.

The context is also determined by the parser state. This
is similar to the behavior of the TEX compiler depending on
active modes. Supported modes are shown in Table I.

TABLE I. LATEX MODES

Mode Comment
LIST in a list of items
MATH in a mathematical expression
PICTURE in the description of an image
TABLE in a tabular
TEXT plain text (default)
VERTICAL between paragraphs

Modes can be changed anywhere in the document individu-
ally or in groups. Besides, a group of local mode determination
can be started. The modes will be restored to the values before
the group after the group is ended.

C. Description of syntax elements

This section covers the data structures of the syntax de-
scription and contains examples of syntax element representa-
tions with JSON format.

Operation is an operation on the LATEX state.

• directive is the action directive: BEGIN or END.

• operand is LATEX mode or GROUP (group of local
mode definitions).

An operation describes the process of modes change. BEGIN
means the activation of a mode, END means deactivation.

Parameter is a symbol or a command parameter descrip-
tion.

• lexeme is the lexeme type (logical sense), optional.

• modes are the modes where the parameter is defined.

• operations are the operations performed before
the parameter.

Symbol is a LATEX symbol description.

• lexeme is the lexeme type (logical sense).

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 33 --

• modes are the modes where the symbol is defined.

• operations are the operations performed after the
symbol.

• parameters are the parameter descriptions.

• pattern is the LATEX pattern.

Pattern describes the symbol signature, where #
parameter_index defines the parameter position,
and other characters correspond to the document source.
A JSON example of the inline equation symbol description:

{
"pattern": "$#1$",
"lexeme": "INLINE_EQUATION",
"modes": ["TEXT"],
"parameters": [{

"operations": [{
"directive": "BEGIN",
"operand": "MATH"
}]

}],
"operations": [{

"directive": "END",
"operand": "MATH"

}]
}.

Command is a LATEX command description.

• lexeme is the lexeme type (logical sense).

• modes are the modes where the command is defined.

• operations are the operations performed after the
command.

• parameters are the parameter descriptions.

• pattern is the LATEX pattern.

• name is the name of the command.

It differs from the symbol description only by the added name
property. A JSON example of the two author information
commands with the same name but different parameters:

{
"name": "author",
"pattern": "[#1]#2",
"lexeme": "TAG",
"modes": ["TEXT"],
"parameters": [{ }, { }]

},
{

"name": "author",
"pattern": "\#1",
"lexeme": "TAG",
"modes": ["TEXT"],
"parameters": [{ }],

}.

Environment is a LATEX environment description.

• lexeme is the lexeme type (logical sense).

• modes are the modes where the environment is de-
fined.

• name is the name of the environment.

A JSON example of the horizontal center alignment environ-
ment:

{
"name": "center",
"lexeme": "WRAPPER",
"modes": ["TEXT"]

}.

This way of describing the style elements is easy to
understand: it does not require programming skills or deep
knowledge of the formal language theory. The knowledge of
the valid syntax for symbols and commands and the under-
standing of element logical senses is enough. At the same time,
this method is quite flexible since it allows to describe not only
the syntax structures but also to define the meta information
(LATEX modes, lexeme types) to manage the context, Besides,
the set of the descriptions is not fixed and can be modified on
the replacing or the adding of a style file.

D. The problem

The sets of available LATEX characters, commands and
environments are defined by the style files. So the general
approach to parsing the documents must take into account the
descriptions of style elements. The task of the information ex-
traction from the style files source code is extremely nontrivial
and is comparable, if not superior to, the complexity of the
TEX compiler implementation. Therefore, externally generated
descriptions of the style elements are used.

Thus, there is a problem of syntax description synthesis. It
is really actual, because the signature sets and syntax elements
vary considerably from one publisher to another, and there
are hundreds of elements in each set. At the moment there
is no technology that allows automating the process, and the
work of professional is required to create a qualitative syntax
description. On the other hand, the variety of syntax element
roles is not giant. These create prerequisites for the automation
of the syntax description synthesis process.

III. MACHINE LEARNING APPROACH

We propose to generate new syntax descriptions on the
base of existing and the source code of documents set. Here
is the formal statement of the problem.
Given:

• S0 — a syntax description,

• D0 — a set documents that use S0 elements,

• D — a set of documents that use elements of unknown
syntax description S.

Required: syntax description S.

The training set is formed by S0 and D0. We build a syntax
tree for each document of D0. The correspondence of the
nodes of these trees with elements of S0 allows describing

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 34 --

every syntax element with a set of features. The process
of constructing the feature space is described in detail in
section III-B.

Then we generate a feature vector for each node; after
encoding it to satisfy requirements of chosen machine learning
algorithms. The model training and choice at the section IV.

A. Workflow

Here, we consider the workflow shown on Fig. 1 to deal
with the problem described above. Source LATEX documents
are parsed using TEXnous and predefined LATEX styles to create
an abstract syntax tree for each document. Then, we train a
classifier which assigns to each node of the tree a mode. After,
the trained classifier is used to distinguish mode change in new
documents for which we do not know full style description
and, therefore, modes of the nodes and their switches.

Known
LATEX

documents

Known
LATEX
style

New
LATEX

documents

Parsing
Model
training

Partial
parsing

LATEX
AST

Classification
model

Partial
LATEX
AST

Classification

New
LATEX
style

Fig. 1. Proposed workflow

B. Feature space

We use the set of IDP-8 conference articles which consists
of 84 LATEX source files and generate a description for 124 000
documents nodes with the aim to predict mode factor for each
entity [14].

There are 37 proposed handmade features described in
Table II. The LATEX node description consists of children nodes
structure, its lexeme, pattern types, token types, children nodes
and some structured characteristics such as brackets and space
prefix flags. Some of them are categorical so that we have
examined different encoding ways in order to apply machine
learning models and came up with the following encoding
types for each categorical value (see Table. IV) based on the

quality of the prediction and number of values for a particular
feature.

The target variable, the mode itself, could be equal to one
of the values from Table. I, the most important for a syntax
tree generation are TEXT, MATH, because they are the most fre-
quently switched and form building blocks for other structured
modes. Other complex options like TABLE_MATH_TEXT or
LIST_MATH_TEXT (see Table. III) are special cases which
should be handled differently in our approach. And despite
we focus primarily on distinguishing TEXT and MATH modes
which together cover all the possible cases, it is also important
to distinguish nested modes.

TABLE II. PROPOSED FEATURES

Feature name
number of children with BINARY_OPERATOR lexeme

number of children with BRACKETS lexeme

number of children with CAPTION lexeme

number of children with CELL_SEPARATOR lexeme

number of children with CHAR lexeme

number of children with DIGIT lexeme

number of children with DISPLAY_EQUATION lexeme

number of children with FLOATING_BOX lexeme

number of children with GRAPHICS lexeme

number of children with HEADING lexeme

number of children with INLINE_EQUATION lexeme

number of children with LABEL lexeme

number of children with LENGTH lexeme

number of children with LETTER lexeme

number of children with LINE_BREAK lexeme

number of children with LIST_ITEM lexeme

number of children with NUMBER lexeme

number of children with PARAGRAPH_SEPARATOR lexeme

number of children with POST_OPERATOR lexeme

number of children with PRE_OPERATOR lexeme

number of children with PUNCTUATION lexeme

number of children with RAW lexeme

number of children with SPACE lexeme

number of children with SUBSCRIPT lexeme

number of children with SUPERSCRIPT lexeme

number of children with TABLE lexeme

number of children with TABULAR_PARAMETERS lexeme

number of children with TAG lexeme

number of children with URL lexeme

number of children with VERTICAL_SKIP lexeme

number of children with WRAPPER lexeme

number of children with CommandToken token type

number of children with EnvironmentBodyToken token type

number of children with EnvironmentToken token type

number of children with ParameterToken token type

number of children with SourceToken token type

number of children with SpaceToken token type

number of children with SymbolToken token type

brackets flag

space prefix flag

lexeme

number of children entities

pattern

token type

C. Feature encoding

There are features described in Table II, which have cat-
egorical values. We have examined different encoding ways
described below in order to apply machine learning models
which can not deal with such type of input data.

The purpose of an encoding is to provide a flexible way
to recode the values in continuous and categorical predictor
variables into discrete categories and to assign to each category
a unique value.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 35 --

TABLE III. POSSIBLE VALUES FOR LIST OF LATEX MODES PROPERTY

Mode Value
MATH
TEXT
LIST_TEXT
LIST_MATH
TABLE_TEXT
TABLE_MATH
TABLE_MATH_TEXT
LIST_MATH_TEXT

1) Weight of evidence encoding:
Weight of Evidence (WoE) recoding is conducted in
a manner that will produce the largest differences
between the encoded groups with respect to the
Weight-of-Evidence values [15]

WoE(i, ai) = ln

(
(NMATH(i, ai) + 0.5)/NMATH

(NTEXT(i, ai) + 0.5)/NTEXT

)

where NTEXT and NMATH are the numbers of objects
corresponding to TEXT and MATH classes in a whole
dataset and NMATH(i) and NTEXT(i) are the numbers
of objects in a training subset, which elements have
ai value of ith feature.

2) Label encoding:
Using label encoding, we assign to each unique value
of a categorical feature a unique number so that
a model interprets a feature value as a real variable.

3) One-hot encoding:
Each categorical value of a feature becomes a new
binary factor in a new feature space.

TABLE IV. CATEGORICAL FEATURES ENCODING

Feature Name Encoding Type
brackets flag One-Hot

space prefix flag One-Hot

lexeme One-Hot

token type One-Hot

pattern Label

IV. MODEL SELECTION

A. Methods overview

Let us consider a supervised machine learning formulation
of the task proposed at the beginning.X are objects in a feature
space and Y are labels for these objects. We are creating a
training set of objects {xi}N

i=l ∈ X for them their true labels
{yi}N

i=l are known. The goal is to create an algorithm or a
model h(x, a) ∈ H : X → Y , where a ∈ A is a vector of
parameters, that can make right prediction y ∈ Y for new and
unseen object x ∈ X . It is done by minimizing an empirical
risk function Q.

Q(h,X, y) =
1

N

N∑
i=1

L(h(x), y)

We have tested a couple of popular approaches and models,
which are applied to classification problems. The most accurate

results are achieved with an approach based on gradient
boosted decision trees [16], [17].

Another popular classification model, which we consider, is
based on flexible non-linear predictor, Kernel SVM. In partic-
ular, it can model interactions when used with the polynomial
kernel [18]. As a downside, it scales at least quadratically with
the dataset size [19] and overfits on highly sparse data.

As a result, we choose xgboost implementation of gradient
boosting models [20]. There are a lot of successful cases,
where the efficiency of this implementation and approach itself
was proven by many data science competitions based on real
world data [21], [22], [23], [24].

Boosting algorithms are trying to find an ensemble of
classifiers in the following form:

FM (x) =
M∑
i=1

bmh(x, am), bm ∈ R, am ∈ A

in a greedy way, i.e.

Fm(x) = Fm1(x) + bmh(x, am), bm ∈ R, am ∈ A.

In our case, A is a family of decision tree classifiers.

Q =
1

N

N∑
i=1

L(yi, Fm(xi))→ min
{{ai}Mi=1,{bi}Mi=1}

Where L is a loss function, which helps to maximize
margin and we want to minimize empirical error function Q.

The idea behind the algorithm is to assemble weak classi-
fiers into more powerful ensemble model.

The pseudocode for the general version of the algorithm is
provided in Algorithm 1.

Algorithm 1 Gradient Boosting algorithm

Require: {{xi}N
i=1, {yi}N

i=1}.
Ensure: {{ai}M

i=1, {bi}M
i=1}.

1: F0(x) = train({{xi}N
i=1, {yi}N

i=1});
2: for i = 1, . . . ,M do
3: ∇Q =

[
∂L(yi,Fm−1)

∂Fm−1
(xi)

]N
i=1

;

4: ai = learn({{xi}N
i=1, {∇Qi}N

i=1});
5: bi = argminb∈R

∑N
i=1 L(Fm−1(xi) + bh(xi, am));

6: Fm(x) = Fm−1(x) + bmh(x, am);
7: end for

B. Model research

The dataset was split into 70% training and 30% testing
subsets. The model was validated using stratified k-fold tech-
nique where train data was divided into k chunks. The model
was trained on k−1 chunks and validated on the last one after.
During the procedure, each fold is used once as a validation

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 36 --

Fig. 2. Decision Tree Classifier

0 50 100 150 200 250 300 350

#Iteration

0.03

0.04

0.05

0.06

0.07

0.08

A
cc
u
ra
cy

Train

Test

(a) Binary classification convergence rate

0 50 100 150 200 250 300 350

#Iteration

0.17

0.18

0.19

0.20

0.21

0.22

0.23

A
cc
u
ra
cy

Train

Test

(b) Multiclass classification convergence rate

Fig. 3. Convergence rates

so that the experiments are repeated k times. The final model
evaluation has been made on the test set.

Fig. 3 shows convergence and error rate achieved with
proposed parameters.

We have investigated the power of a single decision tree
applied to the considered problem. The results are pretty
interpretable; even one tree captures straightforward patterns.
For instance, at the trained tree decision visualization (see
Fig. 2), entities which in their description have LIST_ITEM
lexeme are referred to LIST_TEXT mode class. However,
only this factor does not help us to avoid confusion between
LIST_TEXT and LIST_MATH. Therefore, the entity feature
description should be expanded for more structured modes.

We gain some insights from the model about a strength of
proposed features using different metrics described at Table V,
which are based on a tree structure of our gradient boosting
model.

TABLE V. FEATURE IMPORTANCE METRICS

Metric Description
Gain The average gain of the feature when it is used in trees

Coverage The average coverage of a feature (how many elements a split
by a feature) when it is used in trees

Weight The number of times a feature is used to split the data across
all trees

Generated features show a strong correlation with predicted
modes classes (see Fig. 4); it is important to notice, that
for different metric significantly different sets of features
are dominating and most of them have the pretty intuitive
explanation of appearance in these lists. Further work is to
come up with even a better feature representation of LATEX
nodes.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 37 --

0 100 200 300 400 500 600 700 800 900

Feature importance

#77

#51

#32

#35

#11

#71

#43

#70

#67

#0

F
ea

tu
re

 I
D

794.83

743.57

518.04

408.81

372.25

289.35

203.79

138.44

94.02

91.63

(a) Gain: #77 – SymbolToken token type, #51 –
INLINE_EQUATION lexeme, #32 – children with
EnvironmentBodyToken token type, #35 – children with
SourceToken token type, #11 – children with LABEL lexeme,
#71 – CommandToken token type, #43 – BRACKETS lexeme,
#70 – WRAPPER lexeme, #67 – TAG lexeme, #0 – children with
BINARY_OPERATOR lexeme

0 200 400 600 800 1000 1200 1400

Feature importance

#37

#38

#36

#39

#13

#5

#31

#20

#0

#23

F
ea

tu
re

 I
D

1292

734

494

424

386

360

354

288

280

210

(b) Weight: #37 – children with SymbolToken token type, #38 –
children, #36 – children with SpaceToken token type, #39 – has
brackets, #13 – children with LETTER lexeme, #5 – children with
DIGIT lexeme, #31 – children with CommandToken token type,
#20 – children with PUNCTUATION lexeme, #0 – children with
BINARY_OPERATOR lexeme, #23 – children with SUBSCRIPT
lexeme

6000 8000 10000 12000 14000 16000 18000

Feature importance

#35

#32

#77

#51

#71

#11

#63

#47

#50

#64

F
ea

tu
re

 I
D

16510.73

15096.78

14473.98

12341.44

11585.5

8744.19

7775.33

7590.65

7463.02

6655.89

(c) Coverage: #35 – childrenwith SourceToken token type, #32 –
children with EnvironmentBodyToken token type, #77 – SymbolTo-
ken token type, #51 – INLINE_EQUATION lexeme, #71 – Com-
mandToken token type, #11 – children with LABEL lexeme, #63 –
SUBSCRIPT lexeme, #47 – DISPLAY_EQUATION lexeme, #50 –
HEADING lexeme, #64 – SUPERSCRIPT lexeme

Fig. 4. Feature importance analysis

C. Experiments

We apply proposed model for the target classification
problem to distinguish between TEXT and MATH mode labels.
The strong quality results are achieved – 96,5% accuracy – on
the test set. Other metrics can be seen at Table. VI. Sufficient
accuracy could be achieved using only a couple of decision
trees in the gradient boosting model, as convergence plot shows
(see Fig. 3a).

TABLE VI. CLASSIFICATION QUALITY

Entity type Precision Recall F-score Support
MATH 0.96 0.99 0.98 19884

TEXT 0.98 0.91 0.94 8839

avg / total 0.97 0.97 0.96 28683

MATH

TEXT

MATH TEXT

19665 179

736 8103

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 5. TEXT & MATH classification confusion matrix

In structured classification case, the classes are unbalanced
and intersected, but the diagonal clearly shows the potential of
the features and approach itself.

The model generalization for all intersected classes gives
the perspective result. The diagonal elements of confusion
matrix (see Fig. 6) show the potential of the features, but here
special approach and model tuning needed to take into account
highly unbalanced classes and its structured intersection. It can
be seen, that the model tends to assign labels from the most
considerable classes TEXT and MATH to LATEX nodes.

V. DISCUSSION

The described features could be used as a based description
for making a collaborative filtering [25] like model in order
to expand and generalize the task for generating unknown
values of any nodes features. Even solve so-called cold-
start problem [26] might be considered for reconstruction a
configuration for an unknown or new node. There are some
state-of-the-art techniques [27], which could deal with such
type of problems.

Another possible direction of the further research is an ap-
plication of structured classification models for nested modes
classes. Besides, we would like to propose and check the
following hypothesis: if a node label value is uniformly
distributed between two or more values from Table. I, then
a resulting mode should combine these values.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 38 --

LI
ST
M
AT
H

LI
ST
TE
X
T

M
AT
H

M
AT
H
TA
B
LE

M
AT
H
TA
B
LE
TE
X
T

TA
B
LE
TE
X
T

TE
X
T

LI
ST
M
AT
H

LI
ST
TE
X
T

M
AT
H

M
AT
H
TA
B
LE

M
AT
H
TA
B
LE
TE
X
T

TA
B
LE
TE
X
T

TE
X
T

8 0 782 0 0 2 2

0 925 665 0 0 2 678

8 1 19603 8 9 4 184

0 0 1089 62 8 0 31

0 0 1379 2 98 0 13

0 0 180 0 0 84 187

0 165 769 2 0 11 7892

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 6. Detailed classification confusion matrix

VI. CONCLUSION

In work described in this paper, we considered machine
learning approach for the mode property prediction of a LATEX
syntax tree element. We managed to achieve the desirable
quality of classification between the most frequently switched
modes MATH and TEXT (with 96,5% accuracy on training set),
thanks to the method based on gradient boosted decision trees.

Our research shows that the model and proposed features
have a high predictive ability. We see the potential to extend
this approach further in order to assemble self-learning LATEX
syntax analyzer.

ACKNOWLEDGMENT

This work was supported by the RFBR grants: 16-37-
60049, 16-07-01267.

REFERENCES

[1] Saul Rosens, Programming Systems and Languages. McGraw Hill
Computer Science Series. New York/NY: McGraw Hill, 1967. ISBN
0070537089.

[2] ISO/IEC 14977:1996. Information technology -- Syntactic metalan-
guage -- Extended BNF, Web: http://www.iso.org/iso/catalogue detail?
csnumber=26153.

[3] Syntax diagram — Wikipedia, Web: https://en.wikipedia.org/wiki/
Syntax diagram.

[4] Alfred Aho, Monica Lam, Ravi Sethi, Jeffrey Ullman, Compilers:
Principles, Techniques, and Tools (2nd Edition). Prentice Hall, 2006.

[5] K. V. Chuvilin, “Parametric approach to the construction of syntax trees
for partially formalized text documents”, Machine Learning and Data
Analysis, vol. 2, issue 2, 2016.

[6] K. V. Chuvilin, “The Construction of Syntax Trees Using External Data
for Partially Formalized Text Documents”, in Proceedings of the 19th
Conference of Open Innovations Association FRUCT, University of
Jyvaskyla, Jyvaskyla, Finland. ISSN 2305-7254, ISBN 978-952-68397-
5-2, pp. 16–23. Web: http://fruct.org/publications/fruct19/files/Chu.pdf.

[7] Donald Ervin Knuth, The TEXbook. Computers and Typesetting, A.
Reading, MA: Addison-Wesley, 1984. ISBN 0-201-13448-9.

[8] Leslie Lamport, LATEX: A document preparation system: User’s guide
and reference. illustrations by Duane Bibby (2nd ed.). Reading, Mass:
Addison-Wesley Professional, 1994. ISBN 0-201-52983-1.

[9] K. V. Chuvilin, “Machine Learning Approach to Automated Correction
of LATEX Documents”, in Proceedings of the 18th FRUCT & ISPIT
Conference, 18–22 April 2016, Technopark of ITMO University, Saint-
Petersburg, Russia. FRUCT Oy, Finland. ISSN 2305-7254, ISBN 978-
952-68397-3-8, pp. 33–40. Web: http://fruct.org/publications/fruct18/
files/Chu.pdf.

[10] plasTeX A Python Framework for Processing LaTeX Documents. Web:
http://plastex.sourceforge.net/plastex/index.html.

[11] Sven Heinicke / LaTeX-Parser-0.01 - http://search.cpan.org. Web: http:
//search.cpan.org/∼svenh/LaTeX-Parser-0.01/.

[12] SnuggleTeX - Overview & Features. Web: http://www2.ph.ed.ac.uk/
snuggletex/documentation/overview-and-features.html.

[13] texnous / latex-parser — Bitbucket. Web: https://bitbucket.org/texnous/
latex-parser/.

[14] Proceedings of the 8th International Conference “Intelligent Data
Processing”. Moscow: MAKS Press, 2010.

[15] N. Siddiqi, Credit Risk Scorecards: Developing and Implementing
Intelligent Credit Scoring, SAS Institute Inc, 2005.

[16] J. H. Friedman, Greedy Function Approximation: A Gradient Boosting
Machine Dept. of Statistics, Stanford University, IMS 1999 Reitz Lecture,
February 24, 1999. Web: https://statweb.stanford.edu/∼jhf/ftp/trebst.pdf.

[17] J. H. Friedman, Stochastic Gradient Boosting Dept. of Statistics, Stan-
ford University, March 26, 1999, Web: https://statweb.stanford.edu/∼jhf/
ftp/stobst.pdf.

[18] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers”, in Proceedings of the fifth annual workshop
on Computational learning theory, 1992, pp. 144–152.

[19] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, “Fast kernel classifiers
with online and active learning”, The Journal of Machine Learning
Research, 6:15791619, 2005.

[20] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting Sys-
tem”, in Proceeding KDD ’16 Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
13–17 August 2016, San Francisco, California, USA. ACM New York,
NY, USA. ISBN: 978-1-4503-4232-2, doi¿10.1145/2939672.2939785,
pp. 785–794. Web: https://arxiv.org/abs/1603.0275.

[21] V. Sandulescu and M. Chiru, 1st place of the KDD Cup 2016 compe-
tition, Web: https://arxiv.org/abs/1609.02728.

[22] O. Zhang, 1st place of the Avito Context Ad Clicks
competition, Web: http://blog.kaggle.com/2015/08/26/
avito-winners-interview-1st-place-owen-zhang/.

[23] M. Michailidis, M. Mller and H. J. van Veen, 1st place of the Dato
Truely Native? Competition, Web: http://blog.kaggle.com/2015/12/03/
dato-winners-interview-1st-place-mad-professors/.

[24] V. Mironov and A. Guschin, 1st place of the CERN LHCb experiment
Flavour of Physics competition, Web: http://blog.kaggle.com/2015/11/30/
flavour-of-physics-technical-write-up-1st-place-go-polar-bears/.

[25] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“Grouplens: an open architecture for collaborative filtering of netnews”,
in Proceedings of the 1994 ACM conference on Computer supported
cooperative work, ACM, 1994, pp. 175–186.

[26] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, “Methods
and metrics for cold-start recommendations”, in SIGIR ’02 Proceedings
of the 25th annual international ACM SIGIR conference on Research
and development in information retrieval, Tampere, Finland — Au-
gust 11–15, 2002. ACM New York, NY, USA. ISBN:1-58113-561-0,
doi¿10.1145/564376.564421, pp. 253–260.

[27] A. Fonarev, A. Mikhalev, P. Serdyukov, G. Gusev, and I. Oseledets,
“Efficient rectangular maximal-volume algorithm for rating elicitation in
collaborative filtering”, in press. Web: http://arxiv.org/abs/1610.04850.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 39 --

