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Abstract—This paper presents a method of identifying and 
classifying network anomalies using an artificial neural network 
for analyzing data gathered via Netflow protocol. Potential 
anomalies and their properties are described. We propose using a 
multilayer perceptron, trained with the backpropagation 
algorithm. We experiment both with datasets acquired from a 
real ISP monitoring system and with datasets modified to 
simulate the presence of anomalies; some Netflow records are 
modified to contain known patterns of several network attacks. 
We evaluate the viability of the approach by practical 
experimentation with various anomalies and iteration sizes.  

I. INTRODUCTION 
Information security of modern computer networks is a 

growing source of concerns. The need for tools capable of 
detecting the ever-increasing number of network attacks, 
viruses and other incidents continues to grow. There are 
methods of anomaly detection based on known signatures and 
metrics; while giving acceptable results and having a low false 
alarm rates, they are normally unable to detect a previously 
unknown attack or vectors of a virus spreading, which means 
such programs have to rely on databases being updated on a 
regular basis. 

Anomaly can be defined as a deviation from the normal 
behavior. An anomaly can be defined as "an event (or object) 
that differs from some standard or reference event, in excess of 
some threshold, in accordance with some similarity or distance 
metric on the event" [1]. Major sources of network anomalies 
are network attacks, hardware or software malfunctions and 
malware. Anomalies should be considered dangerous, as 
breaking or disabling one component of the network can lead 
to the entire network being compromised. Detecting – and 
classifying – an anomaly is an important step in preventing, or 
at least reducing, the potential damage caused by its 
occurrence. 

This article presents a method of detecting and classifying 
an anomaly using an artificial neural network that analyses 
data received with the Netflow protocol.  

The topic of using machine learning for intrusion and 
anomaly detection is a well researched one [2], [3]. As stated 
in [2], using neural networks and other means of adaptable 
systems for network monitoring presents a set of challenges, 
such as:  

• high cost of errors;

• difficulties of obtaining labeled data for specific kinds
of anomalies/attacks;

• semantic gap between results and their operational
interpretation;

• high variance in network’s behavior;

• difficulties in evaluating and verifying results.

Dealing with these problems is necessary to construct an 
effective anomaly detection system. One part of the solution is 
setting a narrower focus for the analysis program, such as 
limiting the scope of the network that is being monitored.  

Any network will change over time, as the new hardware 
gets installed, the new programs with different behavior 
patterns emerge, etc. Usage of a neural network allows the 
system to adapt to the gradual changes as it can adjust its 
weights to accommodate for the shifts in the behavior. 

Another problem of automated anomaly detection is the 
difficulty of obtaining proper training data and filtering the 
network noise. Usage of Netflow protocol allows countering 
some of these difficulties, as it provides vital information 
without overloading the system with too much data and thus 
has relatively small storage requirements [10]. 

The rest of the article is structured as follows: section II 
contains the overall design of the detection method; section III 
describes network anomalies and their typical properties; 
sections IV and V contain Netflow packet structure and the 
aggregation criteria; section VI shows the design and the 
training process of the neural network; sections VII presents 
the dataset acquisition methods and evaluation of the detection 
algorithm; finally, conclusions are drawn in section VIII. 

II. DESIGN

The detection system has the following capacities: 

1) Offline traffic analysis. With this type of analysis a
model of normal behavior for the network can be created. It 
also provides information about different anomalies. 
Implementation of offline analysis requires a dataset of normal 
network behavior for a certain period. 

2) Online traffic analysis. This is the primary mode for
the system. Data from the Netflow protocol is received, 
processed and stored by the system; different aspects of it are 
analyzed by an artificial neural network in real time. If an 
anomaly is detected, a warning will be issued along with a 
report containing information about the incident. 

Data aggregation allows the system to see patterns in the 
otherwise highly variable traffic properties. Netflow protocol 
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is used to receive information from the network devices, 
which is then filtered and aggregated based on a number of 
criteria such as number of packets per hour, average packet 
size, port usage. This data serves as an input to a neural 
network, which consists of three layers: input layer, hidden 
layer and output layer.  

The outputs of the neural network show if an anomaly is 
present. For every known anomaly the system is designed to 
detect, there is a neuron that shows the probability of that 
anomaly occurring. There is an additional neuron for an 
“unknown” anomaly, as well as one for a “normal” behavior. 

We discuss further details on the internal design of the 
neural network in section VI. 

III. NETWORK ANOMALIES 
Network anomaly is a situation when the network behaves 

differently from its established pattern. There are numerous 
reasons for anomalies to appear: 

• hardware malfunctions 

• unauthorized actions of the staff 

• intentional security breaches involving the staff 

• network attacks 

• virus infection process 

• "flash-crowd" behavior 

Anomalies will have different features depending on their 
source. For example, hardware malfunctions are likely to have 
distinct drops in incoming/outgoing traffic, as presented in 
Fig. 1. 

 
Fig. 1. An example of network anomaly: uplink hardware failure 

Another examples are the rising number of discarded 
packets, as shown in Fig. 2, and the result of GRE protocol 
being active in Fig. 3. 

While unauthorized actions and intentional security 
breaches might be detectable through traffic analysis, in this 
work we primarily focus on monitoring anomalies caused by 
network attacks, failures of hardware and changes in network 
behavior. 

 
Fig. 2. An example of network anomaly: abnormally high number of 
discarded packets 

 
Fig. 3. An example of network anomaly: GRE active 

The topic of network attacks has been researched 
extensively [4], [5]. We will give short descriptions along with 
identifiable properties of each anomaly we plan to detect. 

• DoS and DDoS attacks 

Denial of service attack aims to make an online service 
unavailable. It is usually carried out by overwhelming the 
target with superfluous requests, using multiple sources in case 
of a Distributed DoS. This type of attack is regarded as one of 
the most common. (D)DoS attacks often use minimal packet 
sizes, set an incorrect protocol number and use the same 
source/destination addresses. Targeted service experiences a 
noticeable increase of traffic flow and specific port number 
usage. There are multiple subtypes of this attack: UDP Flood, 
ICMP Ping Flood, SYN Flood, NTP Amplification etc. 

• Network scans 

Scanning attacks are performed by making multiple 
attempts to connect with different hosts in order to find ports 
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and addresses that are open for connections. This procedure 
can be performed by network administrators to check security 
levels, as well as by potential adversaries to find 
vulnerabilities. Network scans can be spotted by observing an 
increase in connections from a certain host, or from multiple 
hosts to one. Traffic generated by this type of attack is 
comparatively small. 

• Flash-crowd 

This anomaly can be mistaken for a DDoS attack. It 
happens when public’s interest towards a particular resource is 
significantly increased; an example of this is a release of long-
awaited program that a group of people rushes to download or 
access. One of the ways to distinguish this from DDoS is to 
look at the packet size, which should be noticeably higher 
compared to the actual attack. 

• ARP spoofing 

ARP spoofing involves sending falsified ARP (Address 
Resolution Protocol) messages over a local area network.  In 
their most basic form, ARP spoofing attacks are used to steal 
sensitive information. Beyond this, ARP spoofing attacks are 
often used to facilitate other attacks like DDoS attacks, session 
hijacking (granting attackers access to private systems and 
data) and man-in-the-middle attacks (intercepting and 
modifying the traffic between victims). Monitoring the 
network data should reveal an increase in number of packets 
with conflicting source address information. 

• Idle scan 

Idle scan is sometimes called a "stealth scan". The main 
difference from the network scan type of attack is the fact that 
the attacker does not need to send packets from his own IP 
address. Attack itself is performed from a number of "zombie" 
machines. Even though the target's intrusion detection systems 
might raise the alarm, the true direction is much harder to 
determine. The danger of this attack lies in the fact that it can 
produce a list of open ports from the "zombie" point of view; a 
list that basically exposes the relationship between hosts 
within the targeted network. 

Each of the mentioned anomalies has their own set of traits 
by which they can be recognized. In reality, however, it is 
often difficult to spot these among all the information noise 
within a network, not to mention that attackers constantly find 
new ways of performing malicious acts. As such, a detection 
system needs to be able to learn new patterns and identify 
them. 

IV. NETFLOW PROTOCOL 
Information volume that gets transferred in even a middle-

sized network is immense, and analyzing it all would be very 
resource consuming for a real-time intrusion detection system. 
Netflow protocol provides data about that information without 
actually storing the information itself, which is perfectly suited 
for the task. 

This protocol was initially developed by Cisco for packet 
switching and nowadays "efficiently provides a key set of 
services for IP applications, including network traffic 
accounting, usage-based network billing, network planning, 
security, Denial of Service monitoring capabilities, and 

network monitoring" [6]. It became a de-facto standard and is 
used widely on Cisco devices. There are similar protocols, 
most notably sFlow and IPFIX, however comparison between 
them beyond the scope of this article. 

Netflow uses UDP/SCTP protocols to transfer data from 
routers to special collectors. According to protocol description, 
all packets with the same source/destination IP address, 
source/destination ports, protocol interface and class of service 
are grouped into a flow and then packets and bytes are tallied 
[6]. Then these flows are bundled together and transported to 
the Netflow collector server. 

Most common version of Netflow is 5 [6]. The following 
information is used in analysis: 

• Source and destination addresses 

• Source and destination ports 

• Protocol type 

• Number of packets 

• Size of packets 

This data is used to: 

• aggregate the traffic by different criteria 

• determine the number of connections and transfers  

• spot the types of attacks that use specific ports 

• determine direction of the flows and usage of protocols 

V. AGGREGATION CRITERIA 
The following criteria were chosen based on the 

information provided by the Netflow protocol: 

1) Incoming/outgoing traffic volume for specific 
protocols. 

The traffic intensity changes throughout the day, week and 
month, as different types of users connect and disconnect from 
the network and perform various number of activities. A 
perfect detection system would therefore create the network’s 
model for all listed periods of time, however it is important to 
limit the scope of the system to a reasonable level [3]. As 
such, for the purposes of this work normal behavior model is 
assumed to be created for a period of one day. 

2) Usage of ports. 

Certain viruses are known to use a specific port to perform 
malicious actions (e.g. AckCmd – port 1054, WinHole – 1081 
[7]). A DDoS attack can also target a specific port. 

There is normally an increase in number of connections 
during an attack or spreading of a virus. Analyzing the port 
usage data might reveal these situations. One of the challenges 
here is distinguishing port scanning from other anomalies, 
since the former is not necessarily performed with malicious 
intents.  

3) Packet size. 

Viruses and attacks sometimes use specific packet sizes. As 
mentioned above, DDoS attack differs from "flash-crowd" 
behavior in packet size. It is common to use small packet size 
to increase the number of packets sent. A good example of 
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specific packet size is NTP Amplification attack, which 
requires a command of 234 bytes to be sent. 

4) Number of open connections. 

A virus tries to infect as many machines as it possibly can, 
and it does so by opening a large number of connections to 
different hosts. While Netflow protocol does not provide 
information on currently opened sessions, it is still possible to 
determine the relation between the number of connections and 
port numbers.  

6) Average traffic-to-host value. 

While this value will differ widely for various clients and 
hosts, certain patterns are still present. Analysis on this criteria 
can be done for a specific set of hosts in order to avoid a 
selection that is too difficult to establish a pattern on.  

VI. NEURAL NETWORK 
A. General design 

An artificial neural network consists of a number of 
computational units called "neurons". Neurons receive inputs 
and process them, obtaining output. Different functions, 
known as "activation functions", can be used for this 
calculation, ranging from linear to sigmoid and hyperbolic 
tangent functions. 

A typical artificial neural network has three layers – input, 
"hidden" and output. Second, hidden, layer makes network's 
behavior non-linear. The amount of neurons within that layer 
and the amount of hidden layers itself can be chosen with 
different techniques in mind and depends on the conditions of 
the task, however, for tasks without especially complex 
computations one layer is usually enough [8]. The amount of 
neurons can be an average between input and output neurons, 
but may be increased.  

The output layer has several neurons, one for each anomaly 
the system is going to be able to detect, plus one for an 
"unknown" anomaly and one for "normal" behavior. These 
neurons output values between 0 and 1, which are considered 
to be the probabilities of a relevant anomaly occurring. 

Each connection has a weight; neurons in the hidden and 
output layers have biases. Weights and biases are adjusted in 
order to reduce the overall output error in both the training and 
deployment.  

 

Fig. 4. A basic neural network structure 

Each neuron in the hidden and output layers has an 
activation function for producing non-linear output and 
propagating it forwards through the network. In this work we 
used a sigmoid function:  

 

where x is a sum of neuron's input xi with weights i and 
bias b: 

 

Sigmoid function is bounded, easily differentiable, 
monotonic, and produces a smooth output. Small changes in 
input coefficients (weights and bias) produce small changes in 
the output of the function, thus making precise tuning possible. 
Its output range is [0;1], which makes it useful in classification 
cases. 

For purposes of this work a neural network with 6 inputs, 
10 neurons in the hidden layer and 7 output neurons is chosen. 
Both output and hidden layer neurons use a sigmoid activation 
function. 

B. Training algorithm 

In order to train the network, we use the backpropagation 
algorithm [8]. The backpropagation algorithm uses the 
gradient descent  method to look for the minimum of the error 
function. A solution is thus the combination of weights that 
minimizes the error. 

First, the input information is presented to the network and 
propagated forward until it reaches the output layer. Then the 
desired and actual outputs are compared and the error for each 
output neuron is calculated. This error is propagated backward 
through the network, thus giving the error for each neuron in 
all hidden layers. Using these values, a backpropagation 
algorithm can update weights and biases. 

Initial weights of the network are selected at random. 
When input xi is presented to the network, it is propagated 
through the network, producing an output oi. The goal of the 
training algorithm is to make the output oi close or identical to 
the desired output ti for each input. This is done by minimizing 
the error function: 

 

First, the error signal in the output layer k is calculated: 

 

 (1) 

where  is a derivative of the activation function. For the 
output layer this derivative equals 1. 

The weights of the output layer are adjusted according to: 

 (2) 

where  is the input from a neuron in the previous layer 
(i.e. the output of the relative neuron in the hidden layer),  is 
the learning rate. This learning rate is typically a small number 
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(eg. 0.004), regulating the speed at which the weights are 
adjusted. Big learning rate values may cause the network’s 
outputs to oscillate around the target, thus never converging on 
a solution; small values might cause the learning process to be 
very slow. 

It is worth noting that the gradient descend method has a 
downside in that it might get “stuck” at the local minimum of 
the error function. In order to get over the “small hill” and 
continue moving towards a global minimum, we can modify 
the equation (2) as follows: 

 

where  is a momentum factor. The introduction of the 
momentum accelerates the learning process by keeping track 
of the previous changes, thus allowing the algorithm to move 
in larger steps. The faster movement prevents the network 
from settling in a local minimum by helping it move past the 
“hill”. 

The error signal for the nodes in hidden layer is calculated 
in a similar way to the output layer. 

 

where  is the weighted error signal. A derivative of 
the activation function for the hidden layer is: 

 

therefore 

 (3) 

Weights of the hidden layer are updated in the same way as 
the output’s: 

 

VII. DATASET AND EVALUATION

Section V presented a list of aggregation criteria. Data 
acquired through aggregation is used as an input to the 
artificial neural network. However, acquiring a good labeled 
dataset is quite a challenging task. In order to correctly train 
the network and not have it "overfit", the dataset should to be 
sufficiently large and diverse; it should include enough 
outliers for the network to be able to detect the patterns 
between the inputs and the desired outputs. 

For this work the data was collected from the local ISP 
network with several hundred L2 nodes for a period of one 
month. Dataset collected this way is considered to show 
"normal" behavior before any modifications are made. For 
testing purposes, several small-scale anomalies were created: 
DoS and DDoS attacks, port scans, email spamming and 
routers turning off. Data was then modified with the Flame 
tool, as suggested in [9]. 

Flows in the dataset were edited by adding and modifying 
Netflow records in order to simulate suspicious activity. 
Patterns of known anomalies were injected into the gathered 

data. The full list of anomalies added to the dataset is as 
follows: 

• DDoS UDP flood

• DDoS TCP flood

• Port scan

• Idle scan

• ARP spoofing

• "custom" anomaly

The "custom" anomaly was created to test the neural 
network's ability to spot an unknown class of anomalies. It 
consists of several random port/packet usage combinations, 
simulating the way some viruses work. 

Each anomaly in the dataset was labeled and fed into the 
neural network. Backpropagation algorithm adjusted the 
weights and biases each time the outputs classified an 
anomaly. This process was done for 150000 and 300000 
iterations with the learning factor  of 0.004. 

The outcomes for different anomalies can be seen in Table I 
for 150000 iterations and Table II for 300000 iterations.

TABLE I. CLASSIFICATION RESULTS AFTER 150000 ITERATIONS 

Type Accuracy Quantity in dataset 
DDoS UDP flood 0.87 10 
DDoS TCP flood 0.79 10 
Port scan 0.84 10 
Idle scan 0.76 8 
ARP spoofing 0.71 8 
custom 0.63 5
normal 0.95 -

TABLE II. CLASSIFICATION RESULTS AFTER 300000 ITERATIONS

Type Accuracy Quantity in dataset 
DDoS UDP flood 0.91 10 
DDoS TCP flood 0.85 10 
Port scan 0.96 10 
Idle scan 0.78 8 
ARP spoofing 0.83 8 
custom 0.85 5
normal 0.96 -

As we can see, the neural network shows promising results 
in detecting both known types of anomalies and new ones. It is 
also apparent that detection accuracy greatly depends on the 
quality of the training data and the number of learning 
iterations. 

Given the current configuration, a possible solution to 
improve the detection rates is to obtain a better represented 
dataset, as well as optimize the aggregation criteria. 

VIII. CONCLUSIONS

This paper presented a way of using an artificial neural 
network as an anomaly detection and classification tool. A 
Netflow protocol was used in order to obtain and process the 
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data, which was then aggregated based on several properties. 
The results show high percentages of successful identifications 
after a number of iterations. 

Further work will be aimed at reducing the false positive 
rates and optimizing the aggregation algorithms. 

REFERENCES 

[1] C. A. Carver, J. M. D. Hill and U. W. Pooch, "Limiting Uncertainty 
in Intrusion Response", 2001 IEEE Man Systems and Cybernetics 
Information Assurance Workshop, pp. 142-147, New York, June 
2001. 

[2] Robin Sommer, "Outside the Closed World: On Using Machine 
Learning For Network Intrusion Detection, SP '10 Proceedings of the 
2010 IEEE Symposium on Security and Privacy, pp. 305-316, 2010. 

[3] Salima Omar, Asri Ngadi, Hamid H. Jebur, "Machine Learning 
Techniques for Anomaly Detection: An Overview", International 
Journal of Computer Applications (0975 – 8887), Volume 79 – No.2, 
October 2013. 

[4] Bhuyan, Monowar H., Dhruba Kumar Bhattacharyya, and Jugal K. 
Kalita, "Network anomaly detection: methods, systems and tools." 
Ieee communications surveys & tutorials 16.1, pp. 303-336, 2014. 

[5] Hansman, Simon, and Ray Hunt. "A taxonomy of network and 
computer attacks." Computers & Security 24.1, pp. 31-43, 2005. 

[6] Cisco official site, Cisco IOS NetFlow 
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-
software/ios-netflow/prod_white_paper0900aecd80406232.html 

[7] Ahmad, Muhammad Aminu, Steve Woodhead, and Diane Gan, 
"Early containment of fast network worm malware." Information and 
Computer Science (NICS), 2016 3rd National Foundation for Science 
and Technology Development Conference on. IEEE, 2016. 

[8] Demuth, Howard B., et al. Neural network design. Martin Hagan, 
2014. 

[9] Cynthia Wagner, Jerome Francois, Radu State, Thomas Engel, 
"Machine Learning Approach for IP-Flow Record Anomaly 
Detection", IFIP Networking 2011, Valencia, Spain, May 2011. 

[10] Hofstede, Rick, et al. "Flow monitoring explained: From packet 
capture to data analysis with netflow and ipfix.", IEEE 
Communications Surveys & Tutorials 16.4, 2014, pp. 2037-2064. 

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 31 ----------------------------------------------------------------------------


