
An Application of Microservices Architecture
Pattern to Create a Modular Computer Numerical

Control System

Maxim Ya. Afanasev, Yuri V. Fedosov, Anastasiya A. Krylova, Sergey A. Shorokhov
ITMO University

St. Petersburg, Russian Federation

amax@niuitmo.ru, yf01@yandex.ru, {ananasn94, stratumxspb}@gmail.com
Abstract—Currently, the most common approach to Com-

puter Numerical Control (CNC) system design is a monolithic
architecture. However, the introduction of the concept of Cyber-
Physical Production Systems (CPPS) requires a paradigm shift
in the design of control systems. This paper suggests a new
approach to developing modular industrial equipment using a
microservices architecture pattern. Microservices architecture
features are addressed, as well as advantages and disadvantages.
A heterogeneous computer network, where nodes communicate
via a message queue, is proposed as a basis for the computer
numerical control system. Fault tolerance is provided by modules
full autonomy and reliable messaging. Furthermore, NoSQL
database, guaranteeing high data accessibility and increased data
access speed, is applied. An apparatus for selective photopolymer
laser curing of free-form surfaces is considered as an example.
Common setup structure, as well as main hardware and software
modules, are described. Moreover, a distributed network latency
simulation was carried out to prove the viability of the proposed
microservices architecture.

I. INTRODUCTION

By analysing the evolution of modern industry it can be
concluded that by far the most promising development des-
tination is creating flexible distributed automated production
lines. The novel mass production concept was established as
a consequence of The Fourth Industrial Revolution (or Indus-
try 4.0) as well as gradual CPPS spreading. “Hard” conveyor
approaches are consequentially transformed into small batch
custom production. Moreover, the development of small inno-
vation enterprises and startups is still going on. On balance, the
approach to modern intelligent equipment design is changing.

The first CNC machine tools appeared in the 1950’s but
their development still continues. However, the development
has been mostly focused on mass production. So, CNC
systems have always been complex, high-performance, and
extremely expensive. Furthermore, the deployment process of
such systems is long-term and modern system lifetime is
dozens of years. Understandably, these circumstances make the
implementation of modern communication technologies more
complex in that each correction requires either the restructuring
of the whole production system or the creation of additional
control layers in order to link outdated equipment with a mod-
ern CPPS. Such an approach is the most appropriate during a
transition period and ultimately phasing out the older system.

Therefore, it is necessary to rethink the CNC equipment de-
sign paradigm itself and the ability to plug new equipment into

the informational communication environment via open proto-
col becomes quite important. Different attempts to implement
such approaches have been made. For example, Grigoriev and
Martinov in their research propose the approach of designing
an agile CNC kernel based on an independent library platform.
The open architecture of this system includes different abstract
layers related to different human-machine interfaces (HMI)
along with description possibilities of system components in
different programming languages. The connection of system
components is established via Fieldbus [1].

Bin describe an open platform for creating CNC systems
and this system consists of a set of multipurpose components
that can be employed repeatedly and a set of communication
modules to connect them [2]. A similar approach is presented
in the paper Ma [3]. Morales-Velazques et al. propose a
platform with the open architecture based on a multi-agent
system of software and hardware components, named MAD-
CON. The hardware units of their proposed system integrate
control and monitoring functions providing an FPGA-based
open architecture for reconfigurable applications. The software
components utilize the XML structure for system description
files, gathering features like a flowchart descriptive language
and a graphic user interface [4].

Works of Verba [5] and Prazeres [6] deal with an
interesting concept, Fog of Things. This concept is a modern
interpretation of the Internet of Things (IoT) that, in fact, is
a foundation of many CPPS. Fog of Things allows for the
creation of a more homogeneous informational communication
environment thereby improving and simplifying component
communication protocol.

II. MOTIVATION AND CASE STUDY

Modern control systems are complex and solid, where
each element is a black box with a hard hierarchical
architecture. Everything in such systems is focused on quality
assurance, reliability, and trouble-proof behaviour. The inertia
of such systems forces SCADA developers to use a monolithic
architecture because the equipment with distributed control can
not be easily added to a distributed production environment.

Consequently, the emphasis is placed on the concept of
integration. In other words, developers focused on joining het-
erogeneous components into one production system instead of
using an interoperability concept. The interoperability concept

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



entails creating an open interface that allows components to
stay in an autonomous state with communication ability.

Accordingly, we need to move on to the development of
equipment with a modular architecture. Such architecture is
based on two main postulates: unification and hybridization.
Unification is an open software and hardware structure that
allows for the assembly of new equipment and software as
a “the smart children’s designer.” Dividing one product into
several interchangeable building blocks with described input
and output unification can then be achieved.

In summary, it can be noted that any manufacturing equip-
ment consists of the following parts:

• Processing head actuator.

• Coordinate table that moves processing head actuator.

• CNC unit

It is obvious that the coordinate table is the most general-
purpose unit where different processing head actuators can be
mounted. Thus, the equipment type can be easily changed. For
example, a milling machine tool can turn into a laser cutting
machine switching the milling head to a laser head. Moreover,
a 3D printer can be obtained by mounting a filament extruder.

Additionally, it is possible to create a setup that combines
features of different types of equipment by applying the
hybridization principle. For instance, an additive-subtractive
machine can be assembled by joining some features of the
3D-printer and a three-coordinate milling machine tool. Also, a
combination of milling cutter for roughing and laser for surface
finishing and polishing is feasible.

However, it should not be forgotten that replacement of
the processing head actuator includes changes in the control
algorithm. Obviously, the CNC unit has to know about each
possible processing head actuator in advance and a solid
system with hierarchical control will be obtained again.

Therefore, it is necessary to determine the foundational
part of the architecture and to define specifications as for
communication protocol as well as for creating new software
and hardware modules that can be dynamically plugged into
the system. Subsequently, a foundational part will include a
motor control algorithm of coordinate tables, and the rest of
it will be external components.

In order to implement such architecture, a distributed
network with software and hardware modules have to be de-
veloped. All modules are connected to the network, along with
a connection that can be both wired and wireless. Each module
gets an IP-address via DHCP and then sends a broadcast
package to find a supervisor. The supervisor replies using a
predetermined protocol and record the modules main physical
parameters in a supervisor registry. For instance, a list of
commands it can receive and data it sends to the coordinate
table controller.

Such an approach provides the opportunity to change the
paradigm of a production control environment completely.
Unfortunately, it is not all that easy. The CNC system is not
only a control algorithm, but a database, user interface, and
physical environment communication component (also known

as “embedded systems” and “microcontrollers”). To implement
such system, a system approach is required and the authors
suggest the use of a microservices architecture pattern.

III. STATE-OF-THE-ART IN SERVICE-ORIENTED
ARCHITECTURE

Service-oriented architecture (SOA) is a rapidly develop-
ing concept, which has increasingly been used in modern
distribution systems. The basis of this architecture is a set
of replaceable, low coupling components that possess unified
interfaces for standard protocol communication. SOA was first
mentioned in 2009 and used as a framework for complex
web applications, aggregating data from multiple sources and
representing it in a single view. Google maps, Amazon, and
eBay are the most well-known examples. Consequently, SOA
became widely used in cloud-based services such as SaaS,
PaaS, IaaS, etc [7].

Microservice architecture (MSA) is a modern SOA inter-
pretation that is applied to distribution systems. The service is
a process executed by an operation system and communicates
with another process via a network interface to reach a com-
mon goal. Microservices can be built using any programming
language and framework but should interact with each other
via a single protocol. Moreover, each microservice works
with a limited set of tasks and performs a minimum number
of operations.Currently, there is no clear definition of MSA.
However, we attempt to pick out the key features of the
approach that are most important for the development of the
distribution CNC systems [8].

MSA provides the opportunity to easily replace the modules
included in the system. For example, HMI for industrial
equipment can be considered where a conventional HMI is
a set of the physical elements, such as indicators, buttons,
switches, etc. This interface is really convenient for mass
production when equipment is used as a part of the conveyor
line. Although, for a fabrication laboratory (FabLab) such a
way of control is overhead. Using the MSA makes it easy
to replace the physical controller with a virtual one that will
enable the user to operate the equipment through the web-
interface from any device connected to the network.

All modules are organized around functions. MSA allows
you to split the functionality of each block. For example,
the milling head consists of a physical part—motor, collet,
controller, sensors, and a logical part—control unit. Physically,
both parts are on the same block because the control unit has
its inner memory (containing low-level and high-level logic)
and can be connected to the consolidated network [9].

In terms of MSA, it is two different services. One of
them is in charge of low-level motor control commands, data
acquisition, etc. The other is a high-level HMI by which the
user can control the settings of a production process or develop
programs in ISO-7bit programming language. Each of these
services is autonomous and has its own algorithm.

On the other hand, each of them is in charge of an
exact function and know nothing about other microservices
implementation. Certainly, duplication is possible as the same
function can be implemented in different microservices and in
different ways. However, it does not violates the low coupling

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 11 ----------------------------------------------------------------------------



principle and is mostly considered as code writing discipline.
MSA provides the opportunity to connect modules written
in different languages seamlessly, but it doesnt forbid the
unification of programming tools.

Each microservice is elastic and easy to modify, and along
with that, it is a complete program product. This means that
developers need to stick to cohesion and coupling principles
during CNC system development. Conversely, it helps to focus
on development and debugging of a particular block, which
allows the modification of the entire system behaviour.

Increasingly, publications describing microservices archi-
tecture application for reconfigurable production systems are
appearing. For instance, da Silva [10] represent architecture
for reconfigurable production systems based on MSA and
an agent-holonic approach. The suggested system supports
knowledge exchange in a heterogeneous production system and
provides the opportunity to control equipment placed on geo-
graphically remote production areas. The paper demonstrates
that the architecture allows such a system to be fault-tolerant
and reliable even in difficult production conditions.

Furthermore, Vresk [11] and Butzin [12] describe MSA
that they use to increase interoperability and scalability of
IoT. It is commonly known that this conception is associated
with the notion of Industry 4.0. Therefore, a represented
approach can be used to CNC systems development. Based
on these examples, we can conclude that MSA is a modern,
rapidly developing trend of CPPS, which can be successfully
employed for creating a CNC system.

IV. COMMUNICATION PROTOCOL

As previously stated, simple and open MSA has to apply
lightweight communication protocol. Because distributed
network, that is a basis of the approach, is heterogeneous,
it is necessary to use “smart” message receivers and
“silly” communication channels. Such a decision gives the
opportunity to make system modules more independent and
focused on the exact task. Also, it is important to remember
that network performance can be obtained using a lightweight
message bus and reducing the amount of communications
between system components.

It appears that the most obvious way of data exchange in
TCP/IP networks is “raw” sockets. Bytes data flow can be
transmitted over this interface, which is pretty convenient for
many applications. However, all modules in a developed sys-
tem deal with structured data so packages will be more appro-
priate. Each package is a message from one module to another.
A receiver module, that receives a message, has to confirm it
(if content is comprehensible and can be handled) or reject it.

Though such messages are quite similar to those that are
used in XML-RPC, SOAP, BPEL and WSDL, an important
difference is showing up. All these protocols are used in
enterprise applications and are inapplicable for embedded
systems. To create a lightweight open and extensible control
system necessary to minimize the abstraction layer and
combine low-level sockets with routing ability. Thus, the
most appropriate communication way between CNC system
modules is message queues [13].

A message queue is an asynchronous communication pro-
tocol, so the receiver and sender dont communicate directly
and use a message queue instead. Generally, message queues
have a message size constraint so that data is transmitted via
one message or more. Following message queue features allow
us to conclude that this way to transmit data is the most
efficient for designing a CNC system for several reasons [14]:

• Message queues allow system components to stay
most independent from each other and avoid possible
deadlocks when one of the participants has to wait
for resources to release that are necessary for data
transmission.

• Message queues give the opportunity to save system
resources because there is no need for network buffers
where untransmitted and unhandled data is usually
stored. In fact, the message queue is a multipurpose
network buffer on its own, which does not depend on
any node or process.

• Message queues possess of feasible volume and
throughput scalability.

• Message queues smooth network load peaks. It is con-
siderably important for the designed system due to a
possibility of different traffic types mixing together. In
particular, traffic can be divided into high priority (sen-
sors data, control commands) and low priority (G-code
loading, a video stream from processing area) traffic
according to suggestions in Section VI CNC system.
The vehicle control system uses two independent CAN
buses (high-speed for sensors and control commands
and low-speed for comfort functions) to solve this
problem, which doesnt simplify its architecture.

• Message queues improve system fault-tolerance as
messages stay in the queue and can be handled even
if the transmitter node fails. A g-code program can
be considered as an example. An operator creates a g-
code program using interface block and then transmits
it to the execution block as text command flow.
Obviously, the program will be divided into several
messages placed in the queue. If the interface block
freezes, a watchdog commits that fact and initiates
operation system reboot. However, during the reboot
execution the block keeps handling messages from the
queue and data transmitted process is not interrupted.

• Message queues guarantee message delivery, at least
until one node is active and can handle it.

• Message queues do not violate messages order. As
a rule, messages can be received in the order they
were sent.

Currently, there is a sufficient amount of various imple-
mentations of described approach [15–18]. All of them can
be divided into commercial (proprietary) and open source
(free license). Among commercial implementations the fol-
lowing frameworks and libraries should be noticed: IBM
WebSphere MQ, Oracle Advanced Queuing, Amazon Simple
Queue Service (SQS), StormMQ, IronMQ. Along with these,
message queues are implemented in popular commercial real-
time operating systems such as (RTOS) QNX and VxWorks.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 12 ----------------------------------------------------------------------------



The most interesting open source libraries are Apache Ac-
tiveMQ, Apache Kafka, Apache Qpid, Beanstalkd, HTTPSQS,
JBoss Messaging, JORAM, RabbitMQ, Tarantool, Celery,
HornetQ, StormMQ, NATS Messaging, ZeroMQ, nanomsg,
Apollo, Darner, Gearman, RestMQ.

Only open source tools were analysed as the developed
system is an open one. The following requirements based on
analysis were established:

• The library has to be written in C/C++ because the
designed system contents components are based on
microcontrollers where programs can be written only
in these languages.

• The library has to provide access to the message
queue without a broker—a special node for address-
ing, routing, and queuing. This component reduces
system fault-tolerance because a broker is a single
point of failure, which is unacceptable for CNC sys-
tems. Certainly, redundancy can be provided by having
additional reserve brokers. This, however, completely
negates the main advantage of the system with the
broker—reducing the complexity.

• There have to be an open API to add new transport
protocols. Most of the message queues are based on
TCP and websockets. In developed system connection
between interface block and execution block estab-
lished via UART. Therefore, a message queue has to
be adapted to that transport protocol.

Given the above requirements, the most appropriate mes-
sage queue library is nanomsg. This library is written in pure-
C without any dependencies. Nanomsg is quite compact and
allows developers to use it in embedded systems as well as in
POSIX-compatible systems.

At the moment, the library implements following commu-
nication patterns:

• PAIR—Simple one-to-one communication.

• BUS—Simple many-to-many communication.

• REQREP—Allows building clusters of stateless ser-
vices to process user requests.

• PUBSUB—Distributes messages to large sets of inter-
ested subscribers.

• PIPELINE—Aggregates messages from multiple
sources and load balances them among many desti-
nations.

• SURVEY—Allows querying the state of multiple ap-
plications in a single go.

The developed system uses PUBSUB for broadcast
messages and BUS for decentralized exchange between
system blocks (Fig. 1). Data in these queues, which are based
on nanomsg, is transmitted as BLOB. Therefore, Messagepack
(a binary format that is compatible with JSON and packs
data up to 15–20% more efficiently) is applied to transmit
database entries [19], [20].

NODE 1

NODE 3

NODE 2

NODE 4

Peer-to-Peer messaging

Broadcast messaging

Fig. 1. PUBSUB and BUS communication patterns

V. DISTRIBUTED DATABASE

For the effective realization of storing data in a decen-
tralized network, which is the core CNC-equipment control
system, it is necessary to solve the scaling problem. Obviously,
the described open architecture does not allow using traditional
relational databases. Despite the fact that the current relational
databases support replication and scaling, similar solutions still
do not provide the proper data accessibility and consistency.

That is why using the so-called NoSQL databases is most
appropriate. The main features of such databases are:

• Availability of data, which means that each call to
database is guaranteed to return the requested data or
reports that it is impossible to obtain the data.

• The system can change its state even without new
input data because state changing can be necessary
to reach the consistency of data. NoSQL databases
do not have the database schema that contains de-
scriptions of the content, structure, and data integrity
constraints, so at some moment the data integrity may
be compromised and then automatically restored.

• All data remains consistent, a system does not check
all the data, i.e. it does not follow the integrity of
each transaction, which improves performance and
availability.

Currently, there are three basic NoSQL paradigm
realizations. The first, “key-value” data storages, which are
in fact ordinary hash-tables. They are usually used as an
alternative to the distributed file systems and can be used for
creating various file caches as well as problems with “Big
Data”. They often keep data in temporary storage distributed
in random access memory that gives a serious performance
boost. The following systems have the same solution:
Dynamo, Riak, Berkeley DB, FoundationDB, HyperDex,
InfinityDB, LMDB, MemcacheDB, and Redis [21–23].

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 13 ----------------------------------------------------------------------------



The second, document-oriented databases, which repre-
sent hierarchically structured data storages. In fact, these are
databases based on the JSON standard which makes them
especially suitable for use in web applications. The main repre-
sentatives of this category are CouchDB, MongoDB and eXist.

The third, graph databases are used for presenting data
with a large number of connections. It is the most suitable for
social network organization. Examples of this type of database
are Neo4j, OrientDB, AllegroGraph and InfiniteGraph.

Also, it should be noted that other NoSQL databases design
approaches exist but they are a logical development of the
three basic branches or a combination of them. Obviously,
micro service architecture of CNC-equipment control system
realization needs a database with advantages combined from
document-oriented databases and “key-value” storages. That is
why the following requirements were formulated:

• Serverless realization. Many of the considered NoSQL
databases have a dedicated server, which organizes
interaction and replication. The presence of a server
complicates the inclusion of new modules of the man-
agement system, as it requires certain actions related
to server administration.

• Availability of atomicity during data transfer and
transaction support that is necessary to create a system
that works in “soft real-time” conditions.

• The possibility to keep all data in one file without
having to create temporary files. The designed system
suggests the possibility of connecting modules with
different capacities and internal storage capacity so
the database should use as little resources as possible.

• Cross-platforming and unification on the API level.
Systems realized on C/C++ languages are preferred.

• Open-source software project.

According to the criterion, a comparative analysis was
made, which resulted in the onset of merits and demerits and
the UnQLite database was selected. This system is a NoSQL

Fig. 2. Coordinate table

serverless database. In contrast to the well-known NoSQL en-
gines like MongoDB, Redis, and CouchDB, UnQLite requires
no installation or configuration and does not start a separate
process to access the data. All data is stored in a single file
with standard JSON serialized data. Otherwise, UnQLite is a
storage for key-value pairs with cursor support and keeping
data in HDD as well as RAM possibility.

In addition to this, UnQLite can work as document storage
and support the transactions. The UnQLite engine is fully
programmed in ANSI C language which allows using this
database even on embedded systems used in a project. In the
designed project, UnQLite will be used for storing structured
data (modules, related to the implementation of the user
interface of the controller and complex logic), as well as
rapid storage of data obtained from the sensors (storage type
“key-value”). In the last mode, UnQLite supports transactions,
and the data stored in this way are best suited for the rapid
transmission through a message queue

VI. APPLICATION EXAMPLE

Let us consider the implementation of the proposed CNC
controller microservice architecture as an example of an
apparatus designed for selective photopolymer curing. This
equipment uses laser processing technology the same as LDF
(Laser Direct Structuring) process. The experimental instal-
lation represents a device for arbitrary surfaces processing
by laser emition. The equipment contains a fixed coordinate
table (Fig. 2) where processing the object takes place, a laser
head (Fig. 3) is placed over the work table and is movable in
a horizontal plane along two coordinates with a laser emitting
source (laser module) connected optically with the laser head.

The laser head has a gyro-stabilized suspension system
based on the modified Stewart platform. Linear piezo mo-
tors are used for platform moving. The suspension system
allows the laser beam deflection on two self-perpendicular
surfaces and focus distance changing by the head objective
moving along Z-coordinate. This allows performing the fol-
lowing tasks. The first task is the laser ray is focused at
the processing point. The second task is complex surfaces

Fig. 3. Laser head

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 14 ----------------------------------------------------------------------------



Fig. 4. Equipment control system

processing availability by optical axis deflecting. The slope
allows the laser beam to always remain perpendicular to
the processed surface and respectively contact patch is not
distorted. The third task is active vibrations compensation.
High-precision single-axis solid state accelerometers and a
camera with a telescopic objective, for real-time spot form
checking, are used to record vibrations. In addition, this laser
head is equipped with the second camera for automatic setting
of a reference point and watching the processing area.

A. Equipment control system

The equipment control system contains (Fig. 4):

Communication Module (CM). Physically it looks like
the microcomputer Raspberry Pi with the operating system,
Debian Linux, installed on it. This modules functions are
tasked with the recording and dispatching of the other modules
(fault tolerance of system at all providing).

Base Low-Level Controller (BLLC). Physically it is a
control module based on the Cortex-M4 microcontroller with
the real-time operating system, FreeRTOS. The main BLLC
appointment is to generate control signals for coordinating
table actuators and to process sensors signals. The controller is
fully self-contained and able to work even without connection
to the main control network. This module obtains programs
in ISO 7-bit (G-code) programming language as an input
data. G-code is loaded by nanomsg protocol, and Ethernet is
used as physical level protocol. Also by this protocol, BLLC
sends to the net the data from sensors, which can be taken
and interpreted by every node of the control network. The
rest of the unit is completely independent and after G-code
loading and processing, it works in standalone mode. The
the work algorithm of BLLC processes all contingencies by
itself even without connection with the control network. In

addition, it registers information about all the events that BLLC
transmitted to the network and is recorded in the event log.

In addition to the control program, BLLC can receive single
control signals, for example, “move the carriage to point (X;
Y)”, “move along X-axis with the velocity V”, and “start
the self-calibration process.” These commands are needed to
interact with the operator of the apparatus, and for automatic
zero point (reference point) search procedure initiated by the
machine vision module (MVM). Additionally, the low-level
controller has a debug port, USART, which allows the operator
to interact with the controller by command line interface. This
function is necessary in the control system debug stage and
in case of contingency appearances because of faults in the
network. BLLC also transmits to the network the control signal
for the laser beam source (LBS). At the point of view of G-
code, a laser beam is just a tool like a cutter or a chisel. The
controller can send the command to turn the laser on or off
or to set the emitting capacity (tool rotation speed analog).
There is bilateral data exchange between BLLC and LBS.
BLLC sends one of the control signals, LBS gets it and sends
to BLLC readiness confirmation and changes the laser state
afterwards. In case of failure or another contingency, BLLC
takes an appropriate answer from LBS. At the same time, this
signal is obtained by other control network components, and
all systems turn to the recovery mode. The same happens if
the connection with the LBS is lost. The LBS has internal
storage to accommodate a database that keeps an event log,
CNC programs and user interface components.

Laser Beam Source (LBS). It has the same architecture as
the BLLC part, i.e. it is based on a Cortex-M4 microcon-
troller with the operating system, FreeRTOS, on it and it is
also connected to the network. As already mentioned, LBS
functions are turning the laser on and off (it is carried out
by changing the position of the movable mirror), changing
its power (by PWM) and receiving and processing the data
from the sensors. LBS has an internal logic and can work off
contingencies in standalone mode and transmit sensor data to
the network. In the case of failure, LBS transmits an emergency
stop and recovery mode signal. Despite the fact that the LBS
has the slave role towards BLLC, it constantly interrogates it.
In the case of an absence of an answer for some time, it also
distributes an emergency stop signal. It turns out that these
two network nodes produce a constant mutual monitoring that
increases the resiliency of the whole control system. LBS has
internal storage to accommodate a database that keeps an event
log, CNC programs and user interface components.

Smart Laser Head (SLH). SLH is a software and hard-
ware module based on a Cortex-M4 microcontroller with the
operating system, FreeRTOS. The main functions of SLH
are: mechanical vibrations compensation, the inclination of
the optical axis adjustments for complex surfaces processing
and laser beam self-focusing. As the others, the module is
autonomous and independently handles all emergencies with
the transmission of the corresponding signals in the network. It
also has internal storage to accommodate a database that keeps
an event log, CNC programs and user interface components.

Machine Vision Module (MVM). It is a software and
hardware module based on the Odroid-C2 microcontroller with
operating system, Debian Linux. MVM functions are: search
for a reference point on the workpiece and transfer the video

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 15 ----------------------------------------------------------------------------



Fig. 5. AnyLogic model graphic representation

stream to display on the operator interface. BLLC and MVM
interact by this algorithm: in front of the CNC program running
on BLLC execution it asks for MVM coordinates of the
reference point, MVM starts to scan the workspace (by sending
control commands to BLLC) and, when the reference point is
found, MVM turns into command waiting mode. MVM failure
is critical only in case of searching a workpiece zero point
process, in other cases, CM just alerts the operator that MVM
is not available, but processing does not stop. The MVM also
has internal storage to accommodate a database that keeps an
event log, CNC programs and user interface components.

User Interface Module (UIM). It is a software module
and is an aggregator for unit control elements (displays and
widgets) to display them in the browser. Control elements are
automatically loaded into it during the interaction with the
modules. The basic idea is that the entire interface logic is writ-
ten using a technology stack of HTML5 + ECMAScript + CSS,
and stored directly in the database of each of the modules.
During initialization of apparatus, all these static files are
loaded to UIM, and then transmitted over the network for
display in the browser. From the viewpoint of realization, UIM
is a high-performance multi-threaded web-server written in
Go programming language, and a display library of control
units (buttons, switches, sliders, text fields, etc), widgets and
displays. This server is physically placed on the same mi-
crocontroller with CM. However, it should be noted that due
to microservice architecture, it could be located on a single
computer or server.

Control Programs Preprocessing Module (CPPM). It is
used for the preparation of G-codes directly in the browser.
Like hardware modules interfaces, it is a web-application
dynamically included in common equipment interface by UIM.
It is physically placed on the same microcontroller as the CM
and the UIM, and as the latter can be put on a separate server.

VII. SIMULATION AND NUMERICAL RESULTS

It is well known that every distributed system has one
significant disadvantage—its productivity depends on data
throughput. In the case of complicated topology, bottlenecks
can emerge, which in turn may limit the overall bandwidth of
the network or at the very least will create load imbalance
as a result of increased contention across the slow link.
Obviously, the reviewed distributed microservice architecture
is completely adequate for the demand of self-sufficiency for
all modules. All operations connected with the manufacturing
process are executed only in real-time mode and are not
dependent on network delays. Nevertheless, all modules are
connected to each other, hence when delays occur, the total
time of operations such as initialization, jump from one
control program to another or interacting with the operator
can increase. Consequently, the network simulation model was
designed and main modules load analysis was carried out.

The analysis considers that the reviewed network is hetero-
geneous, being composed of segments, that uses different data
transfer mediums (Wi-Fi, or cable connection) and different
transport protocols (TCP, RVDS). To calculate the network
load metrics queueing theory was used. HTTP protocol also
CPU-intensive load by most critical modules were used instead
of absolute values of communication channel capacity and
network delays.

This model is simplified, and not accounting for the CPPM
and LBS parameters calculation, as soon these modules are
working effectively in stand-alone mode and consume no
network capacity. It should be noted that a Wi-Fi router
is included in the model. This component is not a part of
reviewed microservice architecture, but it has an influence
on the network capacity. For the network architecture mod-
elling simulation environment AnyLogic was used. The model
graphic representation is pictured in Fig. 5. As the simulation
of network latency in a decentralized network was the main

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 16 ----------------------------------------------------------------------------



Fig. 6. Starting the system

purpose it is represented as entity flow with delays in the
nodes. Therefore, discrete event simulation was the most
appropriate. What is more, Anylogic allows to combine several
approaches in one simulation, but in this case, discrete event
approach was sufficient.

A number of experiments with various network parameters
was carried out. Not surprisingly, the biggest network load
takes place during control system initialization (turning the
machine on). Initially, all modules statuses are polled and
sensors data is transmitted. Experiments showed that main
traffic is generated by two cameras (MVM and SLH), and
a BLLC as well, which transmits all its current parameters
(state and coordinates) all the time during the processing.

The network load can be increased when a number of users
interacts with the system. Dealing with classical industrial
management systems, it is hard to produce a case when
more than one operator works with the apparatus. However,
when equipment included in the integrated CPPS, this pattern
changes. An operator as well as a dispatcher or technologist
can work with the apparatus. It should be kept in mind, that
the SCADA system can work as a client with a number of
connections.

In Fig. 6 the diagram of the relation between time and
network message amount is pictured. In this diagram, the first
second of the control system activity is presented. From the
diagram it is apparent that for 400ms the number of messages
in the network is smallest, then a short-duration peak occurs.
This peak demonstrates that at this moment all modules have
completed the self-checking procedures and the negotiation
process is started. Upon completion, the network turned to the
standby mode waiting for the client connections.

In Fig. 7 the process of connecting the first client is
pictured. Obviously, a number of messages related to the
webserver, which transmits to client static files, containing the
user interface description. In Fig. 8 the process of reference
point search is pictured. It can be noted that the MVM camera
generates traffic during the whole workpiece reference point
search. Fig. 9 demonstrates a change of the network loading
during client connection to the camera, which translates the
video stream from the working zone. Video traffic is transmit-

Fig. 7. Connecting the first client

Fig. 8. Searching of the reference point

Fig. 9. Video stream from the working zone

ted from the camera and through the UIM module is delivered
to users. The load on the network is not reduced as long as at
least one user receives the signal from the camera.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 17 ----------------------------------------------------------------------------



Fig. 10. Server and microcontroller loading

Fig. 11. Network maximum loading

TABLE I. CPU LOAD AS A FUNCTION OF A NUMBER OF CLIENTS

CPU load, %
Number of clients Server Microcontroller

node node
1 64.5 13.6

2 68.5 15.2

3 71.6 30.8

4 69.1 39.8

5 74.9 43.7

6 73.0 50.3

7 74.9 50.8

8 75.7 56.5

9 80.2 57.3

10 83.3 59.8

Fig. 10 shows a time colour chart. There are two bars that
represent server and microcontroller nodes and their states per
time unit. The chart describes the BLLC CPU load and also
Raspberry Pi microcomputer load, on which CM, UIM, and
CPPM are installed.A network load test was carried out as
well. We increased the number of clients to determine the
maximum loads for the network, microcomputers CPU, and
BLLC. The testing proved, that despite the increasing the
number of clients, only a short peak of the network messages
occurs (Fig. 11), and afterwards it turns to standby mode, while
the microcomputer load increases up to ∼ 85% and decreases
no more (Table I). Thus, the number of clients simultaneously
connected to the network, should not exceed ten.

VIII. CONCLUSION

In this paper a new approach to design architecture of
modular-type CNC-driven industrial equipment was reviewed.
As the basis of the developing system use of a distributed
communication network where each node is a microservice is
proposed. Due to its interoperability, such a system can be
easily integrated into a cyber-physical manufacturing environ-
ment. Analysis of the distributed software with microservice
architecture as well as system components communication
and databases was carried out. As the main communication
protocol, the system providing data transmission by using the
message queue was chosen.

Such an approach makes the modules as autonomous as
possible and simplifies the scaling, also providing an op-
portunity of network load leveling and provides a fail-safe
feature by guaranteed message delivery. Protocol software
implementation is based on the nanomsg library; broadcast
messages and peer-to-peer messaging are used.

Data is stored in the system by using the distributed NoSQL
database, UnQLite. This database system combines the storage
advantages of the type “key-value” and document-oriented
databases. The system is created as a useful library and using
the similar data storage interface that easily integrates by the
nanomsg protocol.

Realization of the proposed protocol is exemplified by an
apparatus for selective polymers curing on a free-form surface
by laser emission. All system modules and their interoperation
algorithms are meticulously described. The advantages of
utilizing a distributed microservice architecture in comparison
to ordinary monolithic solutions are shown.

Simulation and numerical modelling of the distributed
network supplies communication of all apparatus modules
were done. The experiment showed that the highest network
load occurs during system initialization as well as searching
the reference point, but that these peaks are of temporary
nature and do not significantly influence the modules during
the polymer curing process. General modules load-testing was
also carried out and shows that the number of clients connected
to the system via HTTP protocol should not exceed ten.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 18 ----------------------------------------------------------------------------



REFERENCES

[1] S. N. Grigoriev and G. M. Martinov, “Research and development of
a cross-platform CNC kernel for multi-axis machine tool,” Procedia
CIRP, vol. 14, pp. 517–522, 2014, 6th CIRP International Conference
on High Performance Cutting, HPC2014.

[2] “A research on open CNC system based on architecture/component
software reuse technology,” Computers in Industry, vol. 55, no. 1, pp.
73–85, 2004.

[3] X. Ma, Z. Han, Y. Wang, and H. Fu, “Development of a PC-based open
architecture software-CNC system,” Chinese Journal of Aeronautics,
vol. 20, no. 3, pp. 272–281, 2007.

[4] “Open-architecture system based on a reconfigurable hardware/software
multi-agent platform for CNC machines,” Journal of Systems Architec-
ture, vol. 56, no. 9, pp. 407–418, 2010.

[5] N. Verba, K.-M. Chao, A. James, D. Goldsmith, X. Fei, and S.-D.
Stan, “Platform as a service gateway for the Fog of Things,” Advanced
Engineering Informatics, 2016, to be published.

[6] C. Prazeres and M. Serrano, “SOFT-IoT: Self-organizing Fog of
Things,” in 2016 30th International Conference on Advanced Informa-
tion Networking and Applications Workshops (WAINA), March 2016,
pp. 803–808.

[7] “Chapter 2—service-oriented architecture and web services,” in Service
Computing, Z. Wu, S. Deng, and J. Wu, Eds. Boston: Academic Press,
2015, pp. 17–42.

[8] M. Rafighi, Y. Farjami, and N. Modiri, “Studying the deficiencies and
problems of different architecture in developing distributed systems and
analyze the existing solution,” in 2015 2nd International Conference on
Knowledge-Based Engineering and Innovation (KBEI), Nov 2015, pp.
826–834.

[9] A. W. Colombo, S. Karnouskos, J. M. Mendes, and P. Leitao, “Chap-
ter 4—industrial agents in the era of service-oriented architectures and
cloud-based industrial infrastructures,” in Industrial Agents, P. Leitão
and S. Karnouskos, Eds. Boston: Morgan Kaufmann, 2015, pp. 67–
87.

[10] R. M. da Silva, F. Junqueira, D. J. S. Filho, and P. E. Miyagi, “Con-
trol architecture and design method of reconfigurable manufacturing
systems,” Control Engineering Practice, vol. 49, pp. 87–100, 2016.

[11] T. Vresk and I. Čavrak, “Architecture of an interoperable IoT platform
based on microservices,” in 2016 39th International Convention on
Information and Communication Technology, Electronics and Micro-
electronics (MIPRO), May 2016, pp. 1196–1201.

[12] B. Butzin, F. Golatowski, and D. Timmermann, “Microservices ap-
proach for the Internet of Things,” in 2016 IEEE 21st International

Conference on Emerging Technologies and Factory Automation (ETFA),
Sept 2016, pp. 1–6.

[13] A. E. Rheddane, N. D. Palma, A. Tchana, and D. Hagimont, “Elastic
message queues,” in 2014 IEEE 7th International Conference on Cloud
Computing, June 2014, pp. 17–23.

[14] F. Reid, “Chapter 15—message queues,” in Network programming in
.NET, F. Reid, Ed. Burlington: Digital Press, 2004, pp. 419 – 452.

[15] N. Estrada and H. Astudillo, “Comparing scalability of message queue
system: ZeroMQ vs RabbitMQ,” in 2015 Latin American Computing
Conference (CLEI), Oct 2015, pp. 1–6.

[16] V. C. Barroso, U. Fuchs, and A. Wegrzynek, “Benchmarking message
queue libraries and network technologies to transport large data volume
in the ALICE O system,” in 2016 IEEE-NPSS Real Time Conference
(RT), June 2016, pp. 1–5.

[17] V. M. Ionescu, “The analysis of the performance of RabbitMQ and
ActiveMQ,” in 2015 14th RoEduNet International Conference - Net-
working in Education and Research (RoEduNet NER), Sept 2015, pp.
132–137.

[18] K. Vandikas and V. Tsiatsis, “Performance evaluation of an IoT plat-
form,” in 2014 Eighth International Conference on Next Generation
Mobile Apps, Services and Technologies, Sept 2014, pp. 141–146.

[19] K. Maeda, “Performance evaluation of object serialization libraries in
XML, JSON and binary formats,” in Digital Information and Com-
munication Technology and it’s Applications (DICTAP), 2012 Second
International Conference on, May 2012, pp. 177–182.

[20] S. Popić, D. Pezer, B. Mrazovac, and N. Teslić, “Performance evaluation
of using protocol buffers in the Internet of Things communication,”
in 2016 International Conference on Smart Systems and Technologies
(SST), Oct 2016, pp. 261–265.

[21] G. W. Poerwawinata and A. I. Kistijantoro, “Memcachedb persistent
implementation using leveldb,” in 2015 International Conference on
Electrical Engineering and Informatics (ICEEI), Aug 2015, pp. 283–
287.

[22] D. Stjepanovic, M. Savic, J. Jokić, and S. Marić, “Performance mea-
surements of some aspects of multi-threaded access to key-value stores,”
in 2015 23rd Telecommunications Forum Telfor (TELFOR), Nov 2015,
pp. 831–834.

[23] S. Wen, H. Zhang, and Y. Zhang, “A construction and implementation
of high performance embedded database,” in 2011 International Confer-
ence on Electrical and Control Engineering, Sept 2011, pp. 4238–4241.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 19 ----------------------------------------------------------------------------


