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Abstract—In a recent paper [1], it is shown that functions of
the form L1(x

3)+L2(x
9), where L1 and L2 are linear, are a good

source for construction of new infinite families of APN functions.
In the present work we study necessary and sufficient conditions
for such functions to be APN.

I. INTRODUCTION

For given positive integers n and m, a function F from the
finite field with 2n elements to the finite field with 2m elements
is called a vectorial Boolean function or an (n,m)-function,
and in the case when m=1 it is simply called a Boolean
function. Boolean functions are among the most fundamental
objects investigated in pure and applied mathematics and com-
puter science. Boolean function theory is an important tool for
solving problems of analysis and synthesis of discrete devices
which transform and process information. The primary motiva-
tion for studying Boolean functions comes from cryptography.
In modern society, exchange and storage of information in an
efficient, reliable and secure manner is of fundamental impor-
tance. Cryptographic primitives are used to protect information
against eavesdropping, unauthorized changes and other misuse.
In the case of symmetric cryptography ciphers are designed by
appropriate composition of nonlinear Boolean functions. For
example, the security of block ciphers depends on S-boxes
which are (n,m)-functions. For most of cryptographic attacks
on block ciphers there are certain properties of functions which
measure the resistance of the S-box to these attacks. The
differential attack introduced by Biham and Shamir is one
of the most efficient cryptanalysis tools for block ciphers.
It is based on the study of how differences in an input can
affect the resulting difference at the output. When n = m
the functions that contribute an optimal resistance against
differential attack are called Almost Perfect Nonlinear (APN).
Such APN function F (x) are characterized by having at most
two solution for every equation F (x+ a)− F (x) = b, where
a and b are general elements of the field and a is not null.
The role of APN functions is not just related to cryptog-
raphy. In coding theory APN functions define binary error
correcting codes optimal in a certain sense. In projective
geometry quadratic APN functions define dual hyperovals.
Recent advances in APN functions have made a prominent
impact on the theory of commutative semifields.
For these reasons many works were focused on the studying
and the construction of such optimal functions.

Let assume n be a positive integer and F2n the finite field
with 2n elements. If n is an even number, then we have that
3|(2n − 1) and we denote with k the integer value 2n−1

3 .

A function F from F2n to F2n admits a unique representation,
called Univariate Polynomial Representation, over F2n of
degree at most 2n − 1:

F (x) =

2n−1∑
j=0

δjx
j , with δj ∈ F2n .

For every integer j consider its binary expansion
∑n−1

s=0 js2
s

and denote with w2(j) the number of nonzero coefficients
(i.e.

∑n−1
s=0 js). The algebraic degree of the function F is the

maxj=0,...,2n−1/δj �=0 w2(j). Functions of algebraic degree 1
are called affine and of degree 2 quadratic. Linear functions
are affine functions without the constant term and they can

be represented as L(x) =
∑n−1

j=0 γjx
2j . A known example of

a linear function defined over any dimension n is the Trace
function Tr(x) = Trn(x) =

∑n−1
i=0 x

2i , In particular the trace
is a Boolean function, i.e. Tr : F2n → F2. For m positive

divisor of n we use the notation Trm(x) =
∑n/m−1

i=0 x2
im

.

Given a function F we define its λ-component as the
Boolean function fλ : F2n → F2 with fλ(x) = Tr(λ · F (x)),
for λ ∈ F2n . For a Boolean function f we define the Walsh
transformation as

f̂χ(u) =
∑
x∈F2n

(−1)f(x)+Tr(ux),

with u ∈ F2n . With Walsh Spectrum we refer to the set of all
possible values of the Walsh transformation. With the symbol
F(f) we indicate the Walsh transformation valued in 0,

F(f) =
∑
x∈F2n

(−1)f(x) = 2n − 2 · wt(f),

where wt(f) is the Hamming weight of f (i.e. the cardinality
of the set {x ∈ F2n : f(x) = 1}). Therefore we have that
a Boolean function f is balanced (wt(f) = 2n−1) if and
only if F(f) = 0. A Boolean function f is called bent if
its Walsh spectrum corresponds to the set {±2n/2}. Therefore
such function can exist only for even values of n. Moreover,
we have that f is bent if and only if, for every a ∈ F

∗
2n , the

function Daf(x) = f(x+ a) + f(x) is balanced.

For every nonzero element a ∈ F∗2n the derivative of F in
the direction of a is the function DaF (x) = F (x+a)+F (x).
The function F is called almost perfect nonlinear (APN) if
for every a �= 0 and every b in F2n , the equation DaF (x) = b
admits at most 2 solutions. Used as S-Boxes in block ciphers,
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APN functions are useful since they oppose an optimal resis-
tance against differential cryptanalysis.

The APN property is invariant under the action of some
transformations of functions.

• Given A1, A2 affine permutations and A an affine
function, if F is APN then also G = A1 ◦F ◦A2+A
is APN; in this case the functions are called extended
affine equivalent (EA-equivalent).

• Two functions F and G are CCZ-equivalent if there
exists an affine permutation L of F

2
2n such that

L(ΓF ) = ΓG, where ΓF is the graph of the function
F , {(x, F (x)) : x ∈ F2n}. Also CCZ-equivalence pre-
serve the APN property. Moreover, we have that EA-
equivalence is a particular case of CCZ-equivalence.

Many different works have been focused on finding and
constructing new families of APN functions. Table I gives us
all known values for exponents d such that the function xd,
defined over F2n , is APN.

Since EA-equivalence preserves the algebraic degree of a
function and, in general, the functions listed in Table I have
different algebraic degrees, it is easy to verify that these APN
functions are EA-inequivalent. Instead the algebraic degree is
not an invariant for CCZ-equivalence. But also for this case it
was possible to prove some inequalities. In [10] it is shown

that two different Gold functions x2
i+1 and x2

j+1, where
1 ≤ i < j ≤ n/2, are CCZ-inequivalent and that in general
the Gold functions are CCZ-inequivalent to the Welch and to
any Kasami functions. Moreover, the inverse and Dobbertin
functions are not CCZ-equivalent to each other and to all other
known APN power functions, [10]. For all the other cases the
problem is still open.
Before the work in [11] the only known APN functions were
EA-equivalent to power functions and it was supposed that
all APN functions are EA-equivalent to power functions. In
[11] it is showed the existence of classes of APN mappings
EA-inequivalent to power functions. Such functions were
constructed by applying CCZ-equivalence to the Gold APN
mappings. In [12] we can find the first examples of APN
function CCZ-inequivalent to power functions. The first infinite
families of such APN polynomial can be found in [11]. In
Table II these functions are listed. They are all quadratic
functions.

In this work we focus on functions of the form

F ′(x) = F (x3) = L1(x3) + L2(x9), (1)

T I. KNOWN APN POWER FUNCTIONS xd OVER F2n

Functions Exponents d Conditions Degree Proven

Golden 2i + 1 gcd(i, n)=1 2 [2], [3]

Kasami 22i − 2i + 1 gcd(i, n)=1 i+1 [4], [5]

Welch 2t + 3 n = 2t+ 1 3 [6]

Niho 2t + 2t/2 − 1, t even n = 2t+ 1 (t+ 2)/2 [7]

2t + 2(3t+1)/2 − 1, t odd t+1

Inverse 22t − 1 n = 2t+ 1 n− 1 [8], [3]

Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i+ 3 [9]

where L1 and L2 are linear functions. From now on, we will
refer to L1 and L2 as to the linear functions

L1(x) =

n−1∑
i=0

bix
2i and L2(x) =

n−1∑
i=0

cix
2i , (2)

with bi, ci ∈ F2n . In particular we want to study conditions on
L1 and L2 such that F

′ is APN.

Some results are already been given in different papers.
In [15] the function x3 + Tr(x9) is proved to be APN for
any dimension n. Moreover, for n ≥ 7 it is proved to be
CCZ-inequivalent to the Gold functions, to the inverse and
Dobbertin functions and EA-inequivalent to power functions.
For a quadratic APN function F : F2n → F2n and a quadratic
boolean function f : F2n → F2, under some conditions it
is proved that the function F (x) + f(x) is APN. In particular
these conditions are that for every nonzero a ∈ F2n there must
exist a linear Boolean function la satisfying:

1) ϕf (x, a) = la(ϕF (x, a)),
2) if ϕF (x, a) = 1 for some x ∈ F2n then la(1) = 0,

where ϕχ(x, a) = χ(x) + χ(x+ a) + χ(a) + χ(0).
A similar theorem is proved when f : F2n → F2m , where m
is a divisor of n. Due to this result the following functions,
defined over F22m where m is an even positive integer, are
APN:

• x3 + Trn/m(x2
m+2) = x3 + x2

m+2 + x2
m+1+1,

• x3 + (Trn/m(x2
m+2))3.

When F is a Gold function, all possible APN mappings
F (x) + f(x), where f is a Boolean function, are computed
until dimension 15. The only possibilities, different from
x3 + Tr(x9), are for n = 5 the function x5 + Tr(x3) (CCZ-
equivalent to Gold functions) and for n = 8 the function
x9 + Tr(x3) (CCZ-inequivalent to power functions and to
x3 + Tr(x9)).

In [1] the function x3+Tr(x9) has been generalized to form
(1). It has been proved that for n even a sufficient condition
is L1(x) + L2(x

3) being a permutation over F2n . In the odd
dimension a weaker conditions lead to an APN mapping.
Moreover from the fact that by applying a linear function
l(x) = ax + b, with a ∈ F

∗
2n and b ∈ F2n , to a permutation

we obtain another one, a simply but useful statement has been
proved. In particular it is stated that for n even, L a linear
function over F2n , a ∈ F

∗
2n and b ∈ F2n if x + L(x3) is a

permutation over F2n , then the function

ax3 + L(a3x9 + a2bx6 + ab2x3) (3)

is APN over F2n .
The statement just mentioned gives new examples of APN
functions in even dimensions. The following infinite families
of function are proved to be APN also in odd dimensions:

1) x3 + a−1Tr(a3x9), with a ∈ F∗2n and any positive n;
2) x3 + a−1Tr3(a6x18 + a12x36), with a ∈ F

∗
2n and n

divisible by 3;
3) x3 + a−1Tr3(a3x9 + a6x18), with a ∈ F

∗
2n and n

divisible by 3.
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T II. KNOWN CLASSES OF QUADRATIC APN POLYNOMIAL OVER F2n CCZ-INEQUIVALENT TO POWER FUNCTIONS

Functions Conditions Proven

n = pk, gcd(k, 3)=gcd(s, 3k)=1,

x2
s+1 + α2k−1x2

ik+2mk+s p ∈ {3, 4}, i = sk mod p, m = p− i, [13]

n ≥ 12, α primitive in F∗2n

q = 2m, n = 2m, gcd(i,m)=1,

x2
2i+2i + bxq+1 + cxq(2

2i+2i) gcd(2i + 1, q + 1) �= 1, cbq + b �= 0, [14]

c �∈ {λ(2i+1)(q−1), λ ∈ F2n}, cq+1 = 1

q = 2m, n = 2m, gcd(i,m)=1,

x(x2
i
+ xq + cx2

iq) c ∈ F2n , s ∈ F2n � Fq , [14]

+x2
i
(cqxq + sx2

iq) + x(2
i+1)q X2i+1 + cX2i + cqX + 1

is irreducible over F2n}
x3 + a−1Trn(a3x9) a �= 0 [15]

x3 + a−1Tr3n(a
3x9 + a6x18) 3|n, a �= 0 [1]

x3 + a−1Tr3n(a
6x18 + a12x36) 3|n, a �= 0 [1]

n = 3k, gcd(k, 3)=gcd(s, 3k)=1,

ux2
s+1 + u2kx2

−k+2k+s+ v, w ∈ F
2k
, vw �= 1, [16]

vx2
−k+1 + wu2k+1x2

s+2k+s 3|(k + s) u primitive in F∗2n

n = 2k, gcd(s, k)=1, s, k odd,

αx2
s+1 + α2kx2

k+s+2k+ β �∈ F
2k
, γi ∈ F

2k
, [17], [16]

βx2
k+1 +

∑k−1
i+1 γix

2k+i+2i α not a cube

In [1] some conditions for constructing permutations, and
consequentially for constructing APN functions, are given.

• For a general positive n and a linear function L over
F2n if for every u ∈ F2n such that L(u) �= 0, the
condition

Trn

(
u

(L(u))3

)
=

{
0 if n is odd

1 if n is even

is satisfied, then the function x+L(x3) is a permuta-
tion.

• For n even integer and L linear function over F2n the
function x + L(x3) is a permutation of F2n if and
only if for every b ∈ F

∗
2n such that L

∗(b) �= 0 there
exists an element γ ∈ F2n such that L

∗(b) = γ3 and
Tr2n(γ

−1b) �= 0, where L∗ denotes the adjoint linear
mapping of L.

• For n odd integer and L linear function over F2n the
function x+L(x3) is a permutation of F2n if and only
if for every b ∈ F2n either L∗(b) = 0 or Trn(γ−1b) =
0, where L∗(b) = γ3 and L∗ denotes the adjoint linear
mapping of L.

The above mentioned function x9 + Tr(x3), for n = 8,
is a clear example of the fact that there are other possible
conditions for function of the form (1) to be APN. Therefore
with this work we try to find new conditions and new relations
for the APN property.

II. APN CONDITIONS

A. Necessary and sufficient conditions

Let F (x) = L1(x) + L2(x
3), with L1 and L2 as in (2),

be a function defined over F2n for a positive integer n and
F ′(x) = F (x3) = L1(x3) + L2(x9).

Just analysing the APN property for a quadratic function we
can state the following lemma.

Lemma 1. For any positive integer n and any linear functions
L1 and L2 of F2n , a function F ′ defined by (1) is APN if and
only if for every a ∈ F

∗
2n one of the following conditions is

satisfied:

1) if x �= 0, 1

L1(a
3(x2 + x)) + L2(a

9(x8 + x)) �= 0; (4)

2) if y �= 0 and Tr(y) = 0

L1(a
3y) + L2(a

9(y4 + y2 + y)) �= 0. (5)

Proof: Since F ′ is a quadratic function satisfying F ′(0) =
0, APN condition can be reformulated as the following:
for any a ∈ F∗2n
F ′(ax+ a) + F ′(ax) + F ′(a) = 0 if and only if x ∈ {0, 1}.
The equation above is equivalent to L1(a

3(x2 + x)) +
L2(a

9(x8 + x)) = 0, therefore we have that

L1(a
3(x2+x))+L2(a

9(x8+x)) �= 0 if and only if x �= 0, 1.

Lets denote now y = x2 + x. Since x �= 0, 1 we have that
y �= 0 and Tr(y) = 0. The second condition follows easily.

Proposition 1. Let F ′ be APN and, referring to (2), construct
the linear function L3(x) =

∑n−1
i+0 dix

2i with coefficients

d0 = b0 + bn−1 + c0 + cn−3

d1 = b1 + b0 + c1 + cn−2

d2 = b2 + b1 + c2 + cn−1

di = bi + bi−1 + ci + ci−3, for 3 ≤ i ≤ n− 1.

Then L3 is a 2-to-1 map satisfying L3(x) = 0 if and only if
x = 0, 1.
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Proof: Using equation (4) with a = 1, consider the
following map: L1(x

2 + x) + L2(x
8 + x). Analysing the two

linear functions we have: L1(x
2 + x) = (b0 + bn−1)x +∑n−1

i=1 (bi + bi−1)x
2i , L2(x

8 + x) = (c0 + cn−3)x + (c1 +

cn−2)x2 + (c2 + cn−1)x2
2

+
∑n−1

i=3 (ci + ci−3)x
2i .

Therefore L1(x
2 + x) + L2(x

8 + x) corresponds to the linear
function L3(x) described above. From Lemma 1 we have that
L3(x) = 0 if and only if x = 0, 1.

The following lemma gives a quite fast way to verify if a
function F ′ can be APN, since you have to evaluate it over a
third of the elements of the space.

Lemma 2. For n even assume F ′ is APN. Let α ∈ F
∗
2n be

a primitive element and k = 2n−1
3 . Then F ′(a) �= 0 for any

a �= 0 or equivalently F (α3j) = F ′(αj) �= 0 for 0 ≤ j ≤ k−1.

Proof: For n even we have Tr(1) = 0. Therefore using
equation (5) with y = 1 we get for any a �= 0

L1(a
3) + L2(a

9) = F (a3) = F ′(a) �= 0.

For a �= 0 we have that a = αj with 0 ≤ j ≤ 2n−2. Since we
consider just cubic power of a, we can restrict the possibilities
to 0 ≤ j ≤ k − 1. This concludes the proof.

Remark 1. If we consider j = 0 in Lemma 2 then

L1(1) + L2(1) =
n−1∑
i=0

bi +
n−1∑
i=0

ci =
n−1∑
i=0

(bi + ci) �= 0.

Moreover, if we just consider linear functions defined over F2
(i.e. bi, ci ∈ F2) then a fast way to check if F ′ is not APN is
by verifying that L1 and L2 have the same parity number of
monomials.

Lemma 3. Let n be an even number multiple of 3 and F ′ be
APN. Then for any a �= 0 L1(a

3β) �= 0, with β ∈ F
∗
23 such

that Tr3(β) = 0.

Proof: Consider such an element β and call m the

integer n3 . We have that Trn(β) is equal to
∑m

j=1

∑2
i=0 β

2i =∑m
j=1 Tr3(β) = 0. Therefore we can apply (5) with y = β and

obtain

L1(a
3β) + L2(a

9(β4 + β2 + β)) = L1(a
3β) �= 0 ∀a �= 0.

Lemma 4. Consider a function F ′ from F2n to itself defined
as in (1). F ′ is APN if and only if it satisfies the following
condition:

for every a, y �= 0 with Tr(y)=0 if an element t ∈ F2n

satisfies Tr(t)=0 and

L1(a
3y) = L2(a

9y3t)

then L2(a9(y4 + ty3 + y2 + y)) �= 0.

Proof: By Lemma 1 we have that APN property for F ′
is equivalent to

for any a, y ∈ F∗2n , Tr(y) = 0 L1(a
3y)+L2(a

9(y4+y2+y)) �= 0.

Assume that there exists an element t that satisfies the
conditions in the statement. Let us re-write the formula above

as
0 �= L1(a

3y) + L2(a
9(y4 + y2 + y)) =

L1(a
3y) + L2(a

9y3t) + L2(a
9(y4 + ty3 + y2 + y)) =

L2(a
9(y4 + ty3 + y2 + y)).

Therefore the APN condition is equivalent to

L2(a
9(y4 + ty3 + y2 + y)) �= 0.

On the other hand assume that for any t of null trace we have
L1(a

3y) �= L2(a9y3t). Therefore

L1(a
3y) �∈ Ω = {L2(a9y3t) : Tr(t) = 0}.

Let us consider the second term of the formula,

L2(a
9(y4 + y2 + y)) = L2(a

9y3(y + 1/y + 1/y2)).

Since Tr(y + 1/y + 1/y2)=0, the term belongs to the set Ω.
Therefore the relation is again respected.

Corollary 1. For general a �= 0 and y �= 0 with Tr(y)=0, if
the equation

L1(a
3y) = L2(a

9y3t)

is satisfied only for t with Tr(t)=1, then the function F ′(x) =
F (x3) = L1(x

3) + L2(x
9) is APN.

Proof: In this case the hypothesis of the previous lemma
is always satisfied, since there is no element t such that
L1(a

3y) = L2(a
9y3t) and Tr(t) = 0. Therefore the function

F ′ is APN.

B. On APN functions of the form x9 + L(x3)

From [15] we know that in F28 the function F
′(x) = x9+

Tr(x3) is APN.

Lemma 5. If 3|n then the function x9 + Tr(x3) is not APN
over F2n .

Proof: From Lemma 1 we have that x9 + Tr(x3) is APN
if and only if for any a �= 0 and any x �= 0, 1

Tr(a3(x2 + x)) + a9(x8 + x) �= 0.

If we now consider n multiple of 3, x ∈ F23 \ F2 and a = 1
we obtain

Tr(a3(x2 + x)) + a9(x8 + x) = 0.

Using Lemma 4 it was possible to implement, using the
software MAGMA, a fast algorithm that checks if x9+Tr(x3)
is APN over F2n . Running the code for n up to 200 the only
APN functions are for dimensions 4, 5 and 8.

Let us consider now a more general form for F ′, G(x) =
x9 + L(x3) with L linear function in F2n [x].

With some computational work, done with MAGMA, we
tried to find more APN functions of this form in other dimen-
sions. In Table III we summarize the results we obtained. With
α we indicate a primitive element of F∗2n . We searched for
APN functions in F2n , up to n = 10, of the form x9+L(x3).
We studied their CCZ-equivalence relation and obtained the
representatives for each dimension. Obviously for every n not
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T III. APN FUNCTIONS OF THE FORM x9 + L(x3) OVER F2n

n CCZ-eq Representatives

4 1 L = 0

5 2 L = 0, L = Tr

6 2 L = α44x+ αx2,

L = α23x+ x2
2

7 1 L = 0

8 4 L = 0, L = x2 + x2
4
,

L = x2
3
+ x2

7
, L = Tr

L = x2
2
+ α85x2

3
+ x2

4

9 0 -

10 2 L = 0,

L = α1021x+ α1022x2 + αx2
2

multiple of 3, the Gold function x9 (corresponding to the case
L(x) = 0) is APN.

For greater dimensions we just checked the possible APN
function of the form x9 + L(x3) with L ∈ F2[x], up to CCZ-
equivalence.

• for n = 11 there are no APN except F (x) = x9;

• for n = 12 there are no APN;

• for n = 13 there are no APN except F (x) = x9.

• for n = 14 there are no APN except F (x) = x9;

• for n = 15 there are no APN;

• for n = 16 there are no APN except F (x) = x9.

For n = 4 the function x9 + Tr(x3) is CCZ-equivalent to
the Gold function x9.
For n = 6 the found APN functions are not CCZ-equivalent
to functions x9 + L(x3) defined over F2. Moreover we get:

• for L(x) = α33x + αx2 the function x9 + L(x3) is
CCZ-equivalent to x3 = x3 + Tr(x9);

• for L(x) = α23x + x2
2

the function x9 + L(x3) is
CCZ-equivalent to x3 + α−1Tr(α3x9).

Both of these functions belong to the class of APN functions
studied in [1]
For n = 8 we compared the found APN mappings with the
list of known APN function in dimension 8 in [18]. We get
the following:

• for L(x) = x2+x2
4

the function x9+L(x3) is CCZ-
equivalent to x3 + Tr(x9);

• for L(x) = x2
3

+x2
7

the function x9+L(x3) is CCZ-
equivalent to x3;

• for L(x) = x2
2

+ α85x2
3

+ x2
4

the function x9 +
L(x3) is not CCZ-equivalent to any function of the
form x3 + a−1Tr(a3x9) but it is CCZ-equivalent to
function α135x144 + α120x66 + α65x18 + x3, no. 6 in
the list of APN mapping of F28 in [18].

C. On the number of bent components

From [19] we get the following theorem.

Theorem 1. Let F be a function from F2n to F2n . Then for
any non-zero a ∈ F2n∑

λ∈F2n
F2(Dafλ) ≥ 22n+1.

Moreover, F is APN if and only if for every non-zero a ∈ F2n∑
λ∈F2n

F2(Dafλ) = 22n+1.

Lemma 6. F ′(x) = L1(x3) + L2(x9) is an APN function if
and only if for any a ∈ F

∗
2n there exists one and only one

λ ∈ F∗2n such that Tr(λL1(ax2 + a2x) + λL2(ax8 + a8x)) is
constantly 0.

Proof: Since F ′ is a quadratic function, every component
has at most algebraic degree 2 and, consequently, the Boolean
function Daf

′
λ can be either affine or constant. If Daf

′
λ

is affine then F(Daf ′λ) = 0. In the other case we have
F(Daf ′λ) = ±2n and F2(Dafλ) = 22n. Let consider the
set

Δa = {λ ∈ F2n : Daf
′
λ is constant}, (6)

then ∑
λ∈F2n

F2(Daf
′
λ) = 22n · |Δa|.

From the previous theorem we have that F ′ is APN if and
only if the sum is equal to 22n+1, hence if and only if |Δa| =
2. Since f ′0, and consequently Daf

′
0, is the constantly null

function, we have that 0 belongs to the set Δa for every a �= 0.
Therefore, F ′ is APN if and only if |Δ∗a| = 1, with

Δ∗a = Δa \ {0}. (7)

This is true for every generic quadratic APN function F ′(x).
In our specific case we have

Daf
′
λ(x) = Tr(λ[F ′(x) + F ′(x+ a)]) =

Tr(λ[L1(ax2 + a2x+ a3)+
+L2(ax

8 + a8x+ a9)]) =
Tr(λ[L1(ax2 + a2x) + L2(ax8 + a8x)])+

+Tr(λ[L1(a3) + L2(a9)]).

In order to study its constant conditions it is sufficient to
study the function g(x) = Tr(λ[L1(ax2 + a2x) + L2(ax8 +
a8x)]). Since g(0) = 0, we have that if g is constant then it
is the constant zero function and this concludes the proof.

Remark 2. Equivalently, we can study the conditions for
Tr(λL1(a3[x2+x])+λL2(a9[x8+x])) to be the constant null
function. Due to the property of the Trace function we can
study the conditions for λL1(a

3[x2 + x]) + λL2(a
9[x8 + x])

to be equal to η + η2, with η = η(a, λ, x).

Recalling the notation used in the proof we defined:
Δa as in (6) and Δ∗a as in (7);

Vλ = {a ∈ F2n : Daf
′
λ is constant}; (8)

V ∗λ = Vλ \ {0}. (9)

From Proposition 1 in [20] we get that the dimension of
the kernel of fλ and n have the same parity, where the kernel
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of a quadratic form f is the subspace of F2n
{u ∈ F2n : f(u + v) + f(u) + f(v) = 0 for any v ∈ F2n}.
From Lemma 1 in [20] we get that, since fλ is a quadratic
Boolean function, its kernel corresponds to the subspace Vλ.
Therefore we have dimF2(Vλ) ≡ n mod 2.

Moreover let’s consider the set

Γi = {λ �= 0 : dim(Vλ) = i}.
If Γi not empty then i has the same parity as n. It can be
easily proved by considering a not null element λ in the set,
i.e. such that dimVλ = i. Since the dimension of Vλ has the
same parity as n, the same can be state on i.
The set Γ0 correspond to the set of all bent components.

Corollary 2. From Lemma 6 it is straightforward to prove
that APN property for a quadratic function is equivalent to
the following statement: for any λ1 �= λ2 ∈ F∗2n ,

Vλ1 ∩ Vλ2 = ∅ and
∑
λ �=0

|V ∗λ | = 2n − 1.

1) Computational Results: Using the software MAGMA
we tried to verify for functions F ′ of form (1) defined over
small dimensions the relation between the APN property and
the number of bent components. From the results obtained
taking random linear functions L1, L2 and constructing F

′ for
n ∈ {4, 6, 8} the relation seems the following one:
Conjecture 1. For an even n, a function F ′ of the form (1) is
APN if and only if it has exactly 2

3 (2
n − 1) bent components.

We know that this is not true for general quadratic func-
tions. Indeed consider the quadratic APN function presented
by Dillon in 2006 [21]

F (x) = x3 + u11x5 + u13x9 + x17 + u11x33 + x48;

defined over F26 where u is a primitive element, root of the
polynomial x6 + x4 + x3 + x + 1. This function has 46 bent
components and 46 > 2

3 (2
6 − 1) = 42.

III. CONCLUSION

In this work we continued the study of quadratic functions
of the form L1(x

3)+L2(x
9) and related APN conditions. New

necessary and sufficient conditions are presented in this paper.
Such conditions allow us to compute a faster algorithm that
checks the existence of other APN functions of such form.
New results are given considering functions of the form x9 +
L(x3). Up to CCZ-equivalence new APN functions are found
in different low dimensions.
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