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Abstract—According to the M3 architecture (multidevice,
multivendor, multidomain), a smart space is created by deploying
a Semantic Information Broker (SIB) in a given Internet of Things
(IoT) environment. The deployed SIB enables information sharing
for all digital devices participating in the IoT environment. In this
study, we consider CuteSIB—a new SIB implementation for the
Smart-M3 platform, where the class of SIB host devices covers
such Qt-based equipment as common computers (e.g., laptops
and personal computers), embedded computers (e.g., single-board
computers and wireless routers), and personal mobile computers
(e.g., smartphones and tablets). Our study focuses on performance
evaluation of the CuteSIB operation with a multitude of devices
that simultaneously participate in data sharing, information
processing, and service delivery. Our simulation experiments
applies a scalability model for a smart space application with
the three functional groups of participating devices: sensors,
reasoners, and mobile clients. In the experiments, the number
of devices is varied in each group as well as the parameters
of interaction behavior with SIB. The evaluation shows the
scalability level that CuteSIB can achieve being deployed on a
host device of moderate capacity in an IoT environment.

I. INTRODUCTION

Smart spaces form a programming paradigm, which is now
augmented with the rapidly advancing suit of information and
communication technologies, for creating a certain class of
ubiquitous service-oriented environments—smart or intelligent
environments [1], [2]. Such an environment is typically as-
sociated with a physical spatial-restricted place (office, room,
home, city square, etc.) and equipped with a variety of devices
(sensors, data processors, actuators, consumer electronics, per-
sonal mobile devices, multimodal systems, etc.).

Smart spaces are based on two innovative concepts [3]:
the Semantic Web (SW) and the Internet of Things (IoT). The
SW technology stack is primarily composed by technologies
allowing the representation (RDF, RDFS, OWL) and retrieval
(SPARQL) of semantically annotated data [4]. The IoT concept
(e.g., see [5]) is a large-scale evolution of the innovative vision
of Mark Weiser about ubiquitous computing [6]: the Internet,
in addition to personal desktops and mobile computers, is
also populated with billions of heterogeneous interconnected
smart devices, which represent (and advance) physical things.
Everyday life objects, alongside traditional computers, become
data processors and service constructors to their users [7], [8].

Both SW and IoT form a vast research area characterized
by a high interdisciplinary level, a high process dynamic-
ity, and heterogeneity of the involved devices and applica-
tions. Even if we limit our consideration with the Smart-
M3 platform [9] for creating smart spaces, a wide range of

application domains is covered [10]: from collaborative work
environments and electronic health to cybermedicine, from
electronic tourism and cultural heritage education to smart
cities, from transport logistics and Industrial Internet to socio-
cyber-physical systems, and many more.

One of the IoT-enabled use cases is a system consisting of
sensors, reasoners, and mobile clients. In particular, this use
case is typical for collaborative work environments such as
the SmartRoom system [10] and for mobile healthcare [11].
Our study focuses on performance scalability evaluation of
CuteSIB—an implementation variant of Smart-M3 SIB with
the focus on a wide spectrum of Qt-based IoT devices [12].

Previous study [3] showed outperformance of CuteSIB
compared with existing Smart-M3 SIB implementations. That
comparison was for typical scenarios without stress workload.
In this work, we simulate concurrent participation of a multi-
tude of sensors, reasoners, and mobile clients in the same smart
space. The performance evaluation focuses on determining the
capacity bounds when the amount of participants is growing
and reaching the stress workload that exhausts the SIB host
device capacity.

The rest of the work is organized as follows. Section II
describes smart spaces application development using the
Smart-M3 platform. Section III introduces our simulation
model for evaluating CuteSIB. Section IV provides results of
performance scalability evaluation. Section V summarizes our
experimental conclusions.

II. DEVICES IN A SMART SPACE APPLICATION

Based on the Smart-M3 platform [9] a smart space allows
its participating devices to communicate with each other using
the Semantic Web methods and the subscription operation. An
IoT environment can include extremely many devices (small or
large) and there is still no wide-spread effective approach for
solving large multi-party interaction [13], [14]. Participation
of large amounts of capacity-heterogeneous devices leads to
performance degradation and low scalability of many existing
software development methods for IoT environments.

Many devices are sensors or sensing devices that collect
user context. Such devices periodically provide new data and
make updates in the smart space. Another class of devices that
perform data processing to deduce new knowledge and facts
that could be useful to the end-user. An important class of
devices are for end-users clients (the typical case is personal
mobile devices such as smartphones). Basically, they should
receive the result of processing and make it available for the
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end-users (e.g., visualization). Additionally, a client can also
participate in service construction together with other devices
as well as interacting with some other mobile clients.

The recent study of Smart-M3 platform implementations
has shown the advantages of the CuteSIB platform over
others [3]. In this work, we evaluate the CuteSIB performance
for operation in IoT environments with many concurrently par-
ticipating devices. CuteSIB targets even low-capacity devices
with limited computing, storage, and network capabilities. The
problem of this experimental evaluation is to quantitatively
determine the scalability bounds of CuteSIB when the number
of devices is growing.

III. SIMULATION MODEL

Organization of a real-life experiment testbed with large
amount of participating devices is expensive. Instead, we apply
the simulation modeling A small set of desktop computers are
used to allocate many parallel processes, where each process
corresponds to a single agent acting as a Knowledge Processor
(KP). Each KP simulates the activity for device from one of
the following three groups as Fig. 1 shows.

• Sensors that are regular publishers of specified small
data fragments.

• Reasoners that observe sensed data as a whole and
extract information as a service from this fragmented
data corpus.

• Mobile clients that detect the activity of reasoners to
react on new information appearance.

Each sensor makes (regularly and randomly) update op-
eration of its data values, which match the interest of some
reasoners. The update rate of a sensor is λsns (operations per
second, s−1). The time between two consecutive updates is
selected uniformly at random. There are nsns sensors in total,

Fig. 1. Simulation model for a smart space application

where nsns can be large. The assumption reflects that sensors
are responsible for the data workload to the smart space.

Each reasoner is subscribed on its own part of data con-
currently updated by a large subgroup of sensors. Whenever
some sensor is making an update in this part then the reasoner
is notified to construct its service, i.e., the reasoner reads the
updated data from the smart space, makes their local process-
ing, and publishes the new derived information in the smart
space. There are nrsn reasoners in total, where nrsn � nsns.
The assumption reflects that reasoners are responsible for the
workload of tracking the smart space.

Each mobile client is interested in new information pro-
vided by any reasoner (as a service). In dependence on the
detection way of such an event, mobile clients are categorized
on two types: 1) with explicit use of the subscription operation
and 2) active query to periodically check the service availabil-
ity. first subscribes on all reasoners and second uses periodical
query. There are nsb

cln and nqr
cln clients in total, where

nrsn � nsb
cln + nqr

cln � nsns.

In the experiments, we do not mix clients of the different types,
i.e., we assume that either nsb

cln > 0 and nqr
cln = 0 or nsb

cln = 0
and nqr

cln > 0.

To reflect the settings of a smart space application, our
simulation model assumes the following proportion:

nrsn : nsb
cln + nqr

cln : nsns = 1 : 10 : 100. (1)

That is, a large number of sensors feeds the smart space
with raw data. The latter are source for a small number
of reasoners to construct services by tracking updates and
processing these raw data (one service—many sensed data
items). The number of mobile clients is in the middle such
that each service is provided to several end-users.

We consider the case of a low- or moderate-capacity
computer to host a SIB. (The typical case is a desktop or a
laptop.) This assumption leads to a limited number of simulta-
neous network connections from KPs to the SIB. In particular,
the Smart-M3 platform primarily support TCP connections.
Depending on a programming technique, a given KP can either
establish one connection for many operations with SIB or
the KP establishes (and then closes) a separate connection
for every operation with SIB. In both cases, the parameter
λ = nsnsλsns cannot be made high for the considered class of
SIB host computers.

Therefore, we can use the two key scalability variations.
First, nsns is increased while preserving the sum update rate
λ for sensors in reasonable bounds. In particular, the delay
between updates for a sensor is selected uniformly from
(0, 2nsns/λ). For an example, if nsns = 500 sensors and
λ = 10 s−1 then the delay is in (0, 100) s. Second, λsns is
varied for fixed nsns. The latter cannot be large in this case.

IV. EXPERIMENTS

Our simulation experiments use four modest-capacity com-
puters, see their specification in Table I. We experimented with
CuteSIB version 0.5.0. Local wireless network is primarily
used except the computer for simulating the reasoners (it
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TABLE I. COMPUTERS TO ALLOCATE SIMULATED KPS

Functional role Device specification
SIB host machine CPU Intel Core i3, CPU 1.90 GHz, RAM 4Gb,

wired connection with 100 Mbps, Ubuntu 15.10

Sensors KP CPU Intel Core i5, CPU 2.50 GHz, RAM 3Gb,
wireless connection with 21 Mbps, XUbuntu 16.04

Reasoner KP CPU Intel Dual Core, CPU 2.60 GHz, RAM 2Gb,
wired connection with 100 Mbps, XUbuntu 16.04

Mobile Client KP CPU Intel Core i5, CPU 1.70 GHz, RAM 6Gb,
wireless connection with 21 Mbps, Ubuntu 15.10

TABLE II. AVERAGE OPERATION PROCESSING TIME FOR DIFFERENT

SIZES OF DEVICE GROUPS

Group
Size proportion – #sensors : #reasoners : #clients

1 : 10 : 100 3 : 30 : 300 4 : 40 : 400

Sensors 0,016 0,620 1,796

Reasoners 0,018 0,761 1,914

Clients 0,020 0,641 1,914

Fig. 2. Operation performance for different sizes of device groups

uses wired connection). All simulated KPs (sensors, reasoners,
and clients) are implemented using Python 2.7 language and
PythonKPI used for SIB access primitives.

For each KP group one KP is selected (a typical agent)
that calculate the time needed to perform an operation with
the SIB.

Experiment I: The number of KPs is varied keeping
proportion (1). We evaluate the upper bound for the sum
rate (operations per second) to the SIB influenced by all
three groups of KPs. Mobile clients use subscription in this
experiment. Table II shows the results for the fixed delay
time τ = 10 s between consequent updates for every sensor.
For an example in the largest case, the sum SIB workload is
80 s−1, which is made by 444 KPs (400 sensors, 40 clients,
and 4 reasoners). The average processing time is 1.8 s for an
operation. Additional statistical measures are shown in Fig. 2.

Experiment II: We analyze the role of device group
size in conjunction with increasing the sum operation rate
to the SIB. Mobile clients do not use subscription in this
experiment. Table III shows the average operation processing
time (in seconds). For example the rate 20 s−1 of 555 agents
leads to the average processing time 0,03 s. While 1110 agents
with the same sum rate lead to the average time 0,08 s. The
dependency on the rate is shown in Fig 3. We also found that
for relatively high load (e.g., 50 s−1) subscription notifications
to reasoners are typically received earlier than response to
sensors for updates.

The performance degrades when the sum rate exceeds 30
operations per second. This observation is the result of the

TABLE III. AVERAGE OPERATION PROCESSING TIME FOR DIFFERENT

SUM RATES TO SIB

Agent
Size proportion – #sensors : #reasoners : #clients / rate
5 : 50 : 500 /

20 s−1
10 : 100 :

1000 / 20 s−1
5 : 50 : 500 /

50 s−1
50 : 500 :

5000 / 5 s−1

Sensors 0,037 0,089 2,703 16,548

Reasoners 0,037 0,085 3,068 2,390

Clients 0,014 0,063 2,620 8,875

Fig. 3. Operation performance in dependence on the sum rate to SIB

capacity of the SIB host machine. The latter cannot maintain
many network connections simultaneously. Another reason is
ineffective implementation of subscription operation in SIB.
The recent version of CuteSIB straightforwardly inherits the
code from RedSIB, and further development is needed to
optimize subscription maintenance in SIB.

V. CONCLUSION

This work showed that CuteSIB implementation is suitable
for creating smart spaces in resource-restricted and localized
IoT environments. When compared with other Smart-M3 SIB
implementations, the performance and capacity bounds are
higher. Furthermore, the higher dependability level is achieved
when SIB resists stress workload (although with exhausted
capacity) and continues the operation after the workload
reduction. The most expensive is persistent queries as the
subscription operation, and further development is needed
to optimize the SIB performance for large amount of si-
multaneous subscriptions. Nevertheless, when the number of
subscription is moderate the SIB performance is reasonable for
typical workload generated in a localized IoT environment.
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