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Abstract—In this extended abstract, we computationally check
and list the CCZ-inequivalent APN functions from infinite
families on F2n for n from 6 to 11. These functions are selected
with simplest coefficients from CCZ-inequivalent classes. This
work can simplify checking CCZ-equivalence between any APN
function and infinite APN families.

I. INTRODUCTION

A cryptosystem is the system provides encryption and

decryption. Algorithms, protocols, keys are the fundamental

components in any cryptosystem. Algorithms impact how the

encryption and decryption take place and they encompass

symmetric algorithms and asymmetric algorithms. Symmetric

algorithms use same keys for encryption and decryption, while

asymetrric algorithms use different keys. DES, AES, and

blowfish are well known symmetric algorithms. Symmetric

algorithms are the oldest and most used algorithms among

cryptosystems. Symmetric algorithms have two main types,

one is block cipher which encrypts fixed-size blocks at a time

and the other one is stream cipher which encrypts one bit or

byte at a time.

One critical component in symmetric block cipher is

substitution-box (S-box). Substitution substitutes some values

to other values instead. The design of S-boxes in symmetric

block cipher is based on Claude Elwood Shannon’s theory

about designing secure cryptosystems. Shannon is called the

father of contemporary cryptography. In particular, he theo-

retically deduced that both confusion and diffusion should be

present in a computationally secure cryptosystem. Confusion

is for making the relation between ciphertext and keys as

complex as possible. Diffusion is for spreading the influence

of any bit of plaintext over ciphertext as much as possible.

S-boxes provide confusion for symmetric block cipher cryp-

tosystems. They take some number of bits of input from

one finite field and transform them into output from other

finite field. The reasons that S-boxes are the most critical

components in symmetric block cipher are as following: 1)

They are the only nonlinear components in block cipher; 2)

They provide confusion to block cipher; 3) There is strong

connection between cryptographic attacks and certain proper-

ties of S-boxes.

II. PRELIMINARIES

For positive integers n and m, a Boolean function

f is a function from finite filed F2n to finite filed F2.

Likewise, a function F is a vectorial Boolean function

if it is from finite filed F2n to another finite filed F2m .

Any vectorial boolean function F : F2n → F2m can be

represented by m Boolean functions as F (x1, x2, ..., xn) =
{f1(x1, x2, ..., xn), ..., fm(x1, x2, ..., xn)}. f1, f2...fm are

called coordinate functions of F and each of them has n
variables. Any nonzero linear combination of the coordinate

functions is called a component function of F . The

mathematical nature of S-boxes is represented by vectorial

Boolean functions.

As we mentioned, there is close connection between suc-

cessfulness of many attacks on symmetric block cipher and

certain properties of S-boxes (or vectorial Boolean functions).

Two most well known and powerful attacks on block cipher

are linear attacks and differential attacks. Linear attacks try to

find the linear relationship between plaintext and ciphertext in

order to deduce keys. Nonlinearity of S-boxes (defined below)

can measure the resistance of block cipher to linear attacks.

Differential attacks study how the difference of input can

impact the difference of output. The differential uniformity of

S-boxes (defined below) define the resistibility to differential

attacks. Correspondingly, algebraic degree of S-boxes matters

with the resistance to high order differential attacks. The

low degree multivariate equation of S-boxes influences the

resistance to algebraic attacks. The univariate polynomial

degree of S-boxes measures the ability against interpolation

attacks. There are also other attacks, the resistance to those

attacks highly depend on one or more properties of S-boxes.

In this extended abstract, we will only focus on nonlinearity,

differential uniformity and algebraic degree of S-boxes.

The nonlinearity of any vectorial Boolean function F :
F2n → F2m is the minimum hamming distance between all

nonzero linear Boolean functions over F2n and component

functions of F . The nonlinearity N(F ) can also be represented
by Walsh transofrm. Walsh transform λF is defined as:

λF (a, b) =
∑

x∈F2n
(−1)b·F (x)+a·x, a ∈ F2n , b ∈ F∗2m ,

and corresponding Walsh spectrum is the set as following:

{λF (a, b) : a ∈ F2n , b ∈ F∗2m}.
Then the nonlinearity of F equals:

N(F ) = 2n−1 − 1

2
max

a∈F2n ,b∈F∗2m
|λF (a, b)|.
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TABLE I
KNOWN APN POWER FUNCTIONS xd ON F2n

Functions Exponents d Conditions Proven

Gold 2i + 1 gcd(i, n) = 1 [7], [8]

Kasami 22i − 2i + 1 gcd(i, n) = 1 [9], [10]

Welch 2t + 3 3 [11]

Niho 2t + 2
t
2 − 1, t even n = 2t+ 1 [12]

2t + 2
3t+1
2 − 1, t odd

Inverse 22t − 1 n = 2t+ 1 [13], [8]

Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i [14]

TABLE II
FAMILIES OF APN POLYNOMIAL FUNCTIONS ON F2n

N◦ Functions Conditions References

n = pk, gcd(k, p) = gcd(s, pk) = 1,

1-2 x2
s+1 + α2

k−1x2
ik+2mk+s p ∈ {3, 4}, i = sk mod p, m = p− i, [15]

n ≥ 12, α primitive in F∗2n
q = 2m, n = 2m, gcd(i,m) = 1,

3 x2
2i+2i + bxq+1 + cxq(2

2i+2i) gcd(2i + 1, q + 1) �= 1, cbq + b �= 0, [16]

c �∈ {λ(2i+1)(q−1), λ ∈ F2n}, cq+1 = 1

q = 2m, n = 2m, gcd(i,m) = 1,

4 x(x2
i
+ xq + cx2

iq) c ∈ F2n , s ∈ F2n \ Fq, [16]

+x2
i
(cqxq + sx2

iq) + x(2
i+1)q X2i+1 + cX2i + cqX + 1

is irreducible over F2n

5 x3 + a−1trn1 (a
3x9) a �= 0 [17], [18]

6 x3 + a−1trn3 (a
3x9 + a6x18) 3|n, a �= 0 [17]

7 x3 + a−1trn3 (a
6x18 + a12x36) 3|n, a �= 0 [17]

n = 3k, gcd(k, 3) = gcd(s, 3k) = 1,

8-10 ux2
s+1 + u2

k
x2
−k+2k+s+ v, w ∈ F

2k
, vw �= 1, [19]

vx2
−k+1 + wu2

k+1x2
s+2k+s 3|(k + s), u primitive in F∗2n

n = 2k, gcd(s, k) = 1, s, k odd,

11 αx2
s+1 + α2

k
x2
k+s+2k+ β /∈ F

2k
, γi ∈ F

2k
, [19], [20]

βx2
k+1 +

∑k−1
i=1 γix

2k+i+2i α not a cube

The higher is the nonlinearity N(F ), the better is the
resistance of F to linear attacks. There is a universal upper

bound of nonlinearity for any vectorial Boolean function.

It means any vectorial Boolean function’s nonlinearity is

lower or equal than this uppper bound. The bound is 2n−1 −
2
n
2−1 for any vectorial Boolean function F : F2n → F2m .

Functions which achieve this bound are called bent functions.

Since bent functions have the highest nonlinearity, so they

are optimal against linear attacks. Bent functions only exist

when n is even and m ≤ n/2. When n = m and n is odd,
the upper bound is smaller and changes to N(F ) ≤ 2n−1 −
2
n−1
2 . Functions which achieve this bound when n is odd are

Almost Bent(AB) functions. When n = m and n is even, it is
conjectured that the bound is N(F ) ≤ 2n−1 − 2

n
2 .

A vectorial Boolean functions F : F2n → F2m is differential

δ-uniform if the equations

F (x+ a)− F (x) = b, ∀a ∈ F∗2n , ∀b ∈ F2m ,
have at most δ solutions. The lower is the differential uni-
formity, the better is the resistance to differential attacks.

Differential uniformity δ has lower bound if n �= m as

δ ≥ 2(n−m). Functions achieve this bound are Perfect Non-

linear(PN) functions. A function is PN if and only if it is

bent. Since bent functions have highest nonlinearity, thus

PN (or bent functions) have highest nonlinearity and lowest

uniformity. When n = m, the functions with lowest possible
differential uniformity are Almost Perfect Nonlinear (APN)

functions which are 2-uniform. Every AB function is APN,

but the converse is not true. Any vectorial Boolean function

F : Fn2 → F
m
2 can be represented by its Algebraic Normal

Form (ANF) as follow:

F (x1, ..., xn) =
∑

u∈Fn2
au

n∏

i=1

xuii , au ∈ Fm2 , u = (u1, ..., un).

The degree of F - d◦(F ) is the degree of its ANF. F is affine
if d◦(F ) ≤ 1 and it is quadratic if d◦(F ) = 2. If n = m, F
can be represented as univariate polynomial over F2n :

F (x) =
2n−1∑

i=0

cix
i, ci ∈ F2n .

We denote trnm as the trace functions from F2n → F2m :

trnm(x) = x+ x2
m

+ x2
2m

+ · · ·+ x2(n/m−1)m ,
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TABLE III
CCZ-INEQUIVALENT APN FUNCTIONS OVER F2n FROM THE KNOWN APN CLASSES (6 ≤ n ≤ 11 AND a PRIMITIVE IN F2n )

n N◦ Functions Families from Tables I,II Relation to [22]

6
6.1 x3 Gold Table 5: N◦1.1
6.2 x6 + x9 + a7x48 N◦3 5: N◦1.2
6.3 ax3 + a4x24 + x17 N◦8-10 5: N◦2.3

7

7.1 x3 Gold Table 7 : N◦1.1
7.2 x5 Gold 7 : N◦3.1
7.3 x9 Gold 7 : N◦4.1
7.4 x13 Kasami 7 : N◦5.1
7.5 x57 Kasami 7 : N◦6.1
7.6 x63 Inverse 7 : N◦7.1
7.7 x3 + tr71(x

9) N◦5 7 : N◦1.2

8

8.1 x3 Gold Table 9 : N◦1.1
8.2 x9 Gold 9 : N◦1.2
8.3 x57 Kasami 9 : N◦7.1
8.4 x3 + x17 + a48x18 + a3x33 + ax34 + x48 N◦4 9 : N◦2.1
8.5 x3 + tr81(x

9) N◦5 9 : N◦1.3
8.6 x3 + a−1tr81(a

3x9) N◦5 9 : N◦1.5

9

9.1 x3 Gold
9.2 x5 Gold
9.3 x17 Gold
9.4 x13 Kasami
9.5 x241 Kasami
9.6 x19 Welch
9.7 x255 Inverse
9.8 x3 + tr91(x

9) N◦5
9.9 x3 + tr93(x

9 + x18) N◦6
9.10 x3 + tr93(x

18 + x36) N◦7

10

10.1 x3 Gold
10.2 x9 Gold
10.3 x57 Kasami
10.4 x339 Dobbertin
10.5 x6 + x33 + a31x192 N◦3
10.6 x72 + x33 + a31x258 N◦3
10.7 x3 + tr101 (x9) N◦5
10.8 x3 + a−1tr101 (a3x9) N◦5

11

11.1 x3 Gold
11.2 x5 Gold
11.3 x9 Gold
11.4 x17 Gold
11.5 x33 Gold
11.6 x13 Kasami
11.7 x57 Kasami
11.8 x241 Kasami
11.9 x993 Kasami
11.10 x35 Welch
11.11 x287 Niho
11.12 x1023 Inverse
11.13 x3 + tr111 (x9) N◦5

and we write trn1 when m = 1.
There are three equivalence relations of vectorial Boolean

functions which keep the uniformity (APN-ness) and nonlin-

earity (AB-ness) the same. They are affine-equivalence, Ex-

tended Affine (EA)-equivalence and Carlet-Charpin-Zinoview

(CCZ)-equivalence. CCZ-equivalence is more general than

EA-equivalence and EA-equivalence is more general than

affine-equivalence.

For example, if two vectorial Boolean functions are affine-

equivalent, they are also EA and CCZ-equivalent, however

if two functions are CCZ-equivalent, they may not be affine

or EA-equivalent. In particular, CCZ-equivalence doesn’t pre-

serve the algebraic degree, but affine and EA-equivalence do.

Two vectorial Boolean functions F ,F ′: F2n → F2m are affine-

equivalent if F ′ = A1 ◦ F ◦ A2. Likewise, they are EA-

equivalent if A1 ◦F ◦A2 + A, which A1 is affine permuation

on F2m , A2 is affine permutation on F2n , A is affine functions
from F2n to F2m .
F and F ′ are called CCZ-equivalent if there exists affine

permutation L on Fn2 × F
m
2 , which makes L(GF ) = GF ′ ,

where GF = {(x, F (x)) : x ∈ F
n
2} ⊂ F

n
2 × F

m
2 , G

′
F =

{(x, F ′(x)) : x ∈ Fn2} ⊂ F
n
2 × Fm2 .
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As we mentioned, EA-equivalences are special cases of

CCZ-equivalences. There are some cases when they coincide:

1) Boolean functions [1];

2) Bent functions [2];

3) Two quadratic APN functions [3];

4) If a quadratic APN function is CCZ-equivalent to a power

function then they are EA-equivalent [4];

5) For n ≥ 3, two power APN functions are CCZ-equivalent
if and only if they are EA-equivalent or one of them is EA-

equivalent to the inverse of the other one [4].

In contrast, for functions from F2n → F2m , m ≥ 2, CCZ-
equivalence is different from EA-equivalence [5],[6].

III. KNOWN FAMILIES OF APN FUNCTIONS

Until now, there are 17 known infinite families of APN
functions. Among them are 6 families of power functions.

A. Families of Power APN

Talbe I lists all the power APN functions on F2n . Welch,

Niho, Gold with n odd and Kasami with n odd are AB

functions. Their Walsh spectra are {0,±2(n+1)/2}. In contrast,
Inverse, Dobbertin, Gold with n even and Kasami with n even

are not AB. When n is even, Gold and Kasami functions have

the Walsh spectra {0,±2n/2,±2(n+2)/2}. For n ≤ 5, all APN
functions are CCZ-equivalent to power functions.

B. Families of APN Polynomials

Table II lists all the known families of APN polynomials.

They are all quadratic. When n is odd, all these polynomials

are AB functions.

IV. SIMPLIFICATION OF KNOWN APN FAMILIES

As we can see from Talbe I and Talbe II, there are many

APN functions in each APN family. In particular, there are

many coefficients and many parameters in the families of APN

polynomials. For example, when n = 10, only family NO.3
in Table II already has 45012 APN functions. So it is very

difficult to check the equivalence of a given APN function to

both monomial and polynomial families.

Not only polynomial APN are complex to compare with,

APN power functions are the same. In [21], they alleged that

they have found a new APN family, but it was proved their

result is affine equivalent to Gold family. These motivate us

to simplify the families and make a list that for given n,
all functions are CCZ-inequivalent. Taking family NO.3 for
n = 10 for example to explain what we do. Firstly, we found
all the value range for each parameter, then we found 45012
APN functions. Secondly, we compare all 45012 APN func-

tions with each other, then we found two CCZ-inequivalent

classes. Next, from each class, we choose one representative

APN function with simplest coefficients. Fianlly, we check

CCZ-equivalence between these two representatives with other

families for n = 10. In the end, both two representatives are
CCZ-inequivalent with other families. Thus, we put them into

our table.

Table III contains all APN functions from n = 6 to n = 11
and they are CCZ-inequivalent between each other for given

n. In the future, people can compare with this table for n = 6
to n = 11 instead of comparing with each function in every
known APN family again. We also compare the result with

the known APN functions from [22].

In addition, we observe that when n is odd and not

divisible by 3, there is only one APN polynomial (up to

CCZ-equivalence) provided by the known families of APN

polynomials x3 + trn1 (x
9).

V. CONCLUSION AND FUTURE WORK

In this extended abstract, we check CCZ-equivalence for

functions within known families of APN functions and com-

pare them with each other. We present a list of CCZ-

inequivalent APN functions for n from 6 to 11 provided by
the known APN families. This work can facilitate to find new

APN families for constructing more secure cryptosystems or

for enriching knowledge in mathematics or other fields. In the

future, we plan to extend the list for bigger n and try to find
some rules behind the results.
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