

The Components Spatial Redundancy Method Based
on Design Space Exploration

Valentin Rozanov, Yuriy Sheynin, Elena Suvorova
Saint-Petersburg State University of Aerospace Instrumentation

Saint-Petersburg, Russian Federation
{suvorova, sheynin}@aanet.ru, valentin.rozanov@guap.ru

Abstract—The fault mitigation for modern embedded systems

developed by thin design rules (40 nm and less) is necessary
feature due to accelerating aging and manufacturing defects, for
which diagnosis during the chip testing at fabric is impossible.
Different ways of spatial redundancy are used for fault mitigation
in the SoC. They provide different achievable mean time between
failures (MTBF). For various embedded systems a different
lifetime is planned, therefore fault probability is required.
Realization of these methods has different hardware cost
(additional area on the chip). The area is one of most critical
parameters for SoC in embedded systems and is strongly
constrained. We propose the method for development of
components’ spatial redundancy. Method is based on design space
exploration (DSE). It allows to select design spatial redundancy
with considering area constraints and fault probability
requirements.

I. INTRODUCTION
Using of thin design rules for SoC allow to place a lot of

different components on one chip. Therefore, the functionality
of embedded systems grows dramatically. However, using of
thin design rules is accompanied with accelerated aging and
manufacturing defects that can not be diagnosed during the
chip testing at the fabric [1]. Therefore manufactured by thin
design rules SoC should include fault mitigation mechanisms
[2, 3, 4].

Different approaches of components spatial redundancy are
used for SoCs [5], [6], [7], [8]. All approaches of spatial
redundancy lead to increasing of SoC’s area. Area of spare
components and the fault probability could be various for
different approaches and depend on way of spare components
placing. The required fault probability depends on planned
embedded system lifetime.

In many cases the smallest area overheads lead to smallest
fault probability. However, dependency between these
parameters is very complex. It is determined by scheme of
spare components integration into the system, by the size (area)
of additional multiplexers that are used. These multiplexers
themselves do not have redundancy, fault mitigation for them is
not implemented, thus they could decrease achievable fault
probability.

Therefore the operating parameters of a developed
embedded system strongly depends on selected approach for
spatial redundancy in it.

To solve the problem we propose a method of spatial
redundancy selection that is based on design space exploration
(DSE). Based on design space exploration methods are widely
used for modern SoC development [9], [10], [11], [12]. The
design space exploration of NoCs is commonly formulated as a
constrained optimization problem [13]. This approach is used
for different tasks (such as buffer size selection, arbitration
rules selection and many others) that have high computation
complexity.

The N-dimensional design space is formed in the frame of
this approach. Number of dimensions is equal to quantity of
system parameters, for which values should be specified or
constraint in the system design.

In the 2nd section we consider the approaches to spatial
redundancy for NoC components. In the 3rd section we
represent proposed spatial redundancy method based on design
space exploration. In the 4th section we describe obtaining
scheme for the coordinate of the point on the area overheads
axis. . In the 5th section we describe obtaining scheme for the
coordinate of the point on the AXIS of fault probability. In the
6th section we represent the ways of component’s redundancy.

There are various approaches of building component spatial
redundancy. We consider two most common ways of spatial
redundancy as use cases: the whole component redundancy and
slicing redundancy of subcomponents [1].

Some spare components are included into the system, when
the main component functionality is critical for the SoC (fig.
1). Quantity of spare components is equal to number of errors,
against which the system should be tolerant. Using of one spare
component when the main component is failed allows to
support the SoC functionality without degradation.

Main
component

Spare
component

Spare
component

Input data

Output data

Fig. 1. The example of whole redundant structure

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

This approach essentially increases the SoC hardware cost
(area), while the strong area constraints are typical for many
embedded systems. Therefore, it is often impossible to provide
redundancy for many components, which functionality is
critical for the SoC. It significantly reduces operating
parameters of the SoC when this approach is used, and
essentially limits its scope.

Also we consider another way of spatial redundancy in this
paper. Realization of this approach would require less area. It is
based on decomposition of a basic component onto
subcomponents that are self-similar to the basic component.

For most components whose inputs and outputs are bit
vectors decomposition on self-similar sub-components may be
used. These self-similar components will can process parts of
input/output vectors. However implementation of self-similar
sub-components involves additional overheads (with increasing
of area and timing constraints). In NoC can be identified quite a
number of types of components overhead for implementation
of which as a group of components are not big.

For example an arithmetic logic unit (ALU) component
operates witch N-width operands can be constructed of M ALU
subcomponents with N/M-width operands (fig. 2). Hardware
cost of the ALU component realized “as whole” are equal to
hardware cost of the ALU component constructed of
subcomponents.

Global_ALU

ALU 0ALU 1ALU 2ALU 3

Data or
Data vector

Data or
Data vector

Fig. 2. The example of ALU structure

Also, the channel switch can be realized on base of channel
switches with less quantity of ports (fig. 3)

8 port channel
switch

Cr
os
s
co
nn
ec
t

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

4 port channel
switch

Cr
os
s
co
nn
ec
t

FIFO

FIFO

FIFO

FIFO

4 port channel
switch

Cr
os
s
co
nn
ec
t

FIFO

FIFO

FIFO

FIFO

4 port channel
switch

Cr
os
s
co
nn
ec
t

FIFO

FIFO

FIFO

FIFO

4 port channel
switch

Cr
os
s
co
nn
ec
t

FIFO

FIFO

FIFO

FIFO

8 port channel
switch

Cr
os
s
co
nn
ec
t

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

4 port channel
switch

Cr
os
s
co
nn
ec
t

FIFO

FIFO

FIFO

FIFO

4 port channel
switch

Cr
os
s
co
nn
ec
t

FIFO

FIFO

FIFO

FIFO

4 port channel
switch

Cr
os
s
co
nn
ec
t

FIFO

FIFO

FIFO

FIFO

4 port channel
switch

Cr
os
s
co
nn
ec
t

FIFO

FIFO

FIFO

FIFO

Fig. 3. The example of switch structure

For protection the component against one failure, we don’t
need to duplicate whole component. We can include one spare
subcomponent. Quantity of spare subcomponents should be
equal to quantity of mitigated failures.

Let’s consider inclusion of spare subcomponents into the
component. The inclusion scheme for ALU is represented on
fig. 4. The component Global_ALU consists of four
subcomponents – ALU0 – 3 in this example.

If we need to mitigate one fault, we should include one spare
subcomponent ALU S (we denote modified ALU component -
Global_ALU_R). ALU S should be used instead any of
subcomponents (ALU0 – 3). Therefore, the Global_ALU_R
includes multiplexors and interconnections that allow to
transfer input date to inputs of base ALU sub-components and
to transfer output date from these components to the global
output instead of any base ALU.

Output data

ALU (part2)

Spare
component

ALU (part3) ALU (part4)ALU (part1)

Input data

 Fig. 4. The spatial redundancy scheme on subcomponent layer

Thus the spare subcomponent ALU_S, some multiplexers
and interconnection lines are added in the basic structure of
Global_ALU component for realization of this spatial
redundancy way.

The schemes of spare subcomponents inclusion for first and
second approach are essentially differ, they have different area
overheads. Using of these approaches allow to realize
components that resist to equal quantity of faults.

The multipliers, used for including of spare components are
bottleneck for botch schemes. The considered approaches do
not allow to mitigate faults in these multiplexers. Quantity of
multiplexers and its area are various for different approaches,
therefore fault probability will be different.

In this paper we propose the components spatial redundancy
method based on design space exploration. This method allow
to choose spatial redundancy way correspondingly the area
constraints and required fault probability.

II. THE COMPONENTS SPATIAL REDUNDANCY METHOD BASED
ON SPACE EXPLORATION.

The design space for our problem includes two dimensions:
fault probability and area overheads.

Our method includes an algorithm used for building of
points in the design space. The algorithm includes following
main steps:

1) Development of the basic structure (without spare
components) and development of the structure with spare
components for every considered spatial redundancy way.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 691 --

2) Evaluation of area for every component included into the
structure.

3) Evaluation of the area for the basic structure

4) Evaluation of the area for the structure with spare
components

5) Evaluation of the area overheads that arises due spare
components – obtaining the coordinate of the point on the area
overheads axis

6) Development of the Markov net for the structure with
spare components

7) Evaluation of probabilities to fail for the elements of
Markov net correspondingly its areas and types.

8) Evaluation of fault probability - obtaining the coordinate
of the point on the fault probability axis

III. THE COORDINATES OF THE POINT OBTAINED VALUES ON THE
AXIS OF AREA OVERHEADS

We introduce following notations:

Sb – the area of base component

Sc – the area of one subcomponent (self-similar to base
component) for second way of spatial redundancy

,

where N – quantity of subcomponents in base component.

Sr – the area of scheme with spatial redundancy, Sr1 – the
area when first way is used, Sr2 – the area when second way is

used.

where K – redundancy multiplicity

Sm1 – the area of multiplexers

Sh – the area overheads, Sh1 – the area overheads when the
first way is used, Sh2 – the area overheads when the second

way is used

IV. THE COORDINATES OF THE POINT OBTAINED VALUES ON THE
AXIS OF FAULT PROBABILITY

To calculate ALU fail probability in time Markov chain
were constructed. In [14] was described method of calculating
Markov chain with discrete time. This method was used to
calculate probabilities for constructed schemes. It need to be
noticed that all calculations are made with discrete time.

The following symbols are used in the schemes:

pw – transferring probability to stay in W-state (work
without failures)

pwn – transferring probability to move from state W to N-
state, where N – number of the failed ALU

pwr – transferring probability to move from state W to state
R, where R – state of reserve element or it’s multiplexor
failure

pf – transferring probability to stay in F-state (system
failed). As F is the finish state, and there are no ways from it
this probability is equal 1

pnf - transferring probability to move from N-state to F-
state

prf - transferring probability to move from R-state to F-state

pn – transferring probability to stay in N-state

Markov chain for the device with one fully redundant ALU
is presented on fig. 5.

 5.

pr

p1

pw pfF

1

R
W

prf

p1f

pwf

pw1

pwr

Fig. 5. Markov chain for fully redundant ALU

Calculations of fail probability for fully redundant ALU
were made using equations that were described in [14].

Fig. 6 describes ALU with sliding redundancy, organized as
combination of 2 ALU (2·8/2·16) that forms 1 ALU of 16/32
input bit vector with 1 reserve ALU.

pr

p2

pw pf

R

F

1

2
W

p1

prf

p2f

p1f

pwf

pw1

pw2

pwr

Fig. 6. Markov chain for ALU with sliding redundancy (2·8/2·16/2·32 with
16/32/64 input bit vector)

 (1)

 (2)

 (3)

 (4)

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 692 --

Fig. 7 shows ALU with sliding redundancy, organized as
combination of 8 ALU (8·8) that forms 1 ALU of 64 input bit
vector with 1 reserve ALU

pw pf

R

F

6

8

W

2

44

5

7

1

3

p7

p6

p5

p4

p3

p2

p1

p8

pr

p8f

prf

p6f

p7f

p5f

p4f

p3f

p2f

p1f

pwf

pw8

pwr

pw7

pw5

pw3

pw2

pw1

pw4

pw6

Fig. 7. Markov chain for ALU with sliding redundancy (8·8 with 64 input bit
vector)

Fig. 8 shows ALU with sliding redundancy, organized as

combination of 4 ALU (4·4/4·8/4·16) that forms 1 ALU of
16/32/64 input bit vector with 1 reserve ALU

pw pf

R

F

3

4

W

1

2

p1

p2

p3

p4

pr

p1f

p2f

p3f

p4f

prf

pwf

pw1

pw2

pw3

pw4

pwr

Fig. 8. Markov chain for ALU with sliding redundancy (4·4/4·8/4·16 with
16/32/64 input bit vector)

Calculating transferring probabilities for sliding redundancy
schemes new equations are needed.

Probability pwn is equal ALU’s or it’s multiplexor’s
probability to fail, or both of them.

Probability pnf calculates as a number of combinations for
other ALU/multiplexors to fail (5). To make equation easier
multiplexors fails are added as logical ‘or’. From the area of

components and sub-components point of view it’s enough to
conclude the results of calculations for these schemes.

where:

 - transferring probability to move from N-state to F-
state

 – not reserve ALU fail probability

 – reserve ALU fail probability

n – number of states in the scheme (excluding W F states)

k – minimal number of failed elements at which state

transfers

Probability pwf may be calculated using equation (6)

Since including multiplexors fail probability in reserved
ALU it becomes different from the ALU components’ fail
probability in case of sliding redundancy. Therefore, pwf may
be calculated as (7)

As a base probability to fail was used value 2·10-9
multiplied on the total area of the ALU (or element of complex
ALU) or multiplexor.

V. EXAMPLE OF METHOD USING ON ALU COMPONENT
The proposed construction of the redundancy options have

been implemented and synthesized using Cadence RTL
Compiler 16.1. As the result of compiler work areas of ALUs
and multiplexors were obtained. Initially, the basic circuit
elements were synthesized – ALU with 4/8/16/32/64 bit width
of input/output vectors. ALU component was considered as
“simple” (only sum operation) and “complex” (sum and
multiplying operations) variant. Results of modeling and RTL
Compiler work are presented in Table I.

TABLE I SYNTHESIS OF BASE ALU COMPONENTS

Input vector Bit
Width Total Area for SUM Total Area for SUM

& MULT
4 2510 9100
8 5600 51382

16 11289 187211
32 25034 633754
64 61733 2407552

 (5)

 (6)

 (7)

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 693 --

On the next step ALU were implemented as complex
elements. Areas of complex ALU component constructed of
2/4/8 subcomponents are presented in Tables II III.

TABLE II SYNTHESIS OF BASE “SIMPLE ” ALU CONSTRUCTED
WITH SUB-COMPONENTS

SUM
Input

vector Bit
Width

Number of
ALU

ALU Bit
Width Base Area Total Area

16 4 4 2510 10040
16 2 8 5600 11200
32 4 8 5600 22400
32 2 16 11289 22578
64 8 8 5600 44800
64 4 16 11289 45156

TABLE III SYNTHESIS OF BASE “COMPLEX ” ALU CONSTRUCTED
WITH SUB-COMPONENTS

SUM & MULT
Input

vector Bit
Width

Number of
ALU

ALU Bit
Width Base Area Total Area

16 4 4 9100 36400
16 2 8 51382 102764
32 4 8 51382 205528
32 2 16 187211 374422
64 8 8 51382 411056
64 4 16 187211 748844

The charts on fig 9 shows the area ratio of ALU composed
of a different number of ALU sub-components

a) 16 bit ALU constructed with 2 8-bit ALU sub-components and 4 4-

bit sub-components

b) 32-bit ALU constructed with 2 16-bit ALU sub-components and 4

8-bit sub-components

c) 64 bit ALU constructed with 8 8-bit ALU sub-components and 4
16-bit sub-components

Fig. 9. Difference between ALU constructed of different ALU
sub-components with the same input vector width

After synthesis results of base and complex ALU were
received models of full redundancy and sliding redundancy
were synthesized. Results of this synthesis for “simple” and
“complex” ALU component with full redundancy are
presented in Tables IV and V.

TABLE IV FULL REDUNDANCY ALU SYNTHESIS OF “SIMPLE” ALU

SUM
Input

vector Bit
Width

Total Area
for SUM

Number of
MUX

MUX
Area

Total Area
with

reserv
4 2510

1

1300 6320
8 5600 2600 13800
16 11289 5200 27778
32 25034 10400 60468
64 61733 20800 144266

TABLE V FULL REDUNDANCY ALU SYNTHESIS OF “COMPLEX”
ALU

SUM & MULT
Input

vector Bit
Width

Total Area
for SUM
& MULT

Number of
MUX

MUX
Area

Total Area
with reserv

4 9100

1

1300 19500
8 51382 2600 105364
16 187211 5200 379622
32 633754 10400 1277908
64 2407552 20800 4835904

Once redundant variant of full redundancy ALU was
implemented. For this variant, it need one multiplexor in the
scheme that is written in column Number of MUX.

Results of sliding redundancy ALU synthesis for simple
and complex ALU are presented in Tables VI and VII. Sliding
redundancy needs one multiplexor for each ALU sub-
component. Therefore, column Number of ALU shows also
number of used multiplexors.

16 SUM

4*4 2*8

16 SUM & MULT

4*4 2*8

32 SUM

4*8 2*16

32 SUM & MULT

4*8 2*16

64 SUM

8*8 4*16

64 SUM &
MULT

8*8 4*16

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 694 --

TABLE VI SLIDING REDUNDANCY ALU SYNTHESIS OF “SIMPLE”
ALU

SUM
Input
vector

Bit
Width

Number
of ALU

ALU
Bit

Width

Base
Area

MUX
Area Total Area

16 5 4 2510 1820 21650
16 3 8 5600 2490 24270
32 5 8 5600 3400 45000
32 3 16 11289 4950 48717
64 9 8 5600 4100 87300
64 5 16 11289 6200 87445

TABLE VII SLIDING REDUNDANCY ALU SYNTHESIS OF
“COMPLEX” ALU

SUM & MULT
Input
vector

Bit
Width

Number
of ALU

ALU
Bit

Width

Base
Area

MUX
Area Total Area

16 5 4 9100 1817 54585
16 3 8 51382 2255 160911
32 5 8 51382 2880 271310
32 3 16 187211 5148 577077
64 9 8 51382 4393 501975
64 5 16 187211 4529 958700

Based on the results of the synthesis charts were made that
shows difference between area of full and slide redundancy for
different width of input bits.

Fig. 10. Dependence of used area by ALU with sum operation constructed
with different number of ALU sub-components

Fig. 11. Dependence of used area by ALU with sum and multiply operation
constructed with different number of ALU sub-components

Dependence between overhead and ALU component
constructed with different number of sub-components is
presented on a chart in fig. 8 and 9 for the slide redundancy
ALU.

Fig. 12. Dependence of overhead used area constructing ALU with sum
operation and different number of ALU sub-components

Fig. 13. Dependence of overhead used area constructing ALU with sum and
multiply operation and different number of ALU sub-components

The results of Markov chain calculations are presented on
charts in fig. 13 and fig. 14

Fig. 14. Dependence of Steps to fail from combination of ALU component
construction (for “simple” ALU)

10000

100000

16 16 32 32 64 64

4*4 2*8 4*8 2*16 8*8 4*16

To
ta

l A
re

a

Input vector Bit Width

SUM

Full Reserved Comples Reserved

10000

100000

1000000

10000000

16 16 32 32 64 64

4*4 2*8 4*8 2*16 8*8 4*16

To
ta

l A
re

a

Input vector Bit Width

SUM & MULT

Full Reserved Comples Reserved

10000

100000

16 16 32 32 64 64

4*4 2*8 4*8 2*16 8*8 4*16

To
ta

l A
re

a

Input vector Bit Width

SUM

Full Reserved Complex reserved

10000

100000

1000000

10000000

16 16 32 32 64 64

4*4 2*8 4*8 2*16 8*8 4*16

To
ta

l A
re

a

Input vector Bit Width

SUM & MULT

Full Reserved Complex reserved

0
5000

10000
15000
20000
25000
30000

2*8 4*4 2*16 4*8 4*16 8*8

16 16 32 32 64 64

St
ep

s t
o

fa
il

ALUs' Area

SUM

SUM SUM_FULL

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 695 --

Fig. 15. Dependence of Steps to fail from combination of ALU component
construction (for “complex” ALU)

Charts shows dependence of the failure from the ALU area.
Calculations were made until the value to stay in F-state will
rich 0.1 value. This value was chosen for the convenience of
calculations, but it’s enough to make conclusions of the
method.

CONCLUSION
Selecting the NoC components redundancy scheme method

based on design space exploration is proposed in this paper.
Application of method in two types of redundancy is
presented. We considered ALU component as the use case of
our method. The proposed method may be used in other
variants of components redundancy. It can be also applied for
redundancy of different components’ types (that are
combinational schemes).

Our directions for further work are:

Constructing mathematical models for evaluation
of the system with 2 and more redundancy sub-
components with different variants of
redundancy;

Research and evaluation of redundancy schemes at
the level of topological design.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the Ministry of Education and Science of the Russian
Federation under the contract RFMEFI57816X0214.

REFERENCES

[1] International Technology Roadmap for Semiconductors (ITRS),
2013.

[2] Armin Runge, “FaF NoC: a Fault-tolerant and Buerless Network-on-
chip”, Procedia Computer Science, vol. 56, 2015, pp. 397–402.

[3] Erica Cota, Alexandre de Morais Amory and Marcelo Soares
Lubaszewski, Reliability, Availability and Serviceability of
Networks-on-Chip. Springer, 2012.

[4] Pooria M. Yaghini, Ashkan Eghbal, Hossein Pedram and Hamid
Reza Zarandi, “Investigation of transient fault effects in synchronous
and asynchronous Network on Chip router”, Journal of Systems
Architecture, vol. 57, issue 1, Jan. 2011, pp. 61–68.

[5] Y.C. Chang, C.T. Chiu, S.Y. Lin and C.K. Liu, “On the design and
analysis of fault tolerant NoC architecture using spare routers”, in
Proceedings of the Asia and South pacific design automation
conference (ASPDAC), 2011, pp. 431–436.

[6] Yu Ren , Leibo Liu , Shouyi Yin, Jie, Qinghua Wu and Shaojun Wei,
“A fault tolerant NoC architecture using quad-spare mesh topology
and dynamic recon guration”, Journal of Systems Architecture, vol.
59, 2013, pp. 482–491.

[7] C. Liu, L. Zhang, Y. Han and X. Li, “A resilient on-chip router
design through data path salvaging”, in Proceedings of the Asia and
South Pacific design automation conference (ASPDAC), 2011,
pp. 437–442

[8] D. Fick, A. De Orio, J. Hu, V. Bertacco, D. Blaauw and D. Sylvester,
“Vicis: a reliable network for unreliable silicon”, in Proceedings of
the ACM/IEEE design automation conference (DAC), 2009, pp. 812–
817.

[9] System Level Approach to NoC Design Space Exploration. R. K.
Jena. International Journal of Information and Electronics
Engineering, Vol. 2, No. 2, March 2012 / 5 p

[10] R. K. Jena and G. K. Sharma, “A Multi-Objective Evolutionary
Algorithm Based Optimization Model for Network-on-Chip
Synthesis,” in Proc. of 4th International conference on IT: New
Generation, April, 2-4, Las Vegas, Nevada, USA,2007 pp. 977-983.

[11] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast and Z.
Wang, A NoC Tra_c Suite Based on Real Applications, 2011 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), Pages 66-
71, ISSN 2159-3469, July 2011.

[12] Qualcomm, Snapdragon S4 Processors: System on Chip Solutions for
a New Mobile Age, Qualcomm white paper, October 2011,
https://developer.qualcomm.com/download/qusnapdragons4whitep
aperfnlrev6.pdf, Retrieved 18 April 2014.

[13] J. Hu and R. Marculescu, “Energy- and performance-aware mapping
for regular NoC architectures,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 24(4), 2005

[14] 14 Rozanov V. Suvorova E. Approaches to the SoC IP-blocks’
Design with Errors’ Mitigation.

0
1000
2000
3000
4000
5000
6000
7000

2*8 4*4 2*16 4*8 4*16 8*8

16 16 32 32 64 64

St
ep

s t
o

 fa
il

ALUs' Area

SUM & MULT

SUM & MULT SUM & MULT _ FULL

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 696 --

