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Abstract—One of the most challenging problems for au-
tonomous mobile platforms is simultaneous localization and
mapping (SLAM). This problem is solved more or less for a single
agent but applying this task for multiple platforms seems to be
perspective. Usage of multi-agent SLAM might be very useful in
situations when a single platform has not enough computation
resources or can be broken or has low quality sensors. Various
new issues appear while solving multi-agent SLAM problem, such
as constructing of agent hierarchy, choosing of a SLAM algorithm
on each agent etc. The goal of this paper is to provide modern
multi-agent SLAM approaches survey.

I. INTRODUCTION

One of the question faced while developing software for
mobile platforms is choosing an approach for detecting its state
in an environment. In special cases it is possible to provide an
actual map of the environment and a locating method to the
platform. In other cases there is no knowledge about the map
structure, for example, an environment has not been discovered
yet. Thus the platform should simultaneously create the map
and locate itself there. This problem is known as simultaneous
localization and mapping (SLAM) problem.

The examples of solving the SLAM problem for a single
platform are presented in [6]-[9]. The classic approach is
to use extended Kalman filter (ex. EKF_SLAM [6]), but
its execution time increases with extending of the handled
environment. Another approach is to use a particle filter where
each particle represents a hypothesis of a platform state. The
popular strategy is to use graph based SLAM algorithms to
provide a dynamic correction for estimated variables during a
SLAM process. These ideas could also be applied to multi-
agent SLAM with specific modifications.

The multi-agent approach uses several mobile observers
and includes an additional task to evaluate platforms relative
positions besides issues of single SLAM. The multi-agent
architecture provides benefits that are described below.

e An environment could be observed faster as platforms
could travel to various directions. It could be applied
in situations when time is a critical resource for exam-
ple for building a rescue route in indoor environment
that is on fire.

e In case when a platform is broken down, other could
proceed the mission. It is useful for example in a space
mission on the Mars surface when each platform might
not rich a check point or could lose a connection.

e If two platforms follow crossed trajectories, they are
able to correct the map and their trajectories by
combining their observations to decrease measurement
errors.

e [f observers contain the computation unit, the task of
building a map and localization of each platform could
be distributed between several platforms that increases
the performance of the whole system.

Several multi-agent SLAM approaches are considered in
this paper and the main ideas of these methods are described.
There is a list of properties that are used for a classification:

1)  a hierarchy of agents roles;

2)  a map representation;

3) a way to estimate relative positions;
4)  trajectories & map corrections.

The motivation of this work is to review existing solutions,
to identify the differences and to describe their application
domains.

The paper is structured as follows: the section II presents
a general description of single SLAM and multi SLAM prob-
lems; in the section III there are descriptions of existing multi-
agent algorithms; the evaluation of considered algorithms is
presented in section IV; conclusion and result theses are in
the section V.

II. PROBLEM FORMULATION
A. Single SLAM

The SLAM problem formally consists in estimating a world
state (a platform position and a map of an environment) using
only information from sensors. SLAM algorithms based on
different sensors may significantly differ one from each other.
The most popular types of observations are:

e video frames presenting a 3D view of an environment,
captured by a video camera,

e laser scans presenting a 2D top-down view of an
environment, captured by laser rangefinders;

e odometry that represents information about platform’s
displacement.

The example of a frame that is captured from omnidi-
rectional video camera is presented on Fig. 1. A camera
provides frames where landmarks could be extracted and
described robustly. There are approaches based on a color
difference [12] or a corners extraction [14] etc. Extracted
landmarks could displace a representation of a whole map and
Kalman filtering [6] could be applied to estimate platforms
location.

The example of a laser scan is shown on Fig. 2.
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Fig. 1. The example of a scan captured on an omnidirectional video camera

Fig. 2. The example of a laser scan captured from a laser rangefinder

A process of extracting landmarks from a 2D view pro-
vided by laser rangefinders is difficult. However there is an
algorithm [11] that can solve this problem but it is less robust
because a 2D laser view contains less information than a
camera 3D frame.

B. Multi-agent SLAM

The multi-agent SLAM task as well as the single SLAM
consists in an estimating a world state. But in this case the
world state is defined as a map of a whole environment and
platforms positions including their relative orientation. This
relative orientations are important because it is an only way to
combine two maps built with data from two observers. There
is approaches that require a prior knowledge about platforms’
orientations [1] other try to estimate it in-time if they have a
chance [2],[5]. In the both cases methods should provide rules
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to correct local world state for single observer using data from
another one.

Fig. 3 shows a high-level scheme of a typical multi-agent
SLAM method.

e  Platform,, ..., Platformy presents executors of single
SLAM algorithms. They could be separate computer
units or threads from a mainframe etc.

e  Merger block updates data from a corresponding Plat-
form with external data from another Platform-s.

e  Common merger collects all estimated local world
states and combines them to produce the output world
state and provide data for a local Platform to update

its state.
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Fig. 3. The high-level multi-agent SLAM scheme

The challenging problem in multi-agent SLAM is a merg-
ing the maps that are built by each separate platform. Every
multi-agent SLAM method proposes its own algorithm of
merging or requires special assumptions for the environment
or the world state. For example, following one approach it is
required the prior knowledge of platforms’ start points and
following other — agents should estimate it by themselves.
Another problem is to chose the representation of the map.
To the best of our knowledge there are three popular types of
map setup that are described below.

e A graph representation of a map where each vertex
store an unique position of a platform and eadges
present the transaction between vertexes [4], [9].

e Landmarks with their covariance matrix. Landmarks
may be calculated using captured scans or may be
located in the environment manually [2], [5], [6].

e A certainty grid that stores the probability for each
cell to be occupied [8], [13].

Every chosen type of a map strongly influences on a merging
algorithms.

There is also a question of an interaction of the maps:
a map can exist as the one copy that is shared between
all platforms or each agent can keep and update its own
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representation of a map. Moreover the result of a merging can
be presented as a common map that is equal for each platform,
or every existing map can be updated independently.

At the same time the individual pose updating is an actual
problem for multi-agent SLAM because observers could meet
in the real world but not in own maps. This meeting initiates a
pose correction of the every platform. These corrections could
happen as a jump — instantly teleport of a platform to the
best found position, or through spreading the correction over
several previous poses, but in the last case it is required to
track several poses but the last one.

III. EXISTING SOLUTIONS

This section contains descriptions of multi-agent SLAM
implementations. These algorithms are described in the cor-
responding papers [1]-[5] and reviews of each of them is
presented below.

A. MIT multi-agent SLAM implementation

One of the first work related with multi-agent SLAM
is [1] — the MIT implementation expanding the classic Kalman
filter SLAM approach to the multi-agent SLAM. The proposed
approach is described as a part of a simulation system that is
not able to be applied in the real world “as is”.

Following this approach two different roles are determined.
The first role is an executor which runs the SLAM algorithm
based on classic Kalman filtering, the second role is “The Test
Bed” — the supervisor that knows the truth state of the world.
This Test Bed also provides observation to each executor when
it is ready to get data.

An environment is presented as a set of segments and
circles that are determined as features with unique identifier on
a map. So when an executor is ready to get an observation, The
Test Bed analyzes what obstacles this executor could observe
(obstacle ID, a range and an angle) and sends this information
to the agent. The agent updates states and a covariation matrix
of already observed features and adds new detected features.

All agents begin the execution oriented with the same angle
in the world coordinates to avoid rotation while estimating a
relative orientation. The start position of any agent is unknown
for each other. This positions could be estimated only when
one platform directly observes another one, and after that these
two executers share the information of observed landmarks that
could be transformed to its own coordinates by shifting only
by (Az, Ay) with no rotation by any angle.

While transaction one agent sends through Test Bed its
coordinates, list of new landmarks and built covariance matrix
to another agent. After all the data has been received the second
agent applies the calculated offset to the coordinates of new
obstacles and considers them as new observations, i.e. uses
them in Kalman filtering to improve its model.

B. Multi-robot SLAM with unknown initial correspondence

Multi-robot SLAM with Unknown Initial Correspondence
is provided in [2] where authors present the implementation of
the multi-agent SLAM algorithm based on Extended Kalman
filter using visual sensors. The feature of this work is the
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absence of any prior knowledge for one platform about a start
point and an orientation of basis coordinate vectors of any
other agent. The single platform keeps its own coordinates
and it doesn’t know the world coordinates of its start point.
This model is suitable for executing in the real world where
the dead certainty about start position and orientation of each
platform is unreachable.

There are several platforms that run EKF SLAM indepen-
dently until they meet. Every platform is equipped with a bright
cylinder that can be easily extracted on a video frame. While
testing this approach authors used omnidirectional camera as a
video sensor, so the agents had no blind areas and they could
detect each other if they come close enough regardless of a
rotation.

A map of an environment is presented as a vector of
landmarks coordinates and their covariance matrix. Updating
a map and adding new landmarks is performed by classic
EKF SLAM approach. The landmarks represent the corners
extracted from laser rangefinders that are also placed on a
platform.

When an agent detects another one it estimates an angle
between their orientations and a distance between platforms.
The distance is measured with a laser rangefinder and the angle
can be calculated by the formula that is explained by the Fig. 4.
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<
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Fig. 4. Calculation of relative orientation angle 6

The angle 6 between two platforms’ orientation is calcu-
lated by the following formula:

=7+ ay — oy

To estimate the distance between platforms, both agents
measure the distance and the result is fused taking into account
the variances of measurement errors of each agent.

After the relative position has been estimated the agents
transfer their own covariance matrices to each other. When
the covariance matrix P, is received, it is integrated into the
agent’s own matrix P; directly, i.e. following the formula
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Then the algorithm of the Nearest Neighborhood is used to
find the duplicate landmarks. The amount of the “closeness”
is estimated with Mahalanobis distance. If a duplicate land-
mark is found in the matrix, it is erased and this algorithm
repeats until all duplicate landmarks are found. To make this
algorithm more robust the following idea was implemented:
the landmarks that are closer to the place of agents are more
accurate and the threshold for Mahalanobis distance for them
is lower then for the landmarks that are far from the point of
the meeting.

C. Collaborative monocular SLAM with multiple MAVs

Collaborative Monocular SLAM with Multiple MAVs pre-
sented in [3] is an implementation of a visual multi-agent
SLAM algorithm. A video stream is used as an input. This
type of sensors is preferred as a video camera is not so heavy
as a LIDAR. It is important because Micro Aerial Vehicles
(MAVs) were chosen as observers for this type of SLAM.

Every MAV carries a video camera and is equipped with
a low power CPU that is not enough to solve a single SLAM
problem in the real time. This task is delegated to a server that
receives data from the every observer. The observer’s CPU is
responsible to extract and make a description of features from
a camera frame. The information sent to a server presents a
set of points with their descriptors defined, for example, as
OperSUREF features [14].

Every set of points sent to a server is recognized whether
it contains new points that have not been observed yet. In this
case this frame is called “the key-frame” and is stored in a map,
in the another case this set is dropped. The map consists of a
set of key frames that have no common points (core frames)
and all other key frames (periphery frames). An overlap of a
new key frame and key frames in a map is found and then
a positions of common features is updated with local Bundle
Adjustment [15].

The relative position of MAVs could be defined only after
it detects an overlap between two separate maps. So a looping
closure operation of one observer or a merging maps from
two observers are the same task. To provide the loop closure
it could apply a global Bounded Adjustment approach but it
is high cost for big maps and moreover could fails while it
is looking for a local minimum. So authors suggest to use
220 framework [10] for this optimization. Combining two key
frames it simultaneously solves a task of founding relative
MAVs positions and map merging.

For indoor environment that presents a surface of approx-
imately 8 by 8 meters the error of locating features (that is
delegated to Bundle Adjustment [15]) reaches 0.4 pixels. At
the same time a looping closure error reaches 0.01 meters at
the end of the testing [3]. The common error for two MAVs
observing one room is not bigger than 0.1 meter for 70 seconds
execution.

The evaluation using a huge outdoor environment data is
not consistent at this work because there is no ground truth
for the chosen dataset. The GPS position estimation was used
as a ground truth but it provides an error for 5-15 meters so
it could not be a sample of an absolute truth location of an
observer.
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D. Condensed measurements graph based multi SLAM

In this section there is a review of the work [4] where
graph based multi-agent SLAM with condensed measurements
is described. The idea from this paper seems to be perspective
because it has benefits that is described below.

One of the most complicated task during multi-agent
SLAM is a looping closure operation — a process of deter-
mining whether two agents have visited a same place. This
task is solved in graph based single SLAM approaches for
determining whether the observer returns to a place that has
been visited before. Thus a count of observers is not a big
difference for graph based approaches.

The classic graph based single SLAM approach defines a
map as a graph. Vertexes of this graph could presents features
of an environment or positions of an observer. The second view
could be used in cases when features could not been extracted
robustly and this representation is used in [4]. Vertexes of the
graph presents an observer position and contains observed scan
data, and edges presents a transformation between two ver-
texes. This transformation is flexible for correction, so it could
be updated in the future. It makes multi-agent approach to be
defined as a single graph based one with many observers. In [4]
it is supposed to use several autonomous mobile platforms
without any server for collecting data or evaluating platforms
positions.

The huge problem faced in multi-agent SLAM is a big data
that is to share between agents. So looping closure algorithms
take very much time to handle all information. In [4] it
is suggested to share “condensed measurements” that is not
so heavy. The shared measurements is called “condensed”
because one platform provides to another only important piece
of information. The transfer process begins after one platform
locates another one in its neighborhood. After that platforms
make steps of graph SLAM independently and then exchange
the handled data. Using RANSAC scan matcher approach [17]
every platform could define where stages got from another
platform locate on its own map. After that it updates the map
with got measurements and connects them with corresponded
nodes.

The map updating operation — an optimisation step — hap-
pens every time when a looping closure has been found. The
task of this optimization is to find the relative transformation
between graph vertexes that are included in a loop to make the
first and the last vertexes coincide, and to spread a general error
between other vertexes in a loop. In [4] the g20 framework [10]
is responsible for this optimization step.

E. Cooperative multi-robot map merging using fast-SLAM

There are several works that describe multi-agent Fast-
SLAM [5], [16]. In the paper “Cooperative Multi-Robot Map
Merging Using Fast-SLAM™” [5] the visual 3D camera is
used as a sensor for mobile platforms. The landmarks are
represented as bright colored circles that were put on the walls,
so there was no problem in extracting landmarks from the scan.
Following this approach agents keep their coordinates and in
the beginning of execution have no information about any other
platforms.
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Each agent runs FastSLAM with particle filter where par-
ticles represent the hypotheses about world state. That allows
to look at the landmarks as at the independent features with
no covariance. Every hypothesis has the estimated probability
that shows the “closeness” to the truth world state and the hy-
pothesis with the highest probability is considered to describe
the world state. Tracking several hypotheses allows to handle
situations when the truth world state was estimated wrongly
with the little probability.

Agents run single SLAM independently until any two of
them appear in a communication radius. Each of them tracks
several particles that contain a vector with coordinates of the
platform and visited landmarks. When one platform starts a
communication it measures the distance and the angle between
communicating platforms, and the second agent does the same
thing to use these data for estimation of relative position of
platforms.

When a communication begins, a platform receives a
message that contains a map estimated by another agent, the
position of the sender and an observation of itself made by the
sender. To send a map the agent should fuse all the particles in
one to reduce the time of imposing maps built by two agents. A
received map is fused with each particle that takes O(N M?)
where IV is an amount of particles and M is an amount of
landmarks. Then the method of the nearest neighborhood is
used to estimate duplicate landmarks.

The algorithm was tested both on a simulated data and in
a real environment. To test on a real data there was a task to
make agents to recognize each other in the video camera. To
reach this the platforms were equipped with colored marks.
Authors of the paper fairly note that the robust algorithm of
recognizing of other platforms have to be updated because
there might be no opportunity to mark agents with visual bright
parts in a real conditions.

IV. EVALUATION

The accuracy of a SLAM algorithm can be estimated by
a comparison of an output trajectory with the ground truth
one. The ground truth trajectory presents a set of positions in
the real world where a platform has been located. It is not
a simple task to find this values because if there was a truth
position of an observer, there would not be a location task.
Thus an algorithm’s evaluation faces with the ground truth
existence problem every time when they are tested in the real
environments.

The problem of the ground truth absence exists for datasets.
For example to the best of our knowledge willow garaje
dataset [19] are not provided with ground truth. At the same
time MIT dataset [18] provide the solution of localization task
on the known map instead of ground truth trajectory. Thus the
evaluation of SLAM using ground truth might be complicated.

The way to extract the ground truth from a measurement
sequence is to simulate these measurements and corresponding
errors. Following this the ground truth could be directly pro-
vided and it becomes possible to get quantitatively estimation.
The world simulation could not be used to get complete evalua-
tion because there it could not provide a detail-full description
of the real environment. Moreover the measurement errors,
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which are approximated as a Gaussian white noise in the
simulation, could include more sources and has non-Gaussian
structure under the real conditions.

Authors of considered papers evaluate their algorithms
quantitatively in three ways:

e do not present this evaluation;

e  provide a root-mean-square error (RMSE) with ground
truth in a simulation;

e provide the RMSE in the real world.

That algorithms which are not provided with quantitative eval-
uation are estimated in other ways qualitatively. This variety
makes general algorithms evaluation more complicated, thus
there is no way to extract huge advantages of one algorithm
over another. Table I presents the RMSE values of considered
algorithms that could be extracted from corresponding papers.

TABLE 1. RMSE VALUES
Algorithms Trajectory RMSE, m [ World
The algorithms of III-A not presented
The algorithms of III-B not presented
The algorithms of III-C 0.1 real
2 platforms 1.404
The algorithms of III-D | 4 platforms 1.572 simulation
8 platforms 1.884
The algorithms of III-E 0.9 simulation

The value of RMSE got from the algorithm of III-C seems
to be pretty close to the zero and moreover is provided from
the real world. This could be explained with the structure of
the world. In [3] it is said that it provides this estimation in
the indoor 8x8 meters room and uses a monocular camera
as an input sensor. The camera could observe a huge part
of this environment and it is possible to extract almost all
features of the world and decrease errors of landmarks’ relative
orientations. Measurements of other algorithms are provided in
bigger environments and observed from longer trajectories so
they have bigger values of RMSE.

Instead of quantitatively estimation of SLAM execution
results there is an approach to estimate them qualitatively. It
is possible to estimate the consistencies of built maps. If a
map has huge blur or unexpected artifacts, it means that the
corresponding approach fails on this data. The figures of the
maps (Fig. 5), as well as RMSE, present the simulation world,
and the real world if corresponding algorithms were evaluated
there.

Fig. 5a represents an output of merging two scans and two
different maps of an environment are built. Fig. 5b has artifacts
in the middle of the map and in the bottom side, where walls
are not matched. The output map presented on Fig. Sc is not
a built map but the real one observed from a satellite and
used as the ground truth. Trajectories are the output that are
superimposed on the map. The walls on Fig. III-D are blurred
so errors are hidden there. The map of a room presented on
Fig. 5e has the mismatched right wall.

V. CONCLUSION

In this paper five different approaches for solving the multi-
agent SLAM problem were considered. They were chosen
for evaluation because each of them has specific features in
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X (m)

(a) The III-A algorithm (b) The III-B algorithm

(c) The III-C algorithm (d) The III-D algorithm

(e) The TII-E algorithm

Fig. 5. Maps of algorithms from corresponding papers

an implementation. For example in [5] it is noted that the  video camera, in other agents don’t communicate to each other
detection of other platforms on a scan is the very complicated directly, the task of communication is solved by a supervisor.
task. In considered papers authors solve this problem on
different levels of abstraction. In certain works platforms are
marked with bright features that can be easily extracted with a

The evaluation of described algorithms is provided by a
compilation of results presented in the corresponding papers.
For the best comparison algorithms ought to be evaluated
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using one testing data, but considered multi-agent SLAMs have
different test bases. The RMSE value and output maps were
extracted and combined in common table with notes whether
tests were executed in a simulation or the real world. This
variety of environment representations makes it difficult to rank
them and to choose which of algorithms could produce the
most accurate results. However several features are described
that are helpful for implementation of any multi-agent SLAM
approach:

e The communication of agents for merging maps
should happen when they meet that makes them to see
the same scans at the moment of communication, thus
the process of a relative map orientation evaluation is
simplified.

e If after a communication one of the agents clarifies its
location it should review its previous path and update
the map built on previous steps.

e The final map can be presented in two ways: each
agent can keep its own map or there can be the single
map that is divided between the agents.

The future goal is to implement a multi-agent SLAM
algorithm that includes the most benefits of the considered
papers. For example, a server that handles all data from mobile
observers may decrease the cost of communications and make
the world state unique for all agents. Therefore the SLAM
algorithm is executed only by a server while other agents
should make observations of an environment and provide them
timely. This architecture requires the high performance from
a server because it should execute a SLAM algorithm in the
real time.

Secondly, it is required to have an opportunity to discard
the previous changes of a map if they conflict with many
new observations. The most suitable considered approach uses
a graph-based algorithm that includes optimization and loop
closure steps that may widely effect the map. But the original
graph based approach take much computation resources that
are limited due to an amount of observers that were mentioned
above. So the task is to describe an algorithm that could be
executed in the real time.
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