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Abstract—In a Cyber-Medicine System (CMS), the Internet is

used to deliver healthcare services, such as medical consultations,
diagnosis, and prescriptions. Services allow end-users (patients)
online access to consultations and treatment with medical pro-
fessionals. When the services benefit from the end-users activity
and collaborative work, then the system becomes Social CMS
(SCMS). In this position paper, we discuss how SCMS can be
implemented based on the semantic approach. As in the generic
case of smart environments, an additional layer is introduced—
the semantic layer, where all system and domain objects are
virtually integrated: multisource data, ongoing processes, situ-
ation attributes, reasoning rules, and human activity. The objects
are dynamically related leading to a knowledge-rich structure in
the form of a semantic network. Semantic algorithms are used
for data mining in this network. The derived knowledge feeds
construction of context-aware information services to support
medical professionals as well as to assist mobile patients.

I. INTRODUCTION

The traditional style of healthcare by visiting a hospital
to meet a doctor is still very popular though very ineffective.
To make healthcare more effective, continuous monitoring and
subsequent semantic analysis of the whole dynamic complex
of available data and context can be established for the
remote patients. This demand drives the development of new
approaches to healthcare [1], [2], [3], [4].

In a Cyber-Medicine System (CMS), the Internet is used to
deliver healthcare services, such as medical consultations, di-
agnosis, and prescriptions. Services allow end-users (patients)
online access to consultations and treatment with medical
professionals. On the one hand, CMS means that the system
consists of a large multitude of composed of many physical and
virtual entities (as in any cyber-physical system). On the other
hand, one of the key components are remote users, leading to
the increased role of mobility [5], [6].

When the services benefit from the end-users activity and
collaborative work, then the system becomes Social CMS
(SCMS). In addition to pure service consumption, end-users
become responsible for similar computation and generation
functions as machine-based CMS components. In the medicine
domain, this socio aspect plays even more important role since
precisely human entities (e.g., doctors, medical personnel) are
responsible for final decision-making.

In this work, we discuss what SCMS is and how such a
system can be implemented based on the semantic approach.
As in the generic case of smart environments [7], an additional
layer is introduced—the semantic layer, where all system
and domain objects are virtually integrated: multisource data,

ongoing processes, situation attributes, reasoning rules, and
human activity. The objects are dynamically related leading to
a knowledge-rich structure in the form of a semantic network.
Semantic algorithms are used for data mining in this network.
The derived knowledge feeds construction of context-aware
information services to support medical professionals as well
as to assist mobile patients. We show how the semantic
layer can be designed based on the well-known smart spaces
approach [8], [9].

The rest of the paper is organized as follows. Section II
studies existing approaches to development of modern health-
care applications. Section III considers information services
of a SCMS. Section IV introduces a semantic layer as a
concept for effective implementation of advanced healthcare
services. Section V discusses possible data for integration on
the semantic layer and possible models of semantic network
analysis. Section VI overviews smart space based design to
develop SCMS. Finally, Section VII concludes the paper.

II. RELATED WORK

Recently, IoT-enabled healthcare systems are still in their
early research and development stage. Nevertheless, existing
research prototypes showed the considerable potential impact
on the healthcare service industry [1], [2], [3].

The essential role of user mobility, their personal mobile
devices as gateways to the medical information system, and
wireless medical sensors (wearable or implantable) has been
already well understood, e.g., see [5], [6]. In particular, the IoT
technology enables remote and continuous health monitoring
or wellbeing assessment as well as mobile user devices become
empowered with advanced Internet capabilities [10], [11]. On
the side of medical facilities, the environment is enhanced
with a dynamic multitude of remote users (patients and med-
ical personnel). Services become accessible in the ubiquitous
computing style—anytime, anyplace, anywhere—bridging the
distance gap between the user and the services. Healthcare
becomes mobile (mHealth) [4] and person-centric [12].

Ambient Assisted Living (AAL) aims at making IoT en-
vironments that support the people inhabiting them [13]. In
particular, embedded devices play now the crucial role for
development of health systems in home and living environ-
ments. Some examples include cognitive health monitoring
systems based on activity recognition, persuasive systems for
motivating users to change their health and wellness habits,
and abnormal health condition detection systems.
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The intelligence of healthcare monitoring was considered
in SAPHIRE project [14] using two pilot applications: one
is for bedside monitoring of cardiac patients at hospitals, the
other is for homecare monitoring of patients after a revascu-
larisation therapy. A vision of service intelligence was studied
in [11], identifying three key solution components: (i) multi-
agent architectures, (ii) semantics-oriented information shar-
ing, and (iii) operation with multisource heterogeneous data.

Data mining and analytics techniques are applied in such
scenarios as AAL for individuals with disabilities, ageing
in place, and remote health monitoring or wellbeing assess-
ment [15]. The analysis is based on monitoring daily behavior
and predicting standard clinical assessment scores of the users.
In particular, work [16] investigates this relationship between
continuous sensor data collected from real-world smart homes
and specific components of standard clinical assessment scores.

The role of ontologies for structured representation of
multi-source data for effective processing in medical systems
is presented in [17], [18]. Ontology for semantic representation
of health questionnaires is introduced in [19] to form a base
for further automatic processing by semantic methods.

III. INFORMATION SERVICES OF A
SOCIO-CYBER-MEDICINE SYSTEM

The traditional style of healthcare is limited by the time and
space barriers. A patient always has to visit a doctor in hospital
or clinic. Information and communication technologies (ICT),
and the IoT technology in particular, introduces effective
opportunities to break these barriers [10], [13], [4]. A typ-
ical healthcare information system provides backend services
located in medical facility. The basic idea is to digitalize such a
system with services that aim at remote (distant) consumption
by mobile patients and medical personnel [20], [11].

This idea has been evolving in respect to the following
concepts for the use of ICT in healthcare and well-being
services.

eHealth (electronic health): healthcare is supported by
digital services that are constructed using electronic processes
and communication.

Telemedicine: a form of eHealth to provide clinical
healthcare at a distance, including physical and psychological
diagnosis based on telemonitoring of patients functions.

mHealth (mobile health): Personal mobile devices are
used for continuous collecting, aggregating, and analysis of
patient-level health data. On the one hand, services provide
healthcare information to medical personnel as well as to the
patients. On the other hand, direct provision of healthcare
services can be performed using mobile telemedicine.

Cybermedicine: the Internet is used to deliver health-
care services, such as medical consultations, diagnosis, and
prescriptions. Services allow patients online access to consul-
tations and treatment with medical professional.

Healthcare services are constructed within IoT environ-
ments. Such an environment is associated with a physical
spatial-restricted place with a variety of devices (embedded
or brought by the users). In addition to local networking, the

environment has access to the global Internet with its diver-
sity of services and resources, including traditional medical
information systems.

The IoT technology provides a base for applying artificial
intelligence methods. In particular [21], ambient intelligence
(AmI) makes people empowered through intelligent tools em-
bedded in the surrounding environment or carried by people
(mobile computers, wearable and implantable devices) and by
objects that are aware of their presence and context (i.e., smart
objects in the IoT sense). These tools are sensitive, adaptive,
and responsive to each individual’s needs, habits, gestures and
emotions One example of AmI applications in healthcare [22]
is for psychiatrists and psychologists that use augmented and
virtual reality to improve the efficacy of available treatments
for anxiety disorders, eating and weight disorders, and pain
management. Using IoT an AmI application can overcome
the limitation of clinical settings, allowing a real connection
between the fragmented healthcare services and the daily
experiences of the patient.

As in many other application domains, IoT can enable
healthcare using fusion of real (physical) and virtual (informa-
tion) worlds [11]. A new level is achieved for interconnection
and convergence of service-oriented information coming from
both worlds. The interconnection and convergence is realized
within Cyber-Medicine Systems (CMS), where a CMS is com-
posed of many physical and virtual entities (as in any cyber-
physical system). Such entities are controlled or monitored by
computer-based algorithms. Virtual counterparts to physical
components are created, acting as smart objects in this IoT-
enabled networked system.

In addition to pure service consumption, end-users can
be active participants of the service construction. Human
participants become responsible for similar computation and
generation functions as machine-based smart objects. We yield
a Socio-Cyber-Medical System (SCMS), in correspondence
with such community-driven applications as social networking
or collaborative work environments. In the medicine domain,
this socio aspect plays even more important role since precisely
human entities (e.g., doctors, medical personnel) are responsi-
ble for final decision-making.

In a CMS, the major focus is construction of control
services, which operate with medical equipment (e.g., an
implanted insulin pump). In a SCMS, the focus is shifted
to information services, which provide analytical support and
assistance (e.g., a recommendation for a patient to reduce the
instant activity during the physical exercise). In general, an
information service provides the information fragment appro-
priate to the end-user in her/his current situation. The user
applies this fragment for situational decision-making, while the
decision depends on both components: (a) input information
produced by the service and (b) intelligence ability of the
human. Note that the intellectual role of human is not replaced;
the service just performs auxiliary assistance (the latter can be
performed by the human with a similar result of higher cost).

IV. SEMANTIC LAYER

The layered structure for semantic-driven design of a
service-oriented information system deployed in a given IoT
environment is known [4], see Fig. 1. In particular, smart
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Fig. 1. Layers of service-oriented information system in IoT environment

spaces provide an approach to creating service-oriented in-
formation systems with high intelligence support [8], [7].
The approach provides methods for information collection
from multiple sources, semantics representation and resource
sharing, operation over this fragmented knowledge corpus, and
cooperative service construction by all participants themselves.

Information services are constructed based on operation
with descriptions of numerous physical and virtual objects that
the SCMS is composed of. The descriptions are stored in the
information space for the shared use. The representation model
provides a structure to keep semantics: a semantic network
is created on top of the knowledge corpus of descriptions.
Network nodes are objects, links represent semantic relations
between objects. Then semantic methods are used to analyse
this semantic network, e.g., for searching appropriate informa-
tion and selecting the most interesting facts (recommendations)
for the user to study in her/his current situation.

The semantic network and operations over it introduce a
new layer—semantic layer—that glues information space and
service construction, as Figure 1 shows. Formally, a semantic
network is defined as a directed graph consisting of nodes
representing participating objects (real of virtual) and links rep-
resenting semantic relations. The nodes correspond to physical
and digital objects, patients and medical personnel, associated
events and activity, etc. The links reflect interrelation of the
objects. Both nodes and links can be assigned with additional
descriptions that provide further semantics. As a result, the
semantic network forms an advanced information model for
CSCM, where medical data are enhanced with all available
and appropriate data.

Let us introduce the following classes of information
services that a SCMS can provide using the semantic layer.

1) Individual health monitoring based on continuous
mobile sensing and assessment of patient’s data.

2) Group health monitoring when several patients are
clustered based on a certain criterion (e.g., geospatial
proximity).

3) Survey-driven assessment when health questionnaires
provide a base for making decisions.

4) Complex detection of patient status deviations based
on multisource data analytics.

The introduced services are examples that show how the se-
mantic layer can be applied to service development for SCMS.
The provision of health and wellbeing knowledge becomes
closer to the visitor’s preferences, historical interest, and the
current context. The semantic layer is made responsible for
construction and delivery of such services based on operation
with the semantic network. This way, SCMS creates a virtual
distributed workspace with many mobile users and where
the knowledge can be individually or cooperatively acquired,
applied, and evolved by both medical personnel and patients.

An essential property of a SCMS is operation with hetero-
geneous data coming from many sources:

1) medical measurements of vital and other physiologi-
cal parameters of the patient,

2) context data to describe situation of the patient and
the physical reality around the patient,

3) parameters of social activity that the patient performs
as well as perceived social influence from other
people.

The semantic layer is introduced to integrate such data con-
necting multiple fragments into the semantic network.

V. INFORMATION SOURCES AND SEMANTICS

The role of semantic layer is to integrate this large,
heterogeneous, and fragmented data corpus in such a way that
the integration embeds the semantics. In this section, we focus
is on models for representing and analyzing such data in a
semantic network.

A. Measurements classification

The semantic network virtually integrates data from many
patients, semantically relates the data with other informational
sources, supports knowledge reasoning over this multidimen-
sional, multi-domain, and fragmented corpus. Analysis of the
structure of semantic network provides deduced knowledge for
use in healthcare services.

Patient data obtained through surveys, physiological data
read from wearable devices and the surrounding context can
be used and interpreted on the network. Data directly obtained
from the patient is reputed subjective because it expresses
person’s mind and may be interpreted differently.

Portable devices measurements may be considered objec-
tive, since they do not depend on the will or desire of person
and come laden with characteristics of physiological processes.
Persistent measurements are characterized by the need to
obtain measurement series of the indicator over a distance of
time. One such measurement does not contain information,
and a set of measurements obtained with sufficiently high
frequency, make it possible to interpret the measurement series.
The activity rate of instant measurement is much lower in
comparison with continuous measurement. It is necessary to
repeat the instant measurements several times a day, once a
day or less to track the dynamics.

B. Subjective measurements

The survey can be conducted 1) active, when a patient
comes to the clinic with the direct participation of the doctor,
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and 2) passive, when patient answers surveys questions on
health status distant. In case of passive variant preference is
given to interactive electronic questionnaires because of the
possibility to lay a lot of options for questions and links
between them depending on patient response.

The patient may describe a set of symptoms that he feels
at the moment or over a period of time. Symptom is a one
of the individual features, frequent manifestation of a disease,
pathological condition or disorder of any life process. Thus
the patient can indicate the presence of pain. He can describe
the intensity (on the scale of pain: Verbal descriptive rating
scale of pain, facial pain scale, numeric scale of pain, etc.),
the character of pain (permanent, temporary, seasonal, etc.) and
the prevalence of pain throughout the body. Such information
is readily obtained by periodic patient survey.

The survey may contain not only questions about health
state, but also questions about nutrition. The qualitative and
quantitative composition of food, the time it is taken determine
the dietary regime and food ration. The diet is the adherence to
a certain regime and meals rules by a person (either healthy or
sick one). The description of a diet consist of functional, path-
omorphological, exchange, enzymatic and other disturbances
in an organism of the person.

By supervising what and how much to eat as well as what
not to eat, we can maximize a patient’s life quality through
avoidance of unhealthy ingredients [23]. It is possible to obtain
product protein fatty carbohydrate composition by dividing
it into ingredients. Based on these data, the food ration,
the metabolic index, the necessary level of physical activity
calculate, therefore, to give recommendations on increasing
or decreasing the proportion of ingredient in the diet and to
monitor the correlation between the diet and physiological
measurements.

C. Objective measurements

The variety of small portable devices available on the
market enable obtaining the behavioral and physiological data
digitized for storage and analysis. They comprise of a sensor
that records vital parameters and preprocesses the raw signals,
and the wireless data transferring module (Bluetooth or Wi-Fi).
For example, electrocardiography (ECG) is acknowledged as
one of the most informative and easy-to-do instrumental meth-
ods of diagnostics in cardiology. ECG monitor may send 150 to
300 digital values per second. As little as 10 QRS-interval are
needed for relevant clinical interpretation by physician. ECG
monitors are capable of continuous ECG recording for 12 -
48 hours depending on the model [24]. Blood glucose meter
and blood pressure monitor may have also allowed instant
measurement. Additionally, laboratory measurements (blood
sample testing, etc.) could have been done when necessary.

Characteristics of the patient motion can be obtained with
the built-in accelerometer in the mobile device or portable
pedometer. It tracks the number of steps passed during lo-
comotion (either walking or running). Interpretation of the
pedometer data enables us to determine changes in the patients
gait, which may be indicative of some neuromuscular deficits,
for example, at parkinsonism, cerebellum disorders, polyneu-
ropathy, stroke. The accelerometer detects and transmits its
relative angle of slope to the Earths surface. These devices

operate in a very wide range of frequencies (from several Hz
to 30 kHz) and are various by their sensitivity, weight, size
and shape.

The device or program for measurement of time parameters
of external respiration determines the breathing type (thoracic,
abdominal, or mixed) and the depth of its rhythm. The fre-
quency of respiratory movements is the number of breaths
(inhale-exhale cycle) per unit of time (usually a minute). The
respiratory cycles are counted as the number of repetitive
motions of chest and the anterior abdominal wall. Data are then
presented as time series that informs on mechanical deviation
of the chest. Another device that characterizes respiration is
spirometer, that allows measuring the respiratory rate, breath-
ing patterns, and also lung volumes. Fitness trackers, besides
monitoring of heart and steps rate, also provide opportunity
to typify the sleep phase. During sleep, pulse wave sensor
and the accelerometer mounted on the body provide detection
of the human limb movements. Sleep phase (paradoxical or
the slow sleep) is determined by a combination of heart rate
characteristics and limb mobility.

The measurements listed above could well be done in a
form of a game. One can perform, for example, a tapping
test in a playful way to timely detect bradykinesia, or slowed
down motion, and thus diagnose some neurological disorders,
such as parkinsonism. The tapping test is widely used in
psychophysiological studies and appears as counting number
of finger taps within 30 seconds, calculation of their rate, and
frequency decay over time. Alternatively, this test could be
performed with help of smart phone, or tablet. That also does
not distract a patient from his routine activities. Also, using
tablet, one can monitor the typing rate, the search speed in the
contacts list, and so on. Fluctuations from norm in that kind of
tests may be indicative of the of definite neurological disorders,
such as parkinsonism. The physiological data obtained through
game activities via mobile devices may be regarded as typical
continuous signal and thus can be described using the semantic
elements such as the ECG.

Additionally, heart rate monitors are currently commer-
cially available in the form of a chest strap or watches. They
are designed to record data for 20-200 hours in a row and
to inform on the average heart rate per minute. The portable
blood glucose meter controls the amount of glucose in body
fluids, usually blood, either in the milligram percent (mg%) or
milligrams per decilitre (mg / dl). The concentration of glucose
in the blood at different times of the day varies depending on
how many carbohydrates and other food man consumed. Either
too low or too high concentration of glucose is regarded as
dangerous to humans.

The blood pressure monitor is designed for indirect, non-
invasive measurement of the systolic and diastolic blood pres-
sure, at the reading range 20 to 280 mmHg with an accuracy
3% mmHg [24]. Also, new models of body thermometers
appear all the time. The device designed for continuous tem-
perature monitoring monitors the response of the circulatory
system to external environmental factors. The degree of mea-
surement accuracy is up to 0.02 degrees. Both blood pressure
and monitors and thermosensors can be synchronized with a
smart phone, which transfers all the data.

Instant measurement can be provided with help of games
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on smart phone. For example, the reaction time can be mea-
sured as a time between stimulus application (in a form of
object or changing colour on screen) and touching the screen.
These mobile games are available in the shops of mobile
applications presents. For OS Android, best examples are
reaction tests by GoldenTenor1, Wait Now2 to test reflexes and
compare the results around the world, reaction test by Sinic3 to
track player statistics. The use of these analysis methods allows
characterizing the reaction rate and its change synchronously
with clinical symptoms. However, the doctor would prefer to
deal with pre-processed and condensed information, rather than
with row data. Therefore, characteristic features of obtained
flow of data must be automatically classified, recognized and
then utilized in appropriate for a patient mobile-based form.

Measurements from various devices could well be con-
nected in a temporal semantic network. Synchronously ob-
tained parameters more fully describe the clinical picture of
a patient than when taken independently. The outcome of
such joint analysis of indicators can help elaborating highly
personalized description of the health state of the individual
patient.

D. Context

A system is considered context-aware if it can express
aspects of the user’s situation and such information is used
to help the system adapt its functionality to specific user
characteristics and needs [25]. The IoT technology essentially
enhances which information can describe context [26], [27]. In
particular, in smart spaces a dedicated knowledge processors
are introduced to control the data access [28].

For a SCMS we consider the following aspects of context.

• User context: user profile, location, social situation.

• Physical context: lighting, noise, traffic condition,
temperature.

• Time context: time of a day, week, month and season
of the year

As in many other domains, the context allows adaptation
of services, i.e., the same service is provided differently in dif-
ferent contexts. In healthcare, interpretation (and processing)
of measured medical data should be influenced by context. In
particular, mobile monitoring of patients with chronic diseases
(hypertension, diabetes, epilepsy, etc.) needs to identify patient
contexts while she/he is being monitored, including physical
activities such as sleeping or running, and their surrounding
environment such as room temperature [29].

E. Social

General trends and events which require attention can be
elucidated in a study recruiting a group of people. Conse-
quently patients can be divided into groups with the same
treatment path. The trajectory of the treatment in a form of
a semantic network defines which measurements should be
carried out and at which periodicity. Either under notable

1https://play.google.com/store/apps/details?id=com.fix.reaction
2https://play.google.com/store/apps/details?id=com.waitnow.waitnow
3https://play.google.com/store/apps/details?id=belkas.reactiontest

deviation from such trajectory or evident worsening of the
health state, patient can be administered to another group with
different trajectory of treatment.

Statistical methods on big data allow for analysis with
the purpose of grouping patients and determine the trajec-
tory of treatment. Article [30] suggests methods by which
patients were subdivided into groups for more efficient care
management planning. There are two directions of cluster
analysis: Series treatment (number of investigation procedures
for each patient) and Series time (waiting time for investigation
procedures for each patient).

Relations between the states of health of patient popula-
tions can be found in the same way. Correlation within a group
can be related to external conditions. For example, among
the weather-sensitive people may be the relationship of health
indicators on the weather on the air temperature, atmospheric
pressure and etc. The dependence of some parameters on the
residence or location of a group of people at the same time
can be determined.

ICT provides never earlier seen opportunities to set people
in so-called therapeutic groups or collaborative communities.
There is long-lasting approach to treat some mental illnesses,
personality disorders and drug addiction by means of par-
ticipative group, based on the concept of ”community as a
method” [31]. In such groups the clients and therapists may
live together, thus creating therapeutic surroundings for pa-
tients. Under some personal or physical circumstances, patients
cannot be physically grouped in one place, so ICT with its
social networking and communication facilities may serve as
a basis for a virtual therapeutic community (TC) that in some
senses resemble virtual interest groups in social networks, with
a therapist participating.

The TCs focuses on the whole person and intervenes with
his lifestyle and has already shown promising results [32], [33].
We believe that transfer of its principles in a more “virtual”
milieu may provide some benefits to the clients health and,
therefore, to the state. Also, that experience would have added
efficiency to such recognized problem as Parkinsons disease
(PD). PD is mere neurological chronic motion disorder. Still,
PD patients share many psychological and autonomic problems
with more ”classic” pathologies, such as mental illnesses or
personality disorders. As such, PD may be a relevant candidate
for building up a therapeutic Internet network.

Thus, ubiquitous mobile internet connectivity and a vari-
ety of sensor devices open the opportunity to continuously
assess the health state between visits to a doctor in patients
with such long-term, or even life-long conditions, as arterial
hypertension, diabetes and neurodegenerative diseases.

VI. SMART SPACE BASED DESIGN

Let us discuss possible solutions that support development
of a SCMS providing information services with such generic
properties of services in smart spaces as adaptation, context-
awareness, personalization, and proactive delivery [7].

The M3 architecture (multidevice, multivendor, multido-
main) enables concept development of smart spaces to host ad-
vanced service-oriented applications, including various cyber-
physical systems [8]. A particular open source platform is
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Smart-M3 [9]. It provides an open source technology, which
can be used in many application domains. Semantic infor-
mation broker (SIB) is a central element. To collect infor-
mation content the SIB provides an RDF-based knowledge
base, which implements an RDF triplestore with support for
information search and processing extensions. The RDF rep-
resentation leads to interoperable information sharing. In the
studied SCMS case, the RDF representation straightforwardly
leads to a semantic network in the form of RDF graphs [34].

Agents directly communicates with their SIB to access
the smart space content. In the simples case, read and write
operations allows collecting and sharing the content (RDF
triples are basic data unit). The subscription operation enables
indirect cooperation of agents when one agent can detect
changes in the shared content. The Smart-M3 term “knowledge
processor” (KP) makes distinguishing for this class of software
agents from the general term in multi-agent systems and
agent-based communication. That is, KPs target asynchronous
collective knowledge generation and utilization via information
sharing and semantic relations.

The smart spaces based methods follow the design princi-
ples listed below [4].

Principle of information hub: An IoT environment has
a knowledge base to create the smart space with ontological
models to describe semantic representation of involved partic-
ipants, service construction processes, and available resources.

Principle of external resources: External resources are
accessible in the smart space using two models: (a) ontological
model to virtualize the external resource and its operation and
(b) agent-based model to define mediation activity of a KP
assigned to operate with the external resource.

Principle of information-driven programming: Service
construction applies an agent-based interaction model over the
shared information where each KP operates in the following
loop of information detection and reaction: (a) detect a given
knowledge fact in the smart space and (b) make an appropriate
reaction with production of new information and its (partial)
publication in the smart space to share with other participants.

Based on these principles, our vision of the smart space
based design is shown in Fig. 2. The information hub principle
provides information localization when no need to deal with
all available data in one giant storage. The external resources
principle allows operation with many external data sources
by virtualizing and semantically integrating them into the
semantic network. Following the information-driven principle,
the coordination in a smart space is based on reacting on obser-
vations in the shared, semantically-linked, and cooperatively-
generated information.

The information hub stores and operates with heteroge-
neous data objects. The ontological description of each object
is different from the other. Ontologies may be successfully
linked to a common semantic network for building general
trends and personalized recommendations

A number of ontologies exist to describe subjective
measurements. Schedule a diet can bedefined using Food
Ontology[35] built as an extension of widely used standardised
ontology for products. In [19] the ontology of the survey is

described. The semantic web survey uses Questionnaire and
Feedback objects. Questionnaire object contains links to Ques-
tion objects, Answer and Answer items objects, networked
in the corresponding sequence. This storage variant is useful
when semantic network contains one or a small number of
questionnaires with rarely changing elements. In this case
questionnaires are quite stable and do not carry a serious
impacts on the hub. All questionnaire objects storage also
gives the opportunity to use part of it separately or select the
questions in some respects.

On the other hand this may lead to a large number of
operations over the hub. It is possible to save objects, which
stores objects described questions, answers, and answer items,
by using external resource. Questionnaire object and link to the
external resource are contained in hub. External resources is
presented in a medical institution server. This makes it possible
to simplify the procedure for the appointment of questionnaires
to patient and store a large number of surveys in the hub.

Feedback object is an object that represents a particular
patient responses. Links between the objects of survey ques-
tions and the patient’s responses are defined to match what
question has been answered. Since the patient can fill out the
questionnaire with some intervals it is not necessary to keep
all Feedback objects in the hub. In this case, the storage of
Feedback object and links to patient’s responses on external
resources is suitable.

Objective measurements and also context information are
obtained from wearable devices. These objects can be defined
by using the Semantic Sensor Network ontology[36]. The
SSN ontology describe sensors in terms of capabilities, mea-
surement processes, observations and deployments. Another
variant is to store device’s measurements in the terms of
physical parameters[37].

Although the data come from multiple sources, the se-
mantic layer does not operate directly with big numerical
or lengthy flow data. Long time series as well as other
massive data are stored in dedicated information systems. For
accessing additional information the object provides references
to appropriate information systems.

Consequently, traditional analysis of individual time series
of a patient can be performed at the specialized backend
servers. In turn, the result can be used to update the semantic
network, i.e., supporting its knowledge evolution. For exam-
ple, personalized recommendations on motional activity are
associated with the patient in an adaptive style.

In addition, combined multi-person analysis is possible. For
instance, searching similar time series among different patients
can be performed at the backend servers.

Measurements interpretation storage is more relevant to
the doctor’s needs. In [38] Symptom ontology is proposed.
Included among these characteristics are 1) a hierarchy of
common symptoms, 2) clear associations between specific
symptoms and the axioms of the languages they violate and
3) a means for relating individual symptoms back to the
specific constructs. Matching patients answers to Symptoms
makes possible to trace the dynamics of specific symptom
changes. Number of symptoms describes disease and therefore
Symptom object has a casual relation with Disease object. The
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Fig. 2. Smart space based design for connecting a remote patient to the system

repeated measurenments of group of patients in same context
identifies trends, it is a casual relation too. So objective and
subjective measurenments may be synchronized by times (it is
a variant of correlation link) and transmit aggregated data to
Sympom object.

Diseases ontology is also represented in [39]. The DO
is an open source ontological description of human disease,
organized from a clinical perspective of disease etiology and
location.

That is, the semantic layer enables representation of
person-to-person relationships. Similarly, the measurements
can also be related with other available information, e.g.,
patient profiles and medical notes from physicians [40].

This heterogeneous fragmented corpus, which is structured
in the form of a semantic network, can be further semantically
interlinked to support knowledge reasoning. The known effec-
tive technology for representing such semantics is RDF from
Semantic Web. In this case, establishing a relation becomes a
simple act of publishing few RDF triples. In particular, the M3
architecture and its realization in the Smart-M3 platform can
be employed for the above construction of the semantic layer
with a semantic network and operations over it.

VII. CONCLUSION

This paper discussed the role of semantic approach to
service development for socio-cyber-medicine systems. We
introduced the semantic layer where all system-related objects,
either real or informational, are virtualized in the smart space
in the form of a semantic network. The latter relates the
virtualized objects to represent their semantics. As a result,
many advanced services can be constructed using semantic
algorithms that analyze (and evolve) this network.
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