
The M3 Architecture for Smart Spaces: Overview of
Semantic Information Broker Implementations

Fabio Viola1, Alfredo D’Elia1, Dmitry Korzun2, Ivan Galov2, Alexey Kashevnik3,4, Sergey Balandin5

1University of Bologna, Bologna, Italy
2Petrozavodsk State University (PetrSU), Petrozavodsk, Russia

3SPIIRAS, St.Petersburg, Russia
4ITMO University, St.Petersburg, Russia

5FRUCT Oy, Helsinki, Finland
{fabio.viola2, alfredo.delia4}@unibo.it, {dkorzun, galov}@cs.karelia.ru, alexey@iias.spb.su, sergey.balandin@fruct.org

Abstract—A smart space enhances a networked computing
environment by enabling information sharing for a multitude of
local digital devices and global resources from the Internet. We
consider the M3 architecture (multi-device, multi-vendor, multi-
domain) for creating smart spaces, which integrates technologies
from two innovative concepts: the Semantic Web and the
Internet of Things. Our research focus is on analyses of the
capabilities of Smart-M3 platform, which provides software
implementations for such a central element of an M3 smart space
as Semantic Information Broker (SIB). The paper presents a
state-of-the-art and contributes our systematized vision on the
SIB design and implementation. The analyzed open source SIB
implementations include the original Smart-M3 piglet-based SIB,
its optimized descendant RedSIB, OSGi SIB for Java devices,
pySIB for Python devices, and CuteSIB for Qt devices. We also
analyze the design of proprietary or incomplete SIB
implementations: RIBS for embedded devices and ADK SIB built
upon the OSGi framework with integration in the Eclipse
Integrated Development Environment. The theoretical study is
augmented with experimental evaluation of available SIB
implementations.

I. INTRODUCTION

Smart spaces form a programming paradigm, which is now
augmented with the rapidly advancing suit of information and
communication technologies (ICT), for creating a certain class
of ubiquitous computing environments [1], [2], [3], [4], [5].
Such an environment is typically associated with a physical
spatial-restricted place (office, room, home, city square, etc.)
equipped with a variety of devices (sensors, data processors,
actuators, consumer electronics, personal mobile devices,
multimodal systems, etc.). In addition to local networking, the
environment has access to the global Internet with its diversity
of information services and computational resources. The key
postulate of a smart space is to enable information sharing in
the environment, supporting construction of "smart" services
[6], [7], [8], [9], where the term "smart" emphasizing the new
level of service recognition (detection of user needs),
construction (automated preprocessing of large and
multisource data amounts), and perception (derived
information provision to the user for
decision-making).

The smart spaces ICT suit is based on the disruptive
technologies coming from two innovative concepts: the

Semantic Web (SW) and the Internet of Things (IoT). The SW
concept was born to drive the Web towards the original Tim
Berners Lee's vision, the so-called web of data [10]. The SW
technology stack is primarily composed by technologies
allowing the representation (RDF, RDFS, OWL) and retrieval
(SPARQL) of semantically annotated data [11]. The IoT
concept [12] is a large-scale evolution of the innovative vision
of Mark Weiser about ubiquitous computing: the Internet, in
addition to personal desktops and mobile computers, is also
populated with billions of heterogeneous interconnected smart
devices, which represent (and advance) physical things.
Everyday life objects, alongside traditional computers, become
data processors and service constructors to their users [13],
[14]. Both SW and IoT form a vast research area characterized
by a high interdisciplinary level, a high process dynamicity,
and heterogeneity of the involved devices and applications. A
very wide range of application domains is covered: from
collaborative work environments and electronic health to
cybermedicine, from electronic tourism and cultural heritage
education to smart cities, from transport logistics and
Industrial Internet to socio-cyber-physical systems, and many
more.

This paper considers the M3 architecture, which represents
a promising ICT suite for creating smart spaces. In particular,
the Smart-M3 platform is one of the most suggestive examples
of applying the SW technologies [15] to the case of ubiquitous
computing and emerging IoT environments. The RDF and
OWL standards are used to represent data and bind each
resource with its meaning. The SPARQL UPDATE [16] and
QUERY [17] languages are used to update and retrieve data
from the shared information store, which constitutes a
knowledge base (KB) for the environment. Through these
technologies, Smart-M3 becomes a candidate middleware
platform for hosting a wide range of context-aware
applications based on ontology-driven and multi-agent
approaches [18], [19], [20], [21], [22]. The context is here
intended, as from the well-known Dey definition, as any
information that can be used to characterize the situation of an
entity, where the latter can be a person, a place or a physical or
computational object [23]. Many applications have been
developed in the latest years exploiting the Smart-M3
opportunities [5]: blogging [24], mobile tourist guiding [25],

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

smart conference system [26], ridesharing service [27] just to
name a few. The ongoing application development activity is
also covering new directions like electro mobility [28], [29]
and mobile robotics [30].

Our study is focused on the central component of the M3
architecture: the semantic information broker (SIB). Each SIB
manages and shares a knowledge base (KB) with all the smart
space participants. The KB is semantic, in the form of a RDF
triplestore. Starting from 2008, when the first SIB prototype
was produced, several SIB implementations have been
appeared optimized for a specific purpose like portability and
performance. In this paper, we provide a systematized view on
the existing SIB designs and available SIB implementations.
We review their architectures and design solutions, analyzing
the main strengths and weaknesses of each version. The
examined SIB implementations include the five open source
projects: Piglet-based SIB [15], its optimized descendant
RedSIB [31], OSGi SIB for Java-based systems [32], pySIB
for embedded and resources constrained devices with Python
[33], and CuteSIB [34] for Qt crossplatform device family. We
also analyze the two SIB designs with no open source
implementations: RIBS [35] for embedded devices and ADK
SIB [36] built upon the OSGi framework and integrated in the
Eclipse Integrated Development Environment. Recently the
open source SIB development is supported mainly under the
umbrella of the FRUCT Association by efforts of University
of Bologna (Italy) and Petrozavodsk State University (Russia).
The theoretical study is augmented with experimental
evaluation and comparison of available SIB implementations.

The rest of the paper is organized as follows. Section II
describes the essentials of M3 architecture and systemizes
architectural and design solutions for a generic M3 SIB.
Section III considers available SIB implementations and
introduces internal details for each of them. Section IV
provides experimental evaluation and comparison of the SIB
implementations. Finally, Section V concludes the paper.

II. THE M3 ARCHITECTURE

The M3 architecture has been initially defined by a
consortium participating to the Artemis JU funded SOFIA
project (Smart Objects for Intelligent Applications) and to the
Finnish nationally funded program DIEM (Device
Interoperability Ecosystem), working in strong collaboration
with the Nokia Corporation. M3 stands for Multi-device,
Multi-vendor, and Multi-domain [1], [14], [37], [38]. The
Smart-M3 platform [15] is an open source middleware that
implements the M3 architecture. Smart-M3 was released as
open source platform at the NoTA Conference on October 1,
2009. Soon after its first release, the Smart-M3 potential was
understood and applied in other European projects, e.g., in
eHealth and eMobility. Furthermore, EIT ICT Labs, an
Innovation Factory for ICT Innovation in Europe, included
smart spaces among its innovation areas. The platform was
adopted by the smart space infrastructure recently established
at the Helsinki Node of the EIT ICT Labs. At the moment, the
main developers of Smart-M3 platform are several
communities including the FRUCT Association, the SOFIA
Community, and the ARCES (Advanced Research Center on

Electronic Systems “Ercole De Castro”) at University of
Bologna.

Fig. 1. The M3 architecture in a nutshell [15]

The M3 architecture (Fig. 1) defines two principal software
components and an interaction protocol for them: the SIB, the
Knowledge Processors (KPs) and the Smart Space Access
Protocol (SSAP).

From a functional point of view, SIB implements an
information hub forming a logical rendezvous and
information-level interoperability infrastructure on the top of
an RDF triple-store (or a SPARQL endpoint). Each SIB acts as
an access point to a shared KB that describes the overall
information state and context of the environment. The
information representation is semantic, based on an oriented
labeled graph, i.e., following the SW concept. The basic SIB
role is to manage the read&write accesses to this graph.
Advanced access operations are possible, including such
persistent queries as subscription: a subscription notification
mechanism to improve the reactivity and the band usage where
the subscribe-notify paradigm is applicable.

The generic SIB architecture is shown in Fig. 2. It consists
of several modules: network handler, request/response
handler, operations handler and RDF triplestore. Network
handler implements network communication between SIB and
KPs. They exchange messages, which follows the SSAP rules
and syntax, recently has being generalized to Knowledge
Sharing Protocol (KSP) [15]. The SSAP is a communication
protocol acting at application level and for which it exists a
well supported encoding in XML and a younger, less
supported, but thinner JSON serialization. Request/response
handler process network messages according to SSAP/KSP
protocol rules and syntax and determines which operations
should be performed in triplestore. Protocols provides read-
write operations for inserting, removing, updating, querying,
and (un)subscribing. The set of operations can be extended
with advanced SPARQL queries and persistent operations.
Operations are performed in operation handlers using a
particular triplestore library to manage information in the RDF
triplestore.

Each KP is a software agent and a participant to the Smart-
M3 based scenario. The way in which such an application
scenario evolves and its intelligence is provided, is the
cooperative knowledge processing over the shared data and

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

-- 265 --

context, which is a much powerful approach with respect to an
autonomous participation in the IoT environment [19].

Fig. 2. Architecture of general SIB

Each KP acts as an agent of adjustable autonomy [39]. A
KP can be developed exploiting a Knowledge Processor
Interface (KPI) [20]. KPI enables KP to participate in the
smart space through implementation of the SSAP client part:
primitives for local manipulation of shared information,
functions for security and reliability, notification management,
serialization and de-serialization of the raw XML messages.
Thanks to the success of the M3 architecture and the
community efforts, many KPIs are currently available,
including Python, C, Java, C#, Ruby, PHP, Javascript, Lua.

III. SEMANTIC INFORMATION BROKER IMPLEMENTATIONS

Let us consider architectures and design solutions of the
following SIB implementations: the piglet-based SIB M3 SIB
[15], RedSIB [32] for generic-purpose computers, OSGi SIB
[32] for Java-based systems, PySIB [33] for a modular SIB
supporting resources constrained devices and for didactics
purposes, CuteSIB [34] for a wide spectrum of Qt-based IoT
devices, RIBS [35] for resource limited devices operating with
embedded sensors, and ADK SIB [36] built upon the OSGi
framework with integration in the Eclipse Integrated
Development Environment. Open source SIB implementations
are released as open source software, see the SourceForge
resource (https://sourceforge.net/projects/smart-m3/). At the
moment, the SIB development is supported mainly under the
umbrella of the FRUCT Association by efforts of University
of Bologna (Italy) and Petrozavodsk State University (Russia).

A. The Piglet-Based SIB
This implementation has been first released in 2009. It was

used by the FRUCT community in such application
development projects as SmartConference (http://fruct.org/sc),
SmartScribo (http://fruct.org/smartscribo), and Ridesharing
(http://fruct.org/ridesharing).

The piglet-based SIB architecture is shown in Fig. 3. SIB
consists of two main parts: the SIB daemon (sibd application
written in C language with Glib library) and network handlers.
SIB daemon handles the information access, operations
processing and the storage of the RDF Graph. Network
handlers maintain network communication with KPs. The
Piglet SIB supports two communication technologies: TCP/IP
and Nota implemented as a separate applications (sib-tcp and

sib-nota respectively). They are connected to the SIB daemon
over D-Bus.

Fig. 3. The piglet-based SIB architecture

The architecture offered the opportunity to add new
interfaces by implementing the corresponding daemons and
connecting them to the D-Bus. The principles guiding the
design of Smart-M3 are simplicity, extensibility and being
agnostic to the used communication mechanisms.

The simplicity ensures scalability for small devices and for
large number of users, while the extensibility makes it possible
to tailor the implementation easily to uses where the standard
functionality is not sufficient. Furthermore, by not dictating a
specific communication mechanism, the Piglet SIB should be
easy to deployed on top of many existing infrastructures.

The layer runs in a single thread which schedules and
executes the requests from the threads handling the SSAP
operations. The communication between the SSAP operations
threads is handled by using asynchronous queues. The triple
operations layer is currently implemented by using Piglet RDF
store. The triple operations layer is not tied to any specific
RDF store, and any RDF store supporting the basic operations
of read, write and delete may be substituted in the place of
Piglet. However, changing the RDF store will require
changing the code in the graph operations layer to adapt to the
concrete interface provided by the new RDF store.

B. RedSIB
RedSIB is a direct descendant of the Piglet SIB

implementation. They share the same architectural design and
the code is essentially inherited. RedSIB was built upon the
experiences gained in the early Smart-M3 applications. The
goal was to solve the most relevant issues the application
developers detected as well as improving the performance and
avoiding criticalities. Feedbacks of the Smart-M3 community
were used to improve the SIB adding more functionalities.

At a high level of the abstraction, the RedSIB architecture
(Fig. 4) is the same of the piglet-based SIB implementation
with one RDF store and two main daemons communicating
through D-Bus: the monolithic SIB daemon (redsibd
application) and the TCP one (sib-tcp application). A
deepened analysis highlights the presence of a high quantity of
new code and data structures whose main functionalities are
summarized, but not limited to, the following points.

Support for Virtuoso and for volatile storage
(previously supporting only the BDB RDF store).

Prototype of data access control mechanism [40].

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

-- 266 --

Optimization of the subscription handling with several
improvements acting specifically for those situations
that were considered most common by the community
[41]: shortly many subscriptions with low number of
triples to be notified at a time.

Management of the situation of abrupt disconnection
happening when a subscribed KP temporarily loose
connectivity and the SIB has internal bounds to the
active subscriptions.

The RedSIB has been applied in many domains like
maintenance [42], telemedicine [43] and computer-human
interaction [44] to name a few. The efforts performed by the
research community during the years revealed also some limits
among which two led to the decision to create new versions.
First, the RedSIB implementation is still bound to the D-Bus,
an interprocess communication daemon. The D-Bus daemon
limits performances for certain specific tasks. Second, the
RedSIB implementation has a monolithic architecture, which
requests huge efforts to the developers when new features are
needed.

Being a result of the SW concept applied to IoT, which is
still an experimental topic of the research scenario, many
features and setups are to be implemented, deployed and
prototyped and this conflicts with the monolithic approach of
the code. Much efforts are still needed to optimize the
subscription management or to include access control
mechanisms. The features to be added and tested are in a
queue that the community cannot dispose due to the lack of
modularity. One issue is the lack of portability and
extensibility, which leads to the need for many different
modular version optimized for different target architectures.
The described needs and the proliferation of SIB versions are
not unexpected because in the overall vision the integration
point is the SSAP protocol which remains unchanged.
Therefore, coherently with the IoT concept, multi-SIB
architectures with different SIB versions running on
heterogeneous devices are possible and welcomed [45], [46].

C. OSGi SIB
The OSGi SIB [32] was created and is currently

maintained by the University of Bologna and Eurotech. The
focus of the OSGi SIB developers is on the IoT and M2M
industrial domains. The main strength of the OSGi SIB is its
portability: the Java programming language and the OSGi
framework grant the ability to run on different operating
systems. The development of the OSGi SIB led to the creation
of a specific Android version of the Semantic Information
Broker, suitable for mobile devices. With respect to the other
implementations of the SIB, the OSGi SIB introduces a new
primitive called Persistent Update (PU): it consists of a
SPARQL 1.1 update executed once when the command is
issued to the SIB and then acting persistently on the data-store
until it is deactivated. Together with the Python lightweight
implementation, the OSGi SIB is the only one providing
support for the JSON encoding of the SSAP protocol which
grants a bandwith usage ranging from the 60% to the 90% of
the current XML encoding (still in its early stage). The OSGi
SIB also provides support for persistent storage thanks to TDB

module of the Jena libraries. The OSGi SIB is implemented as
OSGi Java application and is made of several interacting
modules – bundles registered to the OSGi framework (Fig. 5).

Fig. 4. The RedSIB architecture

Fig. 5. The OSGi SIB Architecture

TCP Bundle is responsible for managing the network
connection with KPs. It receives messages from KPs and
manages a queue of the requests to be satisfied. Protocol
bundle parses each message received from the TCP bundle in
order to build an internal representation of the request.
Scheduler bundle binds an identifier to each request processed
by the Protocol bundle and sends request on processing.
Operation bundles process each request with help of Jena
library and provide a reply. Persistent operations bundle is
responsible for the management of every active Persistent
Update operation.

D. pySIB
Developed by ARCES department of the University of

Bologna, pySIB is a lightweight SIB implementation designed
to run mainly on embedded devices and System on Chips
(SoCs). The implementation is written in Python and relying
on the Python bindings of the RDFlib, pySIB results easy to
install and run. As highlighted by Viola et al. [46] pySIB,
despite being in its earliest stable releases, shows good
performance both in updating the knowledge base and
retrieving data from it.

The modular architecture of pySIB makes it easy for the
developers to extend it by adding new features or replacing
existing modules with different ones (e.g. to support a
different SSAP parser). The architecture is represented in Fig.
6. The Network handler module constitutes the interface
between the SIB and the external world. Every message
received from the outside (currently over TCP) is forwarded to
the Protocol handler that builds an internal dictionary
represetation of the SSAP message. The current
implementation supports by default the JSON encoded version
of the SSAP protocol. Security manager checks access rights

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

-- 267 --

on the requested operation and then passes approved
operations to Operation handler.

Fig. 6. pySIB internal architecture

Operation handler performs the actions required by the KP
on the RDF store, then sends back a dictionary to the Protocol
handler which transform it into a reply message. The Network
handler module sends the reply packet to the KP. As
triplestore pySIB uses RDFlib library which maintains in-
memory volatile triplestore which is fast but not persistent.
Due to the modular architecture and to the simplicity of
Python, pySIB is also used for educational matters into the
Interoperability of Embedded Systems course of the
University of Bologna where Smart-M3 has a central role.

E. CuteSIB
The CuteSIB implementation is developed and maintained

by Petrozavodsk State University (PetrSU). CuteSIB is a
reengineered version of RedSIB. The implementation is based
on the Qt framework in order to support a wide spectrum of
Qt-based IoT devices. A modular SIB design was proposed
[34] to support such important properties as extensibility,
dependability, and portability.

The first distinctive property is elimination of D-Bus. One
reason is that D-Bus is used only in Unix-based systems, thus
preventing the use of SIB in other operating systems (e.g.,
Windows). Another reason is that D-Bus does not effectively
support transfer of big amounts of data. Operation becomes
unstable when transferring fast data streams of triples. As a
result of the D-Bus elimination, the interprocess
communication has simpler structure.

SIB communication modules for various network protocols
(e.g., TCP or UDP) become plug-ins. They can be
loaded/unloaded from the main SIB program as dynamic
libraries. When higher portability is needed, such plug-ins can
be integrated to SIB using static compilation. In this case, SIB
does not load external libraries and is used as monolith
application with the customizable set of network protocols.
This feature targets SIB portability, taking into account
devices with operating systems that have limited or no support
of dynamic libraries.

The second distinctive property is the plug-ins based
architecture in order to achieve higher extensibility due to the
modular approach, see Fig. 7. The architecture allows
inclusion/exclusion of certain modules in compilation phase or
in runtime. The feature affords to customize the SIB
functionality for given host device and IoT environment.

Network layer is implemented as a pool of access points,
each is an external module for SIB. Protocol manager interacts

with a specific access point and performs request parsing and
response generation.

Fig. 7. The plug-ins based architecture of CuteSIB

Access protocol (such as SSAP or KSP) is implemented as
a separate module, which parses request messages and creates
response messages. In particular, it becomes possible to
implement SPARQL over HTTP to access SIB as a common
SPARQL access point. Scheduler module controls processing
of CuteSIB commands with KPs requests/responses and
internal notifications (to control runtime of other modules).

The scheduler delegates each command to an appropriate
operation handler. Three command handlers can be
distinguished: basic operation handler (for insert, remove,
update, and query operations), persistent operations handler
contains persistent operations (such as subscription), and
SPARQL handler for advanced search queries. Persistent
operations are always stored on the SIB side (continuous in
time) and a response is generated whenever a specified event
occurs.

F. RIBS and ADK SIBs: implementations are not available
at the moment

Finally in this section, let us consider two SIB designs that
had reached a considerable level of interest in the past, when
the Smart-M3 platform was introduced. Although these SIBs
have no open source implementation or their implementation
status is unknown to the authors, a summary consideration is
still important to contrast the ideas with the other SIB
proposals.

The RDF Information Bases Solution (RIBS) [35] is a SIB
design with the focus on security aspects and targeted to low-
resources devices. The prototype unified in a pioneering way
two of the main issues that are currently faced by the whole
IoT community: the security based on a dynamic set of
concurrent policies and the portability on resource-constrained
devices. RIBS was born and developed during the SOFIA
project (2008-2011) and led to a prototype demonstration in
the final event of the project. Despite its good points, being not
totally open source, the project failed to build a community of
developers large enough to carry the work on after the end of
SOFIA. Then, to the best of the authors’ knowledge, the
development process of RIBS was suspended.

The SIB ADK (Advanced Development Kit) [36] is a SIB
version built upon the OSGi framework and integrated in the
Eclipse Integrated Development Environment. It was designed

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

-- 268 --

to have a powerful suite for ontology based code generation
and model based application development [36]. It is possible
to state that the ADK SIB and the frameworks based on it,
approach to smart applications in a different but not clashing
way with respect to the classical approach matured since the
times of the Piglet SIB. Research work and interesting ideas
derived from both the approaches and recently it is possible to
find also comparison articles [47] even if direct performance
comparison is difficult due to the many differences between
this specific SIB version and the other described
implementations, in particular with regard to the subscription
interpretation and management.

IV. EXPERIMENTAL EVALUATION

This section presents the evaluation results of the currently
accessible SIB implementations: OSGi SIB, RedSIB, PySIB,
and CuteSIB. All of the SIBs were executed with volatile
storage. The evaluation is performed using the Performance
Evaluation Suite [48] developed by the University of Bologna.
The setup adopted in the evaluation phase is the following:
PES runs on a personal computer (named Smart-M3-AIO)
provided with 4 Intel(R) Core(TM) i5-4430S CPU @
2.70GHz and 3,5 GB RAM. Each of the four SIBs mentioned
above runs on a dedicated VirtualBox virtual machine (1 CPU,
512 MB RAM) on a server hosted at the ARCES department
of the University of Bologna. This server, called mml, has 12
processors Intel(R) Xeon(R) CPU E5-2430 v2 @ 2.50GHz.
mml and Smart-M3-AIO are connected through a Gigabit
LAN.

A. Update Test
This test (Fig. 8) is used to assess the performance of the

insertion mechanism of the SIBs. The update of the knowledge
base can be requested using the SPARQL UPDATE language
or the RDF-M3 formalism. The following test is related to the
insertion of a block of n triples (with n ranging from 100 to
2000) composed by:

a subject: http://ns#sub<X> (URI)
a predicate: http://ns#pred<X> (URI)
an object: “X” (Literal)

Fig. 8. Time to insert a block of n triple with the RDF-M3 formalism

B. Query Test
The query mechanism of the four SIBs has been tested

with both the SPARQL QUERY language and with the triple
pattern based formalism. In the first case the whole content of
the KB (made by n triples) has been retrieved with the most
general query:

SELECT ?s ?p ?o
WHERE { ?s ?p ?o }

while in the second case the same task has been performed
issuing the triple pattern composed by three wildcards (for the
subject, the predicate and the object).

For every possible size of the knowledge base (identified
by n) the query has been performed ten times and the mean
time has been used to plot the charts. The results of the test
with the SPARQL query are reported in Fig. 9. Fig. 10
presents the results of the RDF-M3 queries for different SIBs
implementation.

Fig. 9. Time to retrieve the whole KB of n triples with an SPARQL query

Fig. 10. Time to retrieve the whole KB of n triples with an RDF-M3 query

In both cases it is clear that RedSIB is the slowest broker.
CuteSIB and the OSGi SIB show similar performances ad

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

-- 269 --

compete for the role of the fastest SIB. PySIB RDF-M3 engine
provides the results of the query in a time sensibly longer than
the OSGi SIB and CuteSIB but on the other hand results very
fast in replying to the SPARQL query.

The four SIB implementations have also been evaluated
against the SPARQL QUERY language by using the SP2B
benchmark of the University of Freiburg [49]. This benchmark
provides a dataset generator used by authors to generate 10k
and 50k triples. All of the seventeen SPARQL queries
provided by the benchmark have been used to assess the
performance of the SPARQL engines. Table I reports the
execution time in seconds for all the queries on the dataset
with 10k triples, while Table II contains the results of the
same benchmark on the dataset composed by 50k triples.

Results of the SP2B benchmark highlights that RedSIB and
CuteSIB, especially with the larger dataset are not able to
reply within the allowed time interval (set to 5 minutes). The
OSGi SIB managed to complete all of the assigned query but
one into the assigned time. pySIB behaves quite well with the
smallest dataset, while only half of the queries were
successfully completed.

TABLE 1: SP2B BENCHMARK RESULTS ON THE 10K DATASET

Test Cute SIB OSGi SIB PySIB RedSIB
Q1 0.463 0.008 0.017 0.413
Q2 0.69 0.173 0.301 2.645
Q3a 16.832 0.079 1.349 15.148
Q3b 16.977 0.017 1.324 15.242
Q3c 17.000 0.008 1.306 15.269
Q4 timeout 7.681 timeout timeout
Q5a 0.209 0.687 1.194 timeout
Q5b timeout 0.312 31.455 timeout
Q6 0.621 0.779 timeout timeout
Q7 20.865 0.195 44.840 19.895
Q8 17.634 0.065 0.073 14.836
Q9 34.715 0.037 0.682 29.216
Q10 0.056 0.043 0.064 0.060
Q11 0.333 0.018 0.184 0.026
Q12a 0.004 0.010 0.250 0.016
Q12b 17.484 0.011 0.052 14.830
Q12c 0.005 0.006 0.013 0.005

TABLE 2: SP2B BENCHMARK RESULTS ON THE 50K DATASET

Test Cute SIB OSGi SIB PySIB RedSIB
Q1 9.216 0.012 0.595 8.947
Q2 9.893 2.698 timeout timeout
Q3a timeout 0.298 timeout timeout
Q3b timeout 0.018 timeout timeout
Q3c timeout 0.012 5.657 timeout
Q4 timeout timeout timeout timeout
Q5a timeout 26.494 timeout timeout
Q5b timeout 12.380 timeout timeout
Q6 10.241 3.630 timeout 3.687
Q7 timeout 4.952 timeout timeout
Q8 timeout 0.049 0.627 timeout
Q9 timeout 0.057 3.110 timeout
Q10 0.182 0.171 0.109 0.057
Q11 0.118 0.022 0.973 0.112
Q12a 0.004 0.040 0.872 1.166
Q12b timeout 0.022 0.054 timeout
Q12c 0.004 0.006 0.018 0.010

C. Evaluation of the Subscription mechanism
In publish-subscribe platforms the performance evaluation

must take into account the timeliness of each notification and
the number of the notifications that get lost.

Fig. 11. Time to receive the notification for the update of a triple

Fig. 12. Time to insert 100 triples with a varying number of subscriptions

In this section an example scenario has been taken into
consideration: it is about an instant messaging application
which uses the SIB to store information about its users. Users
are characterized with five triples stating the class of the user,
the user ID and its password, the status and the personal
message. In the example 1000 users are registered to the
application, resulting in 5000 triples. In the first test the suite
subscribed to the status of a specific user. The time interval
between the sending of the status update and the receiving of
the related notification has been measured. The test was
performed ten times then the mean values are plotted in
Fig. 11.

For publish-subscribe systems it is also important that
active subscriptions do not affect the performance of the
platform. Fig. 12 shows the performance evaluation of the four
compared SIB implementations in the scenario where an
insertion of 100 triples into an empty knowledge base has to

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

-- 270 --

be performed. Each SIB maintains n active subscriptions (not
triggered by the updates of the KB). It is instantly visible that
pySIB fails this test since the performance of update requests
are dramatically affected by the number of active
subscriptions. This performance degradation is due to the
experimental support for subscriptions that yet needs to be
optimized in this relatively young SIB implementation. The
other SIB implementations show no significant influence of
the subscriptions on the speed of the update process.

V. CONCLUSION

This paper analyzed recent capabilities of the Smart-M3
platform, which provides a promising technology and open
source middleware to create smart spaces in accordance with
the M3 architecture. The Smart-M3 is considered one of the
most suggestive examples of applying SW technologies to the
case of emerging IoT environments. We provided a
summarized view on the generic M3 SIB architecture; this
result has own value for smart spaces middleware
development. We reviewed existing SIB designs and available
implementations, discussing their purpose, strengths, and
weaknesses. The theoretical study is augmented with
experimental evaluation and comparison of the five SIB
implementations: Piglet-based SIB, RedSIB, OSGi SIB,
pySIB, and CuteSIB. In particular, OSGi SIB seems solid
against even very complex SPARQL tests, which is achieved
due to the use of such a very effective RDF backend as Jena.
On the other hand, OSGi SIB is not slim enough to run on
resource constrained devices. Despite being built with
orientation to a wide range of devices the performance of
PySIB and CuteSIB is observed reasonable in specific tests.
Indeed, a weak point is the SPARQL management, which
needs further development.

ACKNOWLEDGMENT

Authors thank to professor Tullio Salmon Cinotti for
giving us the chance to experiment with smart environments in
its laboratory. The presented results are part of the research
carried out within the project funded by grant #16-07-00462,
#16-29-12866, and #14-07-00252 of the Russian Foundation
for Basic Research. The work has been partially financially
supported by Government of Russian Federation, Grant 074-
U01.

REFERENCES

[1] S. Balandin and H. Waris “Key Properties in the Development of
Smart Spaces” Human Computer Interaction International
conference (HCII 2009), LNCS 5615, San Diego, USA, 2009, pp. 3-
12.

[2] I. Oliver and S. Boldyrev, “Operations on spaces of information,”
Proc. IEEE Int’l Conf. Semantic Computing (ICSC ’09), IEEE
Computer Society, 2009, pp. 267–274.

[3] E. Ovaska, T. Cinotti, A. Toninelli, “The design principles and
practices of interoperable smart spaces”, Advanced Design
Approaches to Emerging Software Systems, 2012, 30 p.

[4] E. Gilman, O. Davidyuk, X. Su, J. Riekki, “Towards interactive smart
spaces”, Journal of Ambient Intelligence and Smart Environments,
2013, vol.5, no 1, pp. 5–22.

[5] D. Korzun, A. Kashevnik, S. Balandin, and A. Smirnov, “The Smart-
M3 platform: Experience of smart space application development for
Internet of Things”, Internet of Things, Smart Spaces, and Next
Generation Networks and Systems, LNCS 9247, Springer, 2015, pp.
56–67.

[6] D. Korzun, “On the smart spaces approach to semantic-driven design
of service-oriented information systems,” in Proc. 12th Int’l Baltic
Conf. on Databases and Information Systems (DB&IS 2016),
Springer, 2016, pp. 181–195.

[7] J. Augusto, V. Callaghan, D. Cook, A. Kameas, I. Satoh, “Intelligent
environments: a manifesto”, Human-centric Computing and
Information Sciences, vol. 3, no. 1, 2013, 3:12.

[8] A. Smirnov, T. Levashova, N. Shilov, “Online Communities for
Agent Collaboration in Cyber-Physical-Social Systems”, Joint
Proceedings of the BIR 2015 Workshops and Doctoral Consortium
co-located with 14th International Conference on Perspectives in
Business Informatics Research (BIR 2015), Tartu, Estonia, 2015., vol.
1420, pp. 124–135.

[9] D. Korzun, I. Nikolaevskiy, A. Gurtov, “Service Intelligence and
Communication Security for Ambient Assisted Living”, International
Journal of Embedded and Real-Time Communication Systems
(IJERTCS), 2015, vol. 6, issue 1, pp. 76–100.

[10] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web. Scientific
american, vol. 284(5), 2001, pp. 28–37.

[11] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions” Future
Generation Computer Systems, vol, 29(7), 2013, pp.1645–1660.

[12] M. Weiser, “The computer for the 21st century”, Scientific american,
vol. 265(3), 1991, pp. 94–104.

[13] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, “Smart
objects as building blocks for the Internet of Things,” IEEE Internet
Computing, vol. 14, no. 1, 2010, pp. 44–51.

[14] D. Korzun, S. Balandin, and A. Gurtov, “Deployment of Smart
Spaces in Internet of Things: Overview of the design challenges,” in
Proc. 13th Int’l Conf. Next Generation Wired/Wireless Networking
and 6th Conf. on Internet of Things and Smart Spaces
(NEW2AN/ruSMART 2013), LNCS 8121, Springer, 2013, pp. 48–59.

[15] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3
information sharing platform”, in Proc. IEEE Symp. Computers and
Communications (ISCC’10), IEEE Computer Society, 2010, pp.
1041–1046.

[16] A. Seaborne, G. Manjunath, C. Bizer, J. Breslin, S. Das, I. Davis, B.
Nowack, “SPARQL/Update: A language for updating RDF graphs”,
W3c member submission, vol. 15., 2008.

[17] E. Prud’Hommeaux, A. Seaborne, “SPARQL query language for
RDF”, W3C recommendation, vol. 15, 2008.

[18] J. Honkola, H. Laine, R. Brown, and I. Oliver, “Cross-domain
interoperability: A case study,” in Proc. 9th Int’l Conf. Next
Generation Wired/Wireless Networking (NEW2AN’09) and 2nd Conf.
Smart Spaces (ruSMART’09), LNCS 5764, Springer-Verlag, 2009,
pp. 22–31.

[19] A. Smirnov, A. Kashevnik, N. Shilov, I. Oliver, S. Balandin and S.
Boldyrev “Anonymous Agent Coordination in Smart Spaces: State-
of-the-Art”, 2nd Russian Conference on Smart Spaces – ruSMART
2009, LNCS 5764, St-Petersburg, Russia, 2009, pp. 42-51.

[20] D. Korzun, A. Lomov, P. Vanag, J. Honkola, and S. Balandin,
“Generating modest high-level ontology libraries for Smart-M3”,
Proc. 4th Int’l Conf. Mobile Ubiquitous Computing, Systems,
Services and Technologies (UBICOMM 2010), 2010, pp. 103–109.

[21] A. Smirnov, A. Kashevnik, N. Shilov, S. Balandin, I. Oliver, S.
Boldyrev “On-the-Fly Ontology Matching in Smart Spaces: A Multi-
Model Approach”, 3rd Russian Conference on Smart Spaces –
ruSMART 2010, LNCS 6294, Russia, 2010. pp. 72-83.

[22] V. Luukkala and J. Honkola, “Integration of an answer set engine to
smart-m3”, Proc. 3rd Conf. Smart Spaces (ruSMART’10) and 10th
Int’l Conf. Next Generation Wired/Wireless Networking
(NEW2AN’10), Springer-Verlag, 2010, pp. 92–101.

[23] G. Abowd, A. Dey, P. Brown, N. Davies, M. Smith, P. Steggles, P.
Session, “Towards a better understanding of context and context-
awareness”, CHI 2000 Workshop on the What Who Where When and
How of Context awareness, 2000, pp. 1–6.

[24] D. Korzun, I. Galov, A. Kashevnik, N. Shilov, K. Krinkin, Y.
Korolev, “Integration of Smart-M3 applications: Blogging in smart
conference”, In Smart Spaces and Next Generation Wired/Wireless
Networking, Springer, 2011, pp. 51–62.

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

-- 271 --

[25] A. Smirnov, A. Kashevnik, S. Balandin, S. Laizane, “Intelligent
mobile tourist guide”, Internet of Things, Smart Spaces, and Next
Generation Networking, 2013, Springer, pp. 94–106.

[26] D. Korzun, I. Galov, A. Kashevnik, S. Balandin, Virtual shared
workspace for smart spaces and M3-based case study, Proc. 15th
Conf. of Open Innovations Association FRUCT, 2014, pp. 60–68.

[27] A. Smirnov, N. Shilov, A. Kashevnik, N. Teslya, S. Laizane, “Smart
Space-based Ridesharing Service in e-Tourism Application for
Karelia Region Accessibility: Ontology-based Approach and
Implementation”, 8th International Joint Conference on Software
Technologies, 2013, Reykjavik, Iceland, pp. 591–598.

[28] L. Bedogni, L. Bononi, M. Di Felice, A. D'Elia, T. Cinotti, “A Route
Planner Service with Recharging Reservation: Electric Itinerary with
a Click”, IEEE Intelligent Transportation Systems Magazine, vol.
8(3), 2016, pp. 75–84.

[29] L. Bedogni, L. Bononi, M. Di Felice, A. D'Elia, R. Mock, "An
integrated simulation framework to model electric vehicles operations
and services", IEEE Trans. Veh. Technol, vol. 65, 2016, pp. 5900–
5917.

[30] Smirnov A., Kashevnik A., Mikhailov S., Mironov M.. Smart M3-
Based Robot Interaction Scenario for Coalition Work, International
Conference on Interactive Collaborative Robotics (ICR 2016),
Budapest, Hungary, LNAI 9812, Springer, 2016, pp. 199–207.

[31] F. Morandi, L. Roffia, A. D’Elia, F. Vergari, T. Cinotti, “RedSib: a
Smart-M3 semantic information broker implementation,” in Proc.
12th Conf. of Open Innovations Association FRUCT and Seminar on
e- Tourism, 2012, pp. 86–98.

[32] D. Manzaroli, L. Roffia, T. Cinotti, E. Ovaska, P. Azzoni, V.
Nannini, S. Mattarozzi, “Smart-M3 and OSGi: The interoperability
platform”, in Proc. IEEE Symp. Computers and Communications
(ISCC’10), IEEE Computer Society, 2010, pp. 1053–1058.

[33] F. Viola, A. D’Elia, L. Roffia, and T. S. Cinotti, “A modular
lightweight implementation of the Smart-M3 semantic information
broker”, in Proc. 18th Conf. of Open Innovations Association FRUCT
and ISPIT Conference, IEEE, 2016, pp. 370–377.

[34] I. Galov, A. Lomov, D. Korzun, “Design of semantic information
broker for localized computing environments in the Internet of
Things,” in Proc. 17th Conf. of Open Innovations Association
FRUCT, ITMO University, IEEE, 2015, pp. 36–43.

[35] J. Suomalainen, P. Hyttinen, and P. Tarvainen, “Secure information
sharing between heterogeneous embedded devices”, in Proc. 4th
European Conf. Software Architecture (ECSA ’10): Companion
Volume, ACM, 2010, pp. 205–212.

[36] J. Gomez-Pimpollo, R. Otaolea, “Smart Objects for Intelligent
Applications-ADK”, In 2010 IEEE Symposium on Visual Languages
and Human-Centric Computing, 2010, pp. 267–268.

[37] J. Kiljander, A. Ylisaukko-oja, J. Takalo-Mattila, M. Eteläperä, J.-P.
Soininen, “Enabling semantic technology empowered smart spaces”,
Journal of Computer Networks and Communications, 2012, Vol.
2012, 14 p.

[38] D. Korzun, A. Lomov, P. Vanag, S. Balandin, J. Honkola,
“Multilingual Ontology Library Generator for Smart-M3 Information
Sharing Platform”, International Journal on Advances in Intelligent
Systems, vol. 4, no 3 & 4, 2011, pp. 68–81.

[39] M. Ball, V. Callaghan, “Managing Control, Convenience and
Autonomy: A Study of Agent Autonomy in Intelligent
Environments”, Journal of Ambient Intelligence and Smart
Environments, 2012, Vol. 12, pp. 1–38.

[40] D’Elia, A., Honkola, J., Manzaroli, D., & Cinotti, T. S., “Access
control at triple level: Specification and enforcement of a simple RDF
model to support concurrent applications in smart environments”. In
Smart Spaces and Next Generation Wired/Wireless Networking,
2011, Springer, pp. 63-74.

[41] L. Roffia, F. Morandi, J. Kiljander, A. Elia, F. Vergari, F. Viola, T.
Cinotti, “A Semantic Publish-Subscribe Architecture for the Internet
of Things”, IEEE Internet of Things Journal, vol. PP Iss. 99, 2016.

[42] A. D'Elia, L., Roffia, G., Zamagni, F. Vergari, A. Toninelli, P.
Bellavista, “Smart applications for the maintenance of large
buildings: How to achieve ontology-based interoperability at the
information level”, 2010 IEEE Symposium on Computers and
Communications (ISCC), 2010, pp. 1–6.

[43] F. Vergari, T. Cinotti, A. D'Elia, L. Roffia, G. Zamagni, C. Lamberti,
“An integrated framework to achieve interoperability in person-
centric health management”, International journal of telemedicine
and applications, 2011, vol. 5.

[44] F. Vergari, S. Bartolini, F. Spadini, A. D'Elia, G. Zamagni, L. Roffia,
T. Cinotti, “A smart space application to dynamically relate medical
and environmental information”, In Proceedings of the Conference
on Design, Automation and Test in Europe, European Design and
Automation Association, 2010, pp. 1542–1547.

[45] J. Kiljander, A. D’Elia, F. Morandi, P. Hyttinen, J. Takalo-Mattila, A.
Ylisaukko-Oja, T. Cinotti, “Semantic interoperability architecture for
pervasive computing and Internet of Things”, IEEE access, vol. 2,
2014, pp. 856–873.

[46] A. D’Elia, F. Viola, L. Roffia, T. Cinotti, “A Multi-Broker Platform
for the Internet of Things”, In Conference on Smart Spaces, Springer,
2015, pp. 34–46.

[47] H. Hamza, E. Ashraf, A. Nabih, M. Abdallah, A., Gamaleldin, A.
D'Elia, A. Attallah, “Design and Implementation of an Interoperable
and Extendable Smart Home Semantic Architecture using Smart-M3
and SOA”, In The Tenth International Conference on Networking
and Services, ICNS, 2014, pp. 48–53.

[48] F. Viola, A. D'Elia, L. Roffia, T. Cinotti, “Performance Evaluation
Suite for Semantic Publish-Subscribe Message-oriented
Middlewares”, The Tenth International Conference on Mobile
Ubiquitous Computing, Systems, Services and Technologies
(UBICOMM 2016), 2016 (submitted for publication).

[49] M. Schmidt, T. Hornung, G. Lausen, C. Pinkel, “SP^ 2Bench: a
SPARQL performance benchmark”, In 2009 IEEE 25th International
Conference on Data Engineering, IEEE, 2009, pp. 222–233).

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

-- 272 --

