PROCEEDING OF THE AINL FRUCT 2016 CONFERENCE

An Adaptive Web Interface for Microtask-Based
Crowdsourcing

Ilya Sukhopluev
Ural Federal University
Yekaterinburg, Russia
suhoy95 @gmail.com

Abstract—In unpaid microtask-based crowdsourcing, it is of
great importance to lower the worker entrance barrier for
attracting more volunteers and keeping their motivation high.
To do that, the worker interfaces should be easy to use. In this
paper, we explore the three-tier software architecture for running
microtasks and also present Boyarin, an open source front-end
Web application for bridging the gap between the crowd workers
and the underlying Mechanical Tsar crowdsourcing engine.

I. INTRODUCTION

Microtask-based crowdsourcing implies submission of the
human intelligence tasks (HITs) to the controlled or uncon-
trolled crowd of human workers. This approach for hybrid
human-machine computation was popularized by Amazon
MTurk [1], an online labor marketplace when the workers
receive monetary incentives for the submitted answers. A
number of paid crowdsourcing platforms offer convenient,
yet proprietary task design frameworks, such in the cases of
CrowdFlower [2] and Yandex.Toloka [3].

In contrast, unpaid crowdsourcing relies on open source
software to run the annotation process and collect the workers’
answers [4]. To make it more convenient for the volunteers, the
worker interface should be adaptive both to the devices from
which the workers do the annotation and to their behavioural
patterns. The latter aspect needs to be properly captured and
analyzed in a post-hoc manner [5].

In this paper, we are focusing on the software engineering
aspect of microtask-based crowdsourcing. We discuss the
existent systems in Section II. Then, we emphasize on the
three-tier architecture described in Section III and present
Boyarin, a flexible Web-based annotation front-end, in Sec-
tion IV. Finally, we show illustrative examples in Section V
and provide concluding remarks in Section VI. The software
we demonstrate is open source and is available under a libré
license.

II. RELATED WORK

Several frameworks are being available, such as TurKit [6],
Bossa [7], PyBossa [8], psiTurk [9], Troia [10], and
Mechanical Tsar [11]. Some, like TurKit and psiTurk, are
tighty coupled with the paid MTurk. Others, like Bossa and
Troia, seems to be not extensively maintained today. PyBossa,
despite its impressive features and flexibility, lacks the statis-
tical quality control mechanisms offered by Mechanical Tsar.

Dmitry Ustalov
Ural Federal University
Yekaterinburg, Russia
dmitry.ustalov @urfu.ru

III. ARCHITECTURE

In the three-tier architecture, depicted at Fig. 1, the crowd-
sourcing system is composed of three primary subsystems:
the database storing the task, worker and answer information,
the back-end (or the Mechanical Tsar engine) dealing with
task allocation and answer aggregation, and the front-end
representing the tasks to the workers and collecting back their
answers. In our setup, the engine provides the RESTful API
over HTTP or HTTPS to prevent the workers interacting with
the engine directly. Additionally, the front-end communicates
with the felemetry system that tracks the worker activity for
gathering the implicit feedback from them.

e S
Application
Worker
v)
Engine Database

Telemetry

System ¢

Requester
Fig. 1. The architectural diagram representing the front-end (the application),

the back-end (the engine) and the supplementary systems along with the
worker and the requester users

The engine also exposes the graphical user interface for
making it possible for the requester to tune the annotation
parameters and perform data management operations. Accord-
ing to the present architecture, the front-end system performs
three primary activities: (1) presenting the list of the available
annotation stages, (2) rendering the task from the stage chosen
by the worker, and (3) receiving the answers submitted by the
worker. An annotation stage is the set of tasks grouped by the
similar objective, like “select the similar words” or “confirm
whether the message is a spam or ham”.

Although the engine stores the worker metadata, it does
not deal with the worker authentication, so this functionality
should be implemented by the front-end. Under this setting,
the front-end may implement any authentication mechanism
possible, e.g., social network login, anonymous login, etc., but
the engine will manipulate with the internal worker identifiers
by securing their personal identities (Fig. 2).

ISBN 978-952-68397-8-3 (PDF)

PROCEEDING OF THE AINL FRUCT 2016 CONFERENCE

Since that the answer processing is done by the Mechanical
Tsar engine, the front-end system has no possibility to perform
formal answer validation, i.e., the presence of the answer in
the single choice questions, etc. Instead, it is still possible
to communicate with the engine that produces the validation
errors in the machine-readable form. Thus, the role of the
front-end in this system is to make interacting with the engine
accessible to humans (Fig. 3).

‘Worker ‘ ’:Application‘ ’ :Engine

request task

find or create
worker

worker

H<allocate task

task

task

’ ‘Worker ‘ ’:Application‘ ’ :Engine ‘

Fig. 2. Sequence diagram for task allocation

’ ‘Worker ‘ ’:Application‘ ’ :Engine ‘

submit form

validate
and send answer

i
[answers are valid]
accept

new task [‘

[else]
validation failed

current task with
__error messages

‘Worker ‘ ’:Application‘ ’ :Engine

Fig. 3. Sequence diagram for answer submission

IV. IMPLEMENTATION

Boyarin, our implementation of the front-end system [12],
is a Web application written in JavaScript using the Node.js
runtime environment [13] and specialized middleware. The au-
thentication routines are available for Facebook, VK, GitHub,
or “login-less” approach that records only the worker’s IP ad-
dress and browser identifier combination. The worker sessions
are stored using encrypted HTTP cookies, which are small
fragments of data stored in the browser for the specified time.

The interaction with the engine is asynchronous due to
the properties of the Node.js runtime. For encapsulating this
interaction, all the requests are wrapped into the Connector

115

Connector

Application

getStages
getStage
getWorker
createWorker
getTasks
sendAnswers

&

EngineConnector TestConnector

l l

Test Data

Engine

Fig. 4. Connector, the wrapper object

object implementing the Proxy design pattern (Fig. 4). This
also simplifies unit testing by providing the mock data without
any need for network connection during the tests.

For each task, represented as an annotation stage in Boyarin
and Mechanical Tsar, it is possible to design the specific
worker interface template, but the requester has also been
provided with several generic options being available. If the
customization is needed, the requester chooses the authenti-
cation approach and makes relatively small changes to the
present HTML, CSS and JavaScript code snippets. A special
attention is paid to the convenience of the users and the
compatibility to mobile devices by automatically rearranging
the worker interface according to the screen resolution of the
particular device. For gathering the telemetry information, we
use the Piwik open source Web analytics system hosted on our
servers [14].

V. EXAMPLES

The above-mentioned worker interface has been success-
fully used in the evaluation task for the Russian Distributional
Thesaurus [15]. For instance, Fig. 5 shows the list of available
annotation stages and Fig. 6 shows the tasks representation for
the selected stage. The requester has a separate user interface
of the Mechanical Tsar engine for tuning the annotation pro-
cess and downloading and uploading the data as well (Fig. 7).

Annotation Interface
Home About

Available Stages

Stage Description Actions

russe Russian Distributional Thesaurus Evaluation
arc-add Add-Remove-Confirm: Add.

arc-rm Add-Remove-Confirm: Remove.
arc-confirm Add-Remove-Confirm: Confirm
gsm-genus Genus-Species-Match: Genus
gsm-species Genus-Species-Match: Species.
gsm-match Genus-Species-Match: Match.

Fig. 5. List of the available annotation stages (interface captions are translated
for convenience of readers into English; originally all the interface elements
are in Russian)

PROCEEDING OF THE AINL FRUCT 2016 CONFERENCE

Annotation Interface

Home About

Russian Distributional Thesaurus Evaluation
In this task, the words are related to each other if:
« these words are synonyms, e.g., “hippo” and “behemoth”;
« these words denote the similar concepts, e.g., “fruit’ and “apple”, or “apple” and “peach;
« these words are connected within a domain, e.g., “wheel” and “brake”;
« these words form an idiom, e.g., “equipment” and “install"

The words are not related, if there is no obvious semantic connection between them exist, e.g., “car” and “cucumber”.

Words Answer
year and hour notrelated related
architecture and hieroglyphical notrelated * related
popcorn and kitkat notrelated " related
drink and ligueur not related related
sea and interior notrelated related
hill and slab notrelated " related
EEXl croeetesc

Your ID is 767.

Only 4127 tasks left
Fig. 6. Microtasks of the selected annotation stage (interface captions are
translated for convenience of readers into English; originally all the interface

elements are in Russian)

Stage "russe"”

Key Value Action
description Russian Distributional Thesaurus Evaluation.

workerCount 549 Details

workerRanker mtsar.processors.worker.ZeroRanker

taskCount 4127 Details

taskAllocator mtsar.processors.task.InverseCountAllocator

answerCount 17057 Details

answerAggregator mtsar.processors.answer.MajorityVoting

Additional Options

Key Value

tasksPerPage 6

@ Dashboard # Stages © GitHub

Fig. 7. The requester interface offered by the Mechanical Tsar engine

VI. CONCLUSION

The software developed within this study is publicly
available for use and modification [12]. We believe that the
release of this software, Boyarin, will facilitate the crowd-
sourcing studies of other researchers that might benefit of
convenient task offering procedure provided by the front-end
and the statistical answer aggregation algorithms provided

116

by the Mechanical Tsar engine for increasing the annotation
reliability. Since that unpaid crowdsourcing completes slowlier
but yields results of similar or higher quality compared to
its paid counterpart [4], we plan to focus on providing better
crowdsourcing task design in further studies.

ACKNOWLEDGMENT

The reported study was funded by RFBR according to
the research project No. 16-37-00354 mol_a. We would like
to thank Denis Shirgin for the initial implementation of the
annotation front-end. We are also grateful to the four reviewers
who offered useful comments on the present paper.

REFERENCES

[1] Amazon Mechanical Turk -
https://www.mturk.com/mturk/welcome.

[2] CrowdFlower | People-powered Data Enrichment Platform, Web:
https://www.crowdflower.com/.

[3] Yandex.Toloka, Web: https:/toloka.yandex.com/.

[4] R.M. Borromeo, T. Motomichi, “An investigation of unpaid crowdsourc-
ing”, Human-centric Computing and Information Sciences, vol.6(1),
Aug.2016, pp. 1-19.

[5] U. Gadiraju, R. Kawase, S. Dietze, G. Demartini, “Understanding
malicious behavior in crowdsourcing platforms: The case of online
surveys”, in Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, Apr. 2015, pp. 1631-1640.

[6] G. Little, L.B. Chilton, M. Goldman, R.C. Miller, “TurKit: human
computation algorithms on mechanical turk”, in Proceedings of the 23nd
annual ACM symposium on User interface software and technology,
Oct. 2010, pp. 56-66.

[71 E.J. Korpela, “SETI@home, BOINC, and Volunteer Distributed Com-
puting”, Annual Review of Earth and Planetary Sciences, vol.40(1),
May.2012, pp. 69-87.

[8] The ultimate crowdsourcing
http://pybossa.com/.

[91 T.M. Gureckis, J. Martin, J. McDonnell, A.S. Rich, D. Markant, A.
Coenen, D. Halpern, J.B. Hamrick, P. Chan, “psiTurk: An open-source
framework for conducting replicable behavioral experiments online”,
Behavior Research Methods, vol.48(3), Oct.2015, pp. 829-842.

[10] ipeirotis/Troia-Server: Quality Control API for Crowdsourcing Appli-
cations, Web: https://github.com/ipeirotis/Troia-Server.

[11] D.A. Ustalov, “A Crowdsourcing Engine for Mechanized Labor”,
in Proceedings of the Institute for System Programming, vol.27(3),
Jul.2015, pp. 351-364.

[12] mtsar/boyarin: A servant of
https://github.com/mtsar/boyarin.

[13] Node.js, Web: https://nodejs.org/.
[14] Free Web Analytics Software, Web: https://piwik.org/.

[15] A. Panchenko, D. Ustalov, N. Arefyev, D. Paperno, N. Konstantinova,
N.V. Loukachevitch, C. Biemann, “Human and machine judgements for
Russian semantic relatedness”, Springer CCIS, in press.

Welcome, ‘Web:

framework - PyBossa, Web:

Mechanical Tsar, Web:

