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Abstract—This paper addresses the problem of speaker identi-
fication in noisy conditions. A two-step noise reduction algorithm
based on soft mask and minimum mean square error short-
time spectral amplitude estimator was proposed. It is used in the
signal preprocessing stage for more robust speaker identification.
The proposed algorithm was tested and compared with the
existing noise reduction algorithms in the problem of speaker
identification. Testing was carried out with two speech databases
and some noise samples from the NOISEX-92 library. The
advantage of the new noise reduction algorithm for some noise
samples and signal-to-noise ratios was shown.

I. INTRODUCTION

Speaker identification is becoming a high-relevant task in
many fields specially in the framework of security remote
applications. These systems usually developed under labora-
tory conditions and severely degrade their performance level
when an acoustical mismatch appears among training and
testing phases [1]. For example it can occurs in acoustic noise
presence. In this case one of the most effective ways to provide
more robustness to the recognizer is using noise reduction
algorithms for speech signals [1].

The problem of enhancing speech degraded by uncorrelated
additive noise, when only the noise speech is available, has
widely studied in the past and it is still in active field of
research [2]. Some methods in frequency domain using various
spectral gain functions depending on a posteriori signal-to-
noise ratio or/and a priori signal-to-noise ratio was proposed
in the past. A priori signal-to-noise ratio estimation is not
required for spectral subtraction gain function [3]. In other
cases it can be estimated using decision-directed approach [4],
two-step noise reduction technique [5] or other methods [6],
[7]. Various gain functions is used for short-time spectral mag-
nitude correction such as Wiener gain function [8], minimum
mean square error short-time spectral amplitude estimator [4],
minimum mean square error short-time log-spectral amplitude
estimator [9], etc. In addition to the frequency domain noise
reduction methods there are other approaches [10], [11], [12],
[13], [14].

It should be noted that noise reduction algorithms maximiz-
ing quality and intelligibility of speech signals are not always
effective for signal preprocessing in the problem of speaker
identification.

In [15] soft mask noise reduction technique was presented.
The soft mask algorithm is similar to other algorithms in
the frequency domain, but soft mask’s gain function is a

probability of speech presence in each point of the time-
frequency representation of the speech signal.

In this paper soft masks were generalized. A new approach
to soft mask estimation using modified decision-directed ap-
proach was proposed. The obtained algorithm was used as
first step in the two-step noise reduction algorithm [5]. The
two-step noise reduction technique was also modified. The
modification related to smoothing a priori signal-to-noise ratio
for the second stage using exponential moving average with
upper limit.

The goal of the research is developing a noise reduction
algorithm based on soft mask to improve speaker identification
accuracy in noisy conditions.

II. SOFT MASK FOR NOISE REDUCTION
A. Definition

Let Ry ., and A ,, denote noisy speech magnitude spec-
trum and “clean” speech magnitude spectrum respectively
(where k£ is spectral component number, w is analysis frame
number). Soft mask’s gain function is a probability of speech
presence in each point of the time-frequency representation of
the speech signal:

Sk = P(Hy) = P(¢loced > 1) (1)

k,w

where H; is speech presence hypothesis; 5};’3’[ is local a priori

signal-to-noise ratio defined as follows:

2
local __ Akaw (2)
kaw T D2

k2w

where Dy ,, is noise magnitude spectrum.

If soft mask is known, speech magnitude spectrum can be
estimated as follows:

Ak,w = Sk,ka‘w (3)

B. Explanation

The ability of using soft mask for noise reduction can
be derived from binary mask. It is based on the assumption
that additive noise masks some parts of the time-frequency
representation of the speech signal and leaves the other parts
not strongly affected [16]. It should be noted that binary mask
is widely used in the computational auditory scene analysis
[17], [18], [19].
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Binary mask can be represented as following spectral gain

function:
{1 if Hy

B w — N
k 0 if Hy

where H is speech presence hypothesis; Hy is speech absence
hypothesis. Speech magnitude spectrum can be estimated using
binary mask as follows:

Ago = BrwRiw 4)

It was proposed to divide points of the time-frequency
representation of the speech signal into speech present and
speech absent using following rule [19], [20]:

gl > 1 (5)
where 7 is threshold that usually equals to one [18], [21].

The gain function By ,, in (5) can be considered to be a
random variable as it depends on the §local In the context
of binary masking, By, ., is a Bernoulli ‘distributed random
variable taking the value of 0 or 1, and its parameter p is the
hypothesis probability P(H7). It is difficult to estimate By,
as it depends on accurate estimates of the local a priori signal-
to-noise ratio. However, we can obtain Bj, ,, more reliably by
taking its expectation [15]. This approach is similar to the soft
decision introduced by McAulay and Malpass in [22]. Using
it (3) can be transformed to:

Ak,w = E{Bk,w}Rk,w =
= [E{By,w | Ho}P(Ho) + E{By,w | H1}P(H1)] Ry

Since E{Bjw | Ho} = 0 and E{Bj. | Hi} =
equation can be transformed to:

Agy = P(H1)Ry, = P( jocal >

1 this

T)Rlﬁw - Sk,w Rk,w

where S}, ., is soft mask.

III. GENERALIZED SOFT MASK

Since By, is either 1 or O it can be raised to arbitrary
power 6 > 0 in (4). So it can be transformed to:

7\ 4
Ak‘,m = Bk‘7'{” Rk,'m

As Aku > 0 and Ry, > 0 this equation can be raised to the

1.
power 7:

A1
0
Ak‘,'l - Bk leﬁ w

We can obtain A" k. Using expectation of By .. So this
equation can be transformed to:

A = EBralR], -
= [B{Bya | Ho}P(Ho) + F{By, | Hi}P(H)| Y,
If we raise this equation to the power  we obtain following:
w = S,‘Z,ka,w
where SZ,w is generalized soft mask.

The power of soft mask # can be determined based on
chosen optimality criterion.
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Let us explain the meaning of the parameter 6. In figures
below there are normalized histograms for Sg,w when 0 = 1
(Fig. 1) and # = 2 (Fig. 2). This histograms were obtained
using real speech signal with 15 dB signal-to-noise ratio
corrupted by additive white Gaussian noise and noise reduction
algorithm described in the next part of the paper.

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Relative frequency of occurrence

N0 O T XN 0T ®
Vol gmhoxRrxed
co T oS T o3

= 048
0.92
0.96

<
=
S
c

Value of soft mask
Normalized histogram for S,‘\’_’.“,, 6=1

0.8

0.7

0.6

0.5

0.4

0.3

Relative frequency of occurrence

O AN LC A FOANNL T OO FONO Xt 0D
c oo C (===l (==l (===l S o CCc o
Value of soft mask
Fig. 2. Normalized histogram for SZ w0=2

Conventionally, all points of the time-frequency represen-
tation of the signal can be divided into unreliable for which
S ., — 0, reliable for which 59 — 1, and intermediate that
located between them. If we mcrease 0, quantity of unreliable
points increase, but quantity of reliable and intermediate points
decrease.

So, by varying the parameter 6, we can set necessary
balance between reliable and unreliable points. In other words,
higher value of § provides more noise suppression, and in this
case soft mask is more closer to binary mask.

IV. A NEW APPROACH TO SOFT MASK ESTIMATION

Let us estimate soft mask using equation (1). To estimate
the likelihood of validity of inequality £loml > 1 we express it
relatively to Dy, ,, and use assumption that the noise magnitude
spectrum is Rayleigh distributed for each spectral component.
It can be moved from strict inequality élof“l > 1 to non-strict
inequality g,;" @ > 1 and revealed it using (2):

Ak.w > D2

k,w
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As flh,,, > 0 and Ry ., > 0 square root can be taken:

Ak),w > Dk,w

’Clean” speech magnitude spectrum Ay, ,, is unknown, but
it can be estimated using one of spectral gain functions. In this
paper Wiener gain function was using:

.
—Aka,ur > Dk,'u.' (6)
1+ gk,w

where é is estimation of a priori signal-to-noise ratio defined

as follows:
A

k2w
Skw = W
where )\?u = FE{Ag.} is power spectral density of “clean”
speech, A\ = E{Dy} is power spectral density of noise.
A priori signal-to-noise ratio can be estimated using

modified decision-directed approach introduced by Lu and
Loizou [6]:

- : 2
6o — bl 1 (1 a) (/A 1)

where « is parameter of the algorithm, v1°% is a posteriori
signal-to-noise ratio expressed as follows:

2
local k,w
’y/c,u‘ - D2
kaw

_ Let us express local a priori signal-to-noise ratio through
Apw—1 and Dy 1, local a posteriori signal-to-noise ratio
through Ry ., and Dy -

Ay, o R2, + D2, — 2Ry Dy o
3 3
Dk»wfl ‘Dk,w

Using the assumption of stationarity Dy, . it was made the
following simplification:

DQc,wfl - Dl%,w (8)

Considered it let us substitute (8) to equation (7) and use
it in inequality (6):

R+ Dh o —2Ric,w Do
2
Dkﬁw

A2
QBT‘”W]—F(l—a)

: : . > Dy

Az 7 D7 . 2D hw Z Diw
k,w—1 K, w k,w ,

1 —+ OéDz— + (1 — Oé) D2

k,w E,w

This inequality was transformed to inequality relatively to
Dk,wf
aDy, , +bDj, y + ¢Dj o +d < 0 ©)

where
a=2—«

b= *3(1 — a)Rk,w
c= C“Zl%,wfl + 3(1 - Q)R%,w

d= _Rk,w(a’i%,wfl + (1 - C“)I{%w)
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We exclude a special case when Ay, ,, = 0N Ry, =0 and
consider it later. Consider a function

f(Dr.w) = aDj, , +bD; ,, + cDp +d (10)
Identify its extremes and equal to zero

f/(Dk/U-') = 3aDl?t,m +2ka:U~' +C:O (l l)

It is easy to show that the discriminant of the equation (11)
is always less than zero. So the function (10) has no extremes.
Considering this and the fact that @ > 0, we can conclude that
(11) is monotonically increasing function, and the equation
f(Dy ) = 0 has only one real root.

We need obtain the value of function (10) at the point
Dy = 0: f(0) = d. Based on the fact that d < 0, the
function (10) is negative at Dy, = 0. So we can conclude
that the real root of the equation f(Dy,,,) = 0 lies to the right
of zero on the number line. Consequently, the solution of (9)
is the following expression:

Dy < Dy(Dy )=0 (12)
where Dy p, )—o is the real root of the equation f(Dy, ;) =

Transforming the equation f(Dj,.,) = 0 to the canonical
form we get following equation:

v +py+q=0 (13)
where b
Y= Dgw+ 32 (14)
c b2
b= a 3a2
2b° be c

Let us define Q:
o= (5)+(3)

It is easy to show that p > 0, and hence (Q > 0. Let us

define ¢:
¢ =/VQ- g

In our case there is \/Q > %, so ¢ > 0. To find the root
of the equation (13) we can use the Cardano’s formula:

Yy=¥ 5=
Substituting it into (14), we obtain the solution of the
equation:
Dippy=0=9—5-— %
Let us consider the special case Ay, = 0N Rk = 0

which was excluded before. It is easy to show that in this case
the solution of (9) is the following expression:

Dy(p,,.)=0 =0
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This solution can be obtained by the algorithm described
above, but in formula it should be provided that ¢ can be
equal to zero.

Soft mask can be obtained as follows:

Sk,m = P(Dk,m < Df(Dk’w):U) =

_ pRayleigh
= I (Df(Dy )=0)
where F,f””’yl“'g]" is cumulative distribution function of noise
magnitude spectrum for spectral component k.

As we showed in the previous part of the paper, Sy, ., can be
raised to the power 6. A block diagram of proposed approach
to soft mask estimation for a frame is presented at Fig. 3. In
the figure, £ = 1 : M 1is spectral component iterator (M is
quantity of the spectral components).

Cxponentiation =

Rayleigh cumulative
distribution function
value estimation

Noisy specch signal Clean speech signal

magnitude spectrum magnitude spectrum

eslimation in current eslimation in current
frame frame

Clean specch signal
magnitude spectrum
eslimation in
previous frame

Finding the real root
of the cquation

Fig. 3. Soft mask estimation algorithm block diagram for a frame

V. TWO-STEP NOISE REDUCTION BASED ON SOFT MASK

We can use obtained algorithm as first step in two-step
noise reduction algorithm [5]. Minimum mean square error
short-time spectral amplitude estimator [4] was chosen for
second step but other spectral gain functions can be used such
as Wiener gain function [8], minimum mean square error short-
time log-spectral amplitude estimator [9], etc.

We also propose to smooth a priori signal-to-noise ratio
for the second stage using exponential moving average with
upper limit [23], [24]:

2
FONE — ¢.min | 6, === | + (1 — )§FSNT
B >\k )
0<e<l1
o>>1

where ¢ is smoothing parameter, ¢ is limiting parameter
preventing a priori signal-to-noise ratio overestimate. In this
paper & = oc.

While listening speech signals processed by the modified
algorithm with different values of ¢, it was observed that
decreasing ¢ reduced level of “musical” noise, but speech
signals become less intelligibly.

A block diagram of proposed two-step noise reduction
algorithm based on soft mask is presented at Fig. 4. In the
figure, w = 1 : W is frame iterator (W is quantity of the
frames).
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Fig. 4. Two-step noise reduction algorithm based on soft mask block diagram

VI. RESULTS

Speech signals with 8000 Hz sampling rate was separated
into 25 ms overlapping frames. The amount of overlap was
60 %. Before discrete Fourier transform performing Hamming
window was used.

Mel-frequency cepstral coefficients [25] were used as
speech signal features. The triangular filter bank was built
for frequency band from O to 4000 Hz. 24 coefficients were
obtained for each frame, range from 2nd to 16th coefficient
was used.

Gaussian mixture models with 128 components were used
for speaker modeling. Universal background model [26] was
used for Gaussian mixture model pretraining.

Two speech databases were using for experiments. Every
speech database used own universal background model to
minimize quantity of the Gaussian mixture model components.
Specifications of speech databases is presented in Table I.
RUS-31-5 database obtained by the authors themselves. ENG-
20-5 database is based on the CHAINS Speech Corpus [27]
samples.

The proposed algorithms were tested and compared with
the existing noise reduction algorithms in the problem of
speaker identification. A case of noise reduction algorithm
absence was also considered. A list of used algorithms is
presented in Table II.
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TABLE L SPECIFICATIONS OF SPEECH DATABASES
Parameter RUS-31-5 ENG-20-5
Language Russian English
Quantity of speakers (men/women) 31 (31/0) 20 (12/8)
Learning signal duration, s 90 72-106
Test signal duration, s 3 2-3
Quantity of test signals 5 5
Quantity of speakers for universal
background model (men/women) 132 (132/0) 16 (8/8)
Learning signal duration for 5
universal background model, s 10 35-52

TABLE II. NOISE REDUCTION ALGORITHMS USED IN THE
EXPERIMENTS
No. Algorithm
1 Algorithm based on decision-directed approach
and Wiener gain function (v = 0.98)
2 Two-step algorithm based on minimum mean square error

short-time spectral amplitude estimator (o = 0.99)
3 Proposcd algorithm bascd on solt mask (a = 0.99)
Proposed two-step algorithm based on soft mask
and minimum mean square error
short-time spectral amplitude estimator
(a=0.99,e =0.75,6 = o0)

Parameters of the algorithms 2, 3, 4 were chosen using fast
technique of speaker identification accuracy estimation [24].
The algorithm 1 used standard value of the parameter o = 0.98
as it used in some other articles corresponding to the same
problem [28], [29], [30].

In our experiments, signals were corrupted by additive
white Gaussian noise, Speech babble and Vehicle interior noise
from NOISEX-92 library [31]. Three values of signal-to-noise
ratio were used. There are 5, 10, 15 dB.

For speaker identification system quality estimation it is
used such metrics as speaker identification accuracy (SIA):
__quantity of correctly identified test signals

SIA - -
quantity of test signals

SIA estimation was performed 10 times, all results were
averaged. Results is presented in Table III.

The results shown that the proposed two-step noise re-
duction algorithm based on soft mask and minimum mean
square error short-time spectral amplitude estimator (algorithm
4) is preferable for additive white Gaussian noise, the two-
step noise reduction algorithm based on minimum mean square
error short-time spectral amplitude estimator (algorithm 2) is
preferable for speech babble noise, and the algorithm based
on decision-directed approach and Wiener gain function (al-
gorithm 1) is preferable for vehicle interior noise.

VII. CONCLUSION

So, in this paper noise reduction technique based on
soft mask introduced by Lu and Loisou was considered. It
was generalized: soft mask can be raised to arbitrary power
determined based on chosen optimality criterion. Dependence
of the power of soft mask was analyzed. Higher value of the
power provides more noise suppression, and in this case soft
mask is more closer to binary mask.

A new approach of soft mask estimation was introduced. It
uses modified decision-directed approach, Wiener gain func-
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TABLE IIL SPEAKER IDENTIFICATION ACCURACY IN DIFFERENT
NOISY CONDITIONS, %

Noise SNR Alg. | RUS-31-5 | ENG-20-5 | Avg.
None 26.1 15.6 20.8
1 60.9 56.3 58.6
5 dB 2 747 63.1 63.9
3 73.2 63.7 68.5
4 77.0 66.8 71.9
.. None 46.1 257 35.9
A;J/‘lll‘j‘l‘e"e T 772 719 TE3
Gaussian 10 dB 2 90.6 827 86.7
noise 3 874 84.6 86.0
’ ) 91.6 86.0 388
None 67.5 70.5 69.0
1 87.2 80.1 83.7
15 dB 2 97.9 932 95.5
3 95.5 922 938
) 97.8 95.1 96.5
None 20.8 26.9 23.9
1 63.0 59.6 61.3
5dB 2 61.2 63.0 62.1
3 56.3 63.0 59.7
4 59.2 63.1 61.1
None 294 58.7 44.0
Speech T 854 81.9 83.6
babble 10 dB 2 85.8 84.5 852
3 83.4 83. 83.2
4 83.6 82.5 83.1
None 452 82.1 439
T 92.7 90.5 788

15 dB 2 95.0 93.1 30.4 |
3 935 92.6 78.6
4 939 925 79.1
None 18.0 477 3238
T 928 96.8 04.8
5dB 2 742 98.0 86.1
3 77.0 982 87.6
4 82.6 985 90.5
None 18.1 86.0 52.1
Vehicle 1 96.3 97.1 96.7
interior 10 dB 2 93.7 99.6 96.7
noise 3 95.3 99.3 973
4 95.7 99.8 97.8
None 20.3 1.8 56.0
T 982 96.5 97.3
15 dB 2 99.0 100 99.5
3 99.4 99.9 99.6
4 99.2 99.8 99.5

tion, and assumption that the noise amplitude spectrum is
Rayleigh distributed in each frequency band.

The obtained algorithm was used as first step in two-step
noise reduction algorithm. Minimum mean square error short-
time spectral amplitude estimator as spectral gain function was
chosen for second step.

Smoothing a priori signal-to-noise ratio for the second
stage using exponential moving average with upper limit was
proposed. It can reduce level of “musical” noise, but speech
signals become less intelligibly.

In our experiments signals were corrupted by additive white
Gaussian noise, Speech babble and Vehicle interior noise from
NOISEX-92 library. Three values of signal-to-noise ratio were
used. There are 5, 10, 15 dB. Four algorithms were used
in our experiments: the algorithm based on decision-directed
approach and Wiener gain function, the two-step algorithm
based on minimum mean square error short-time spectral
amplitude estimator, the proposed algorithm based on soft
mask, the proposed two-step algorithm based on soft mask
and minimum mean square error short-time spectral amplitude
estimator. The proposed two-step algorithm based on soft mask
and minimum mean square error short-time spectral amplitude
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estimator demonstrates better results than existing methods in
additive white Gaussian noise conditions.
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