PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Utilizing Type Systems for Static Vulnerability
Analysis

Lavrentii Tsvetkov, Anton Spivak
ITMO University
Saint Petersburg, Russia
lavrentii.tsvetkov @corp.ifmo.ru, anton.spivak @gmail.com

Abstract—Programming languages use type systems to reduce
number of bugs. Type systems of most languages are not powerful
enough to express basic exception safety. Extension of type
system in a way that allows representing exception guaranties can
provide valuable information to analysis tools. Such tools could
even be implemented in type system. We describe a way to extend
type system of a given language allowing security invariants to
be expressed and vulnerable code to be located.

I. INTRODUCTION

Static vulnerability analysis is a form of static source
code analysis with primary goal of detecting software defects
causing potential security breach. Static analysis is a preferable
method for security assurance because attacks often targeted at
rarely executed code paths witch are not covered by test cases
and with static analysis it is possible to cover all of them.

Many programming languages have mechanism of pre-
venting ill-formed programs to be compiled and executed —
type system. Each term in a language is given corresponding
“type” serving as marker for kind of value stored in a variable
or allowed as function argument. Type annotations restrict
operations done on variable, assuring they are sensible and
conform to language semantics. Language is called typesafe
if where is no possibility to violate types in run-time [1]. For
this reason static type checking can be considered as form of
static program analysis.

Ability of rich type systems to eliminate whole classes of
errors was noted long time ago and was developed extensively
in functional languages, most notably Haskell, where monads
are of great use for limiting side effects of computation [2].
It is common knowledge among Haskell community that type
system provides trustworthy approach to restricting program
behavior and enforcing correctness not only operationally but
also semantically. Languages like Agda [3] and Idris [4] take
this further, allowing types to depend on values, that is, they
provide dependent typing. This allows types to be more precise
and target properties of program you want to establish or
verify.

Type systems for imperative languages do not have such
success. Recently attempt was made to bring modern type
system to imperative world — Rust programming language [5].
Notable feature of Rust is borrow checker [6]. Rust implements
feature called “borrowing” — it allows to have many read-
only references point to same variable, but prevents their use
if mutable reference was taken. Variable is then said to be
“borrowed”. Such rules implement what is known as affine
type system and provide strict solution to aliasing problem.

Augmenting existing languages with more elaborative type
systems can provide valuable insights on program structure,
deduce relations between variables and functions, as well as
their interaction patterns. This information can be used to
locate and possibly exploit vulnerabilities present in analysed
software.

In this paper we present a model of locating memory-based
vulnerabilities for imperative languages in presence of mutable
state and side effects using type system with dependent types.
Following issues are addressed in this paper:

e Mutability: imperative languages encourage use of
mutable variables. If variable is assigned a type at
point of declaration, subsequent assignments may
invalidate proofs referencing this variable. Previous
works either disallow changing established types [7]
or take approach of tracking types affected [8].

e Linearity: improper usage of memory allocation func-
tions has always been a source of memory leakage
and corruption, violating data integrity. Wherefore for
effective vulnerability detections system it is crucial to
have mechanism for tracking such functions. Model of
linear resource could be expanded to ownership model
and notion of protocol for high-level languages.

e Aliasing: pointer aliasing in presence of linearity
might produce type system incapable of representing
many simple programs that utilize aliasing. Care is
needed to track aliased variables or highly restrict
possible aliasing.

e Reproducibility: if types can not be unified there
should exist input that violates determined require-
ments. System should be then provide user with test
case that allows malformed data to sneak into located
place.

First, in Section II existing works in this area are ex-
amined to give reader a grasp of subject. In Section IIT we
present general approaches and challenges of type-based vul-
nerability analysis and sketch solutions to them. Specifically,
Section III-A and III-C describe methods used to integrate
mutability inside analysis framework without interfering with
type system. Section IV describes intermediate language struc-
ture, types and inference rules used to support automated
program analysis. Particularly, Section IV-A describes internal
representation structure and ways for transforming existing
programs into it. Section IV-B explains types that are assigned
to variables for carrying determined properties. Section IV-C

ISSN 2305-7254

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

describe interaction patterns that lead to inferring desired
properties about memory access, such as ensuring no buffer
overruns. In Section V some insight is discussed on generating
exploits to found defects that can be used by end-users to
determine defect threat level and apply means to fix it’s causes.
Finally, directions of future work are outlined in Section VL

II. RELATED WORKS

Related works targeted at detection of memory-based er-
rors can be categorised to dynamic approaches and static
approaches.

CETS [9] applies compile-time instrumentation to pointer
operations to detect dangling pointers. Pointers are augmented
with metadata, stored independently of original pointer con-
tents. When load-store operations are performed, metadata is
accessed to verify that pointer is still allocated. CETS can
detect dangling pointer access on heap as well as on stack,
even if memory was free’d and allocated again in same place.
According to authors, slowdown ranges from 48% to 116%
total.

Address Sanitizer [10] takes shadow memory instrumen-
tation approach to diagnose out-of-bounds access to global,
local and heap objects. It can also detect use-after-free errors.
Detection of violations of stack and global access is possible
through red zones added between consecutive objects. With
compressed shadow state encoding, average slowdown of
Address Sanitizer is 73% with no false-positives.

Both Address Sanitizer and CETS are very effective sys-
tems to locate memory errors, but full path coverage is
needed to ensure memory-correctness. For large software this
would imply rather big testing suit. Although slowdown is
of less concern on modern systems, it presents problems for
responsive systems.

For static memory analysis methods, several papers were
published with intent to incorporate dependent types and
imperative languages.

Hoare Type Theory [11] proposes system where Hoare
Logic is embedded into type system. Imperative computations
are executed in indexed Hoare monad. Dependent typing is
allowed on Hoare triples so postconditions can depend on
returned value. HTT uses two-stage type checking to overcome
undecidability issue.

Ynot [12] is next step after HTT. It is implementation
of HTT in language of Coq proof assistant. Ynot allows
imperative programs with side-effects be implemented in pure
functional languages. HTT dependent type features are already
provided by Coq. With this approach authors have successfully
implemented several imperative algorithms and proven their
correctness.

Xanadu [7] is one of first attempts to bring dependent
typing into imperative languages. Notable feature of Xanadu
is possibility of altering variable type during evaluation.

Deputy [8] provides flexible type system for low-level
imperative languages. Dependent types could be automatically
inferred for local variables. Deputy also supports mutable
variables. Type invalidation issue is handled using Hoare rule

346

of assignment. Track is kept for affected types to verify well-
typedness. Expressions in dependent types are restricted to
local variables only. Assertions are inserted in augmented
program to find errors not covered by typing system.

HTT and Ynot both serve as evaluation models of imper-
ative programs. They do not themself provide any source-
code analysis of software. We concentrated on augmenting
existing program with dependent types to locate potential
vulnerabilities.

Our system differs from Deputy (and Xanadu) is several
notable ways. First, neither of this systems allow negative array
access, which is possible in presence of pointer arithmetic
available on low-level languages. Second, memory allocation
issues are not addressed — Deputy relies on correct mal-
loc/free usage. We outline that vulnerability prevention system
shall provide complex memory safety guaranties. Furthermore,
Deputy has only local type inference and variables with depen-
dent cannot propagate though function return value. Finally, we
believe that for applications requiring high service continuity,
static assurance of correctness is preferred, with redundancy
measures to cover critical software or hardware failure. With
this in mind, programs augmented with assertions do not
provide level of security expected from system based on logic
expressions.

III. OVERVIEW

Types provide solid and exhaustive approach to path
coverage and variable constraints with polymorphic typing.
Dependent types expand this further, providing a way to
distinguish assertions to be made when several execution
path are joined together. Moreover, in low-level programming,
actions available to perform on variable are dictated not only
by it’s value, but values of other variables in scope — array
bounds, union tags and, of course, function arguments. Ability
to construct and propagate proposition over function arguments
is main advantage of dependent types for static analysis — they
can conceal function implementation, allowing only external
behavior to be visible to type checker and user. This allows
modular inter-procedural analysis of software required for
successful vulnerability detection, as many hard-to-find bugs
are result of wrong function interactions.

Main goal of this paper is to demonstrate possibility of
locating memory-based defects and vulnerabilities in software
developed in high-level languages by inferring properties and
constraints on variables and functions with no assistance
from user and requiring no extra code annotation or binary
instrumentation.

With support from compiler it is possible to include addi-
tional type checking stage performing security analysis. Found
defect could be exploited to determine severity of damage that
could be caused to the system and data integrity.

Previous approach to make languages safer with rich type
systems either involved code instrumentation [13] or required
at least some annotation [8]. We consider that any annota-
tion burden limits performance greatly, because vulnerability
analysis could be run by quality assurance officer who has no
complete understanding of invariants available or by security
researcher who has no familiarity with code.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

A. Mutability

While there are many functional languages that support
mutable variables, imperative languages favor their use. This
creates real challenge for language tools: compilers and static
analysers. For type system it means that either types cannot
change when established, or such modifications should be
tracked and types adjusted accordingly. Several approaches
were proposed to workaround this problem: restricting depen-
dencies to constants and locals [8] or allowing type to change
during execution [7].

Well-known approach exists for transforming program with
mutable variables to program with immutable variables —
Static single assignment form (SSA). In this form variable
can be assigned only once so type can not change later. It
provides convenient model and opens a way for optimizers
and other analysis tools. Within SSA in different blocks of
control flow graph (CFG) variables of original language have
different names and can be distinguished.

To join several execution paths together, ®-functions are
used. Value of ®-function depends on which branch of CFG
it is coming from. In high-level languages branching is hier-
archical so only last diverged branches can be joined together.
With this in mind ®-function can be replaced with original
branching condition, because it cannot be invalidated thanks
to SSA. This lands perfectly to dependent types: they itself are
mechanism for distinguishing different properties varying on
original value, in this case a branching condition. Dependent
pairs are used to represent such situations with first argument
serving as witness and second as proof of some inferred

property.

Such approach means that type checking should be carried
out after program call graph is build, which requires some
primary (language-provided) type checking to be already per-
formed. For example, consider language with overloadable
functions, such as C++: type of argument dictates which
function overload is called.

B. Linearity

Linear protocols and resources are extensively used in
programming. Examples of such protocols are: memory
[de]allocation, I/O, object initialization/destruction and other
stateful commands. In all this cases life cycle is the same:

1) object is not valid

2) object initialization

3) operations can be performed
4) object destruction

5) object invalidated.

At least two distinguished states exist which determine op-
erations to be performed. Invalid object can only be initialised
and for object to be destroyed it should be valid. In this case
states are linearly ordered so we can say that object is linear,
that is, it follows a linear protocol.

Inability to follow such protocols results many memory
leaks, crashes and data corruptions in modern software. Mem-
ory leak issue is often addressed in modern languages by
introduction of garbage collector, but file I/O is still considered
a different issue. RAII is good remedy for this case, but not

347

supported in many concerned languages, such as Java and
Python.

If object has many states and availability of object methods
depends on particular state, there is no good solution for
enforcing correct usage. With help of type-indexed or value-
indexed types such states could be tracked down to point of
relevant function application.

C. Aliasing

Pointer aliasing obstruct inference in two ways. First, if
variable that was used as part of the type, e.g., ®, modification
of it can invalidate inferred properties. To overcome this issue,
we only allow local variables to be included in types. SSA form
generally protects local variables from modification, unless
references are taken into account. We see simple remedy for
this — creating two versions of stack variables. Referencing
information is fully known at compile time, so we can de-alias
stack variables. Reference will be taken only to one of them
and can be modified. Second version can be used in types with
value that variable was initialised with. This greatly simplifies
inference rules, because no memory-read or memory-write
rules are needed. All memory access can happen transparently
to type system. Original version of variable is used to form
type, and other is subject to possible modifications.

IV. MODEL DESCRIPTION

In this section we describe main principles of our analysis
framework, modeled over simple imperative language. Analy-
sis is performed in several steps. First, program being analysed
is translated into intermediate language with limited instruction
set. Next, types that are inferred and checked according to
framework rules are introduced to language terms. In the end,
if type checking succeeds, it is deemed that no out-of-bounds
access or double-free can be done. Additionally, typing context
could be examined for still allocated references, detecting
potential memory leaks. If type checking doesn’t succeed,
term triggering error is traced back to original language and
user can be provided with example input exploiting undefined
behaviour.

A. Language

For analysis to take place, program should be translated to
intermediate representation (IR). Using intermediate language
makes framework independent from source language as well
as allows additional constructions.

Intermediate representation is defined at Fig. 1. In IR no
variable can be assigned more than once, i.e., it is kept in
SSA form. This keeps system simple and concise, mainly
because once variable is defined it has been assigned a value
and corresponding type that cannot be altered hence it is safe
to refer to them later while they are in scope. Because no type
modification can occur, we should require three normalisation
rewriting rules be applied prior to conversion to SSA:

vi[ve] = v < vy 4 ve; Y
&1 [’Uz] = V1 + V2
freev = v = freewv
&v = v = ;&'

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Kinds Ki=x*|* = K|T—oK
Types Te=B|L|nn|Te|®0bmn,m) |1 X
Built-in types B = bool | int | uint |ref L 7 i j
t,ju=Clv|iopj | (b v1,va)

=j|l]&l|ei(e) | notd

Index expr.
Expressions e
L-values L= |"v | vfva] | {(v1,v2)
Constants C:=D|T|F|Null|0|1]...
Statements su=¢c|s1;82 |l e]|if b then s else sy
Declarations D := M | fun(vy,...,v,){s:returnv,}
Pointer origin L==1|S|H|D
Memory alloc. M := allocarj | malloctj | freev

v € Variables

b € Boolean variables

op € Binary operators

Fig. 1. Grammar for intermediate representation

First two rules rewrite array access operator in terms of
pointer arithmetic and dereference. Third rule make it possible
to invalidate pointer deallocated using free. Function free is
usually declared in source language as function with side-effect
and no return value. Here value returned is used to invalidate
pointer in question because further uses would be directed to
another variable version after conversion to SSA. Last rule
decouples local variables that are accessed through pointers
so variables present in types cannot be aliased. This rules are
essential for correct analysis and allow to simplify inference
without loosing generality.

Program in IR consists of (global) declarations D, state-
ments s and expressions e. Following C tradition function
declarations are considered constants and cannot be created
at run-time or compile-time. Statements are either sequential,
branching or variable assignment. Statements do not have
type assigned to them. Instead, declared variables form typing
context I'.

Existing programs can be transformed into this internal
representation using SSA algorithms implemented in many
modern compilers [14]. Internal representation is not tied to
particular language, so approach taken can be extrapolated on
many imperative languages.

B. Types

There are several types present in the system. Type of
relational operators is bool, type of integer expressions is int.
Type uint is restricted to non-negative integers. There also is
a pair type that corresponds to structure definition (composite
type). Pair type is essential to successful inference because
it provides the only way to return witness variable from a
function.

I.S.H.D are themself a concrete uninhabited types of
kind * and serve only as markers for ref type.

Most notable type is ref type. It is type of arrays, pointers,
lists and etc. It is indexed with two types and two expressions.

348

First index referred as L keeps track of origin of pointer: I
for invalid pointers, S for pointers to stack variables, H for
objects on the heap and D for pointers that are detached from
their original source. This index is determined by function
that created such pointer and required to correctly track it to
deallocation routine, preventing memory leaks. Second type
index 7 identifies type of elements that reference is referring to.
Finally, two index expressions ¢, j specify how many elements
available for access though this pointer. Fig. 2 shows accessible
range corresponding to some reference. Range is split into
positive and negative indexes to allow pointer to advance back
and forth freely without losing information. Altering pointer
position is a common idiom in C language so keeping track of
items available behind pointer is needed. Note that pointer can
refer to element within closed interval determined by [— 4, 7],
but only elements of half-closed range [—7, j) can be accessed,
i.e., dereferenced with * operator.

i
< ref

mo m1|m2 m3|m4|m5|m6 m7|mg|

Fig. 2. Structure of reference type

Second notable type that system is build upon is ®-type. It
can be seen as dependent pair type with second element fixed
to choice operator between types 7 and 75 witnessed by first
element of type bool. It is type of ¢-function and only source
of this type is branching statement. As noted earlier, due to
immutable nature of variables present in SSA and hierarchical
structure of conditional statements, resulting type of ¢-function
can be reconstructed using variable on which choice was made.

There is also a function type that is assigned to pre-defined
functions and functions defined before type checking stage.
Main concern about functions is possibility of information
hiding. This rises a question whenever analysis can inspect
whole functions and expose internal structure of it should be
limited to observable behavior only.

C. Rules

In this section we present typing rules for our intermediate
representation language described in Section IV-A. Core typing
rules are show on Fig. 3. This includes rules for types indexed
by other types and expressions, kinds of built-in types, pairs,
d-pairs and their projections. Some typing rules, such as types
for constants and binary operators, are omitted for clarity.
Fig. 4 shows rules for creating and manipulating references.

Specifically, rule (ADDR-OFF) creates a reference for local
stack variable v that obviously can refer to one element only.
Rule (DEREF) is main rule for accessing array elements. To
use this rule it must be known somehow that pointer has at
least one element in front of it. This fact is trivially satisfiable
if pointer was originally declared within scope or used in loop
with array length serving as limiter. If it is not there, some
variable carrying proof of available elements must be passed
from pointer origin. Such variable or constant should exist,
otherwise neither programmer nor analysis tool can perform
safe pointer dereference.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

'k

I'bErmim ke

FFT1:2H1—>I‘»‘2

K1
(TYP TYP)

'rru:7—=x Tle:7
(TYP EXP)
I'tretk
I'E7:x I'+4: uint
IHL::x 't j: uint
— (REF TYP)
FFrefLTZJ;;*
I'Feitmm—»m TI'kFex:m
(APP)
IFeilez) : 72
I'=b:bool
TFvi:m Thou:im (PAIR) | e SR
IF(vi,v2) : 71 X T2 1 % I'Emo ko (@)

TE®b, 11, 72) i x

Dk A{(v1,v2) : 71 X T2 Tk (v1,v2) : 71 X T2

T m2)
FFUliTl 1) FF’UQ:TQ (2
TFov:®(T,m,7m) M'Fov:®(F,71,72)
(P71) (®m2)
TFov:m ThEov:m
Fig. 3. Basic kinding and typing rules
(NULL)

7okt Null:refI 700

I'Fov:r
I'F&v:refS 701

(ADDR-OF)

I'Fo:refL7tij TDIhkwu,:5#0
'*v:7

(DEREF)

'Fov:refL71ij
— (DEREF-ID)
F'F&v:refD 114j

I'F o :int
F'Fvi:refLTij F'Fop:ve €[—1,7]

FFovitvy:refD 7 (ikn) (jFn)

(PTR-ARITH)

Fig. 4. Reference typing rules

Rule (PTR-ARITH) alters type of reference when pointer is
advanced it either direction. Again, where should exist some
variable in scope to prove that index is in allowed range.
Rule (DEREF-ID) allows to re-take reference for one-past-last
element of array. Such reference would be otherwise inacces-
sible after dereference because such dereference is forbidden
by (DEREF) rule. Note that (PTR-ARITH) and (DEREF) rules
are used for element access even with v[vs] operator due
to rewriting rules described in Section IV-A. Also note how
both rules mark resulting pointer “detached”. If this was not
the case, creation of multiple pointers having same value and
origin markers would be possible. This would lead to possible
double-free problems and corrupted heap.

Final set of rules on Fig. 5 describes how variables inside

349

Tyorim,oo U T b
v + fun(vi,...,v,) {s;returnv,}
(FUN)
I'Fv:mg = - > 7 > 71
I'b:bool ,
T.,bFei:m if b then si;v1 < eq1;s]

else so; vy + eo; sh

I'F (b, v1,v2) : (b, 11, 72)

I''notbkes: m

TF)

'k j: uint
I'e:T wv<+e 7o
Chov:r (VAR-ASSIGN) v <— allocartj
I'Fov:refS 70y
I'j:uint . .
Thores I'Fv:refH 70

v < freev
I'-v :refI 700

v <— malloc 7j
I'Fv:refH 707

Fig. 5. Typing rules inside statements

statements are typed. According to rule (FUN), type of function
should be determined by type of arguments. This essentially
requires that variables that participate in returned type must
originate either from argument or returned within resulting
composite variable so they cannot go out of scope. Rule
(VAR-ASSIGN) simply tell us that type of new variable is
type of original expression. Most important rule here is (IF).
Depending on condition, typing context is expanded with proof
of b and then evaluating type of e; or with proof that b is not
the case and evaluating type of eo. Resulting variables are
then combined to ®-functions and types to be carried along
to point of usage. e-function first argument and ®-type index
are restricted to concrete variables, so that type could not be
invalidated later. To extract type stored in ® projections Py
and $mo are used automatically when condition was verified
and present in context.

Finally, types of memory allocation functions are given.
alloca for stack allocation, malloc for heap allocation.
References are given corresponding marker to ensure that no
incorrect pointer would be passed to deallocation function
free. free return value is used to invalidate passed pointer
for next usage because of rewriting rules applied prior to
conversion to SSA. Marker 1 is present only for convenience:
inability to use invalid pointer comes from having both indexes
reset to zero, no dereference can take place according to rule
(DEREF). More over, with marker reset to invalid, this pointer
can no longer be free’d, preventing heap corruption.

D. Inference

Type inference is generally guided using rules described in
previous subsection. However, recursive functions can prevent
analysis from complete type-checking. Recursive functions can
come from original language or be generated as part of SSA
stage. In either case they are one of the obstacles to exhaustive
program analysis. To correctly determine function type it must
be terminating. This property could not be determined for
every function due to Halting Problem.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

One workaround of this limitation can be made as follows:
note that recursive call is done either conditionally or uncon-
ditionally. If it is unconditional, function does not terminate
and type could not be determined. If it is conditional, value
returned should descend from ®-node. In this case call to such
function can be type-checked up to ®-type until specific branch
is proven to execute.

V. EXPLOITING VULNERABILITIES

With help of type system, potential software defects can be
identified. But it remains unclear whenever found defect can be
exploited. There can be three results of type checking: all types
are correct and traceable by both analysis and programmer;
definite error — contradiction was found during analysis; and
unification error due to absence of complete information. In
case of definite error, variables can be traced up to their
origin. During this process, expressions that lead to error are
reconstructed (they was already present inside system, so error
was found) and test case is generated. In case of error due to
incomplete information, such as presence of opaque function,
SMT solver should be used for variables that are know to
participate in ambitious expression. Solver is needed here
because our inference rules do not provide polymorphism and
cannot represent unknown or quantified types. Then constrains
are determined, fuzzing methods can be effectively applied.
Note that usage of SMT and fuzzing is not part of checking
algorithm but mere attempt to provide user with a test case
so they are convinced of defect and have staring point for
debugging.

VI. FUTURE WORK

We plan to develop our system in three main directions.
First, including full-fledged linearity into type system. With
full power of linear logic type checker would have full in-
formation whenever variable or expression can be modified by
later statements and memory writes. It would then allow safely
use memory references in dependent types. This also includes
global variables.

Second, in current setup every function call should actually
be re-typed each time it is referenced. This comes from
fact that monomorphic function in source language can be
typed differently in intermediate representation in each new
call context (e.g., more information is known statically). This
can be fixed by back-propagation of constraints in functions.
Currently, constrains propagate in forward direction only.

Third, it may be beneficial to include parametric poly-
morphism into type system and intermediate language even
though source languages do not support it. This would allow
us to quantify over expressions participating in dependent
types, which is required for opaque functions. L.e., one could
run analysis on library and derive appropriate inner- and
inter-function interaction constraints and use this information
separately for each program using this library. Essentially, this
is form of information hiding that provides modular approach
to software analysis, retaining exhaustiveness of path coverage.

350

VII. CONCLUSION

In this paper we presented simple approach to software
analysis using type system. Analysis can provide insight on
possible memory-based vulnerabilities, such as buffer over-
flow, memory leaks and corruption. Method could be applied
at stage of software development, for example, on continuous
integration server, as part of software quality assurance. Static
checking can locate bugs in low-attention regions of code that
are not covered by unit testing.

Languages with rich type systems usually follow func-
tional programming paradigm and have many advantages over
conventional imperative languages. Now existing software can
benefit from additional typing schemes applied to their code
to discover defects and vulnerabilities.

REFERENCES

[11 R. Harper, Practical foundations for programming languages. Cam-
bridge University Press, 2012.

[2] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler, “A history of
Haskell: being lazy with class,” in Proceedings of the third ACM
SIGPLAN conference on History of programming languages. ACM,
2007, pp. 12-1.

[3] U. Norell, “Dependently typed programming in Agda,” in Advanced
Functional Programining. Springer, 2009, pp. 230-266.

[4] E. Brady, “Idris, a general-purpose dependently typed programming
language: Design and implementation,” Journal of Functional Program-
ming, vol. 23, no. 05, pp. 552593, 2013.

[S] The Rust Programming Language, Web: https://www.rust-lang.org/.

[6] E. Reed, “Patina: A formalization of the Rust programming language,”
University of Washington, Department of Computer Science and Engi-
neering, Tech. Rep. UW-CSE-15-03-02, 2015.

[71 H. Xi, “Imperative programming with dependent types,” in Logic in
Computer Science, 2000. Proceedings. 15th Annual IEEE Symposium
on. 1EEE, 2000, pp. 375-387.

[8]1 J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula, “De-
pendent types for low-level programming,” in Programming Languages
and Systems. Springer, 2007, pp. 520-535.

[9] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “CETS:
compiler enforced temporal safety for C,” in ACM Sigplan Notices,
vol. 45, no. 8. ACM, 2010, pp. 31-40.

[10] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in Presented as part of the
2012 USENIX Annual Technical Conference (USENIX ATC 12), 2012,
pp. 309-318.

[11] A. Nanevski, G. Morrisett, and L. Birkedal, “Hoare type theory,
polymorphism and separation,” Journal of Functional Programming,
vol. 18, no. 5-6, pp. 865-911, 2008.

[12] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal,
“Ynot: dependent types for imperative programs,” in ACM Sigplan
Notices, vol. 43, no. 9. ACM. 2008, pp. 229-240.

[13] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of C.” in USENIX Annual Technical
Conference, General Track, 2002, pp. 275-288.

[14] Static Single Assignment Book, 2015,
http://ssabook.gforge.inria.fr/latest/book.pdf.

unpiblished, ~Web:

