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Abstract—The article focuses on the use of synthesized
wavelets in the electroencephalogram analysis automation
process. It describes the procedures for obtaining neural network
and spline models proposed by the author. The advantages and
disadvantages of the method are shown. The paper proposes a
system of electroencephalogram analysis automation process
based on the use of two levels of continuous wavelet transform. A
detailed description of its operation is given. The paper describes
a software package developed on the basis of the system. During
the tests, the software feature detection accuracy (eye artifacts
and pathological components) in the signal was 81.5%. It suggests
the main areas for the developed system and package application,
as well as ways for their further improvement.

I. INTRODUCTION

Electroencephalogram (EEG) is a complex signal that may
be obtained by recording the electrical activity of neurons in
the human or animal brain [1]-[3]. As a general rule, EEG is
recorded from a large number of electrodes (leads). It makes it
possible to evaluate the physiological state of the human brain
both generally and at the level of various brain departments.

In the analysis of the EEG, it is important to identify the
main rhythms characteristic of a healthy state and the rhythms
the presence of which in a significant amount can be
interpreted as the evidence of pathology. Each rhythm
corresponds to a specific frequency range which is easy to
identify. For these purposes, standard methods based on the
Fourier Transform can be applied.

Besides the basic EEG rhythms, it is important to identify
the different kinds of special features. These features include:
EEG fragment specific to a pathological condition of the
human brain, as well as artifacts. Artifacts are phenomena
which are not directly related to brain activity. The presence of
artifacts in a recording may lead to its false interpretation.
Therefore, it is very important to identify both pathological
activity graphoelements and EEG fragments with artifacts.
Artifacts can be divided into those associated with the activity
of the patient’s body and those signaling the violations of the
rules of EEG procedure.

In rooms designed specifically for EEG registration, it is
normally possible to avoid a large number of artifacts,
especially those associated with disorders during the study.

When using a mobile unit, it is recommended to take
additional measures aimed at artifact elimination. However,
even in such difficult circumstances, the presence of an
experienced physiologist helps to eliminate the artifacts in the
analysis.

A much more difficult situation can arise when it is
necessary to conduct EEG research in the absence of
specialized professional or any healthcare professional.

The author proposes a system that can fully automate the
process of EEG analysis. The system for detecting artifacts and
pathological components in EEG uses mathematical apparatus
of wavelets.

II. SELECTION OF THE MATHEMATICAL APPARATUS

Wavelets are special functions with zero integral value
capable of scaling and shifting along the time axis [4], [5].
Wavelets are widely used in signal analysis.

As is known [6], the classical Fourier transform does not
allow the time-frequency analysis. A step towards solving this
problem was the use of Short Time Fourier Transform.
However, the transform has its drawbacks that are associated
with the complexity of bandwidth selection. The main
advantage of wavelets compared to Fourier transform is the
ability to perform the time-frequency signal analysis. In
addition, wavelets are functions that have various, sometimes
quite complex, shapes. Their diversity allows choosing the
wavelet most suitable for the analysis of the specific type of
signal [5].

Among wavelet signal analysis algorithms, the most widely
used are those which use a continuous (CWT) or discrete
(DWT) wavelet transform.

To identify the characteristics of the signal, the continuous
wavelet transform is often used [6]. The formula of continuous
wavelet transform function f(¢) is as follows [7]-[10]:

W(a.b) =#,2T Fw (%jdr

a

(M

where y(?) is wavelet, a is scale, b is shift parameter.
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The results of the continuous wavelet transform can be
visualized. Usually a wavelet spectrogram is used for this
purpose [11], [12]. Wavelet spectrogram is a three-dimensional
graph, along the axes of which the following are plotted: time
shift (x-axis), scale (y-axis) and the value of wavelet
coefficients (z-axis). Often wavelet spectrogram is constructed
as a two-dimensional graph. In this case, the wavelet
coefficients are plotted in color. The paper uses the latter
version of the wavelet spectrogram construction. This helps to
avoid the redundancy of graphic information. Apart from
wavelet spectrograms, it is possible to use wavelet coefficient
graphs constructed for certain values of scale.

If we analyze the formula of CWT (1), it is possible to
conclude that the choice of wavelet has a significant impact on
the results of the continuous wavelet transform.

The studies [S] have shown that the traditional wavelet
families as a rule do not allow us to obtain the necessary
localization of EEG features on the wavelet spectrogram. To
solve this problem, the wavelets synthesized on the basis of
signal fragment (sample) can be used.

The author has developed two classes of wavelet models
suitable for continuous wavelet transform: neural networks and
splines [13], [14]. The advantage of these models is the
possibility to obtain analytical wavelet recording adapted for
detecting specific characteristics of the signal.

They will be considered further.

III. REQUIREMENTS FOR WAVELETS IN CONTINUOUS WAVELET
TRANSFORM

In order to consider a function as wavelet, it is necessary for
the function to meet certain requirements. For wavelets suitable
for CWT, these conditions are rather weak:

1) It is necessary to fulfill the admissibility conditions:

C=[|if|o|" do <.
In practice it is enough for wavelet to have zero integral

value.

Meeting this condition ensures the possibility of performing
an inverse continuous wavelet transform:

=

Wavelet must be defined within the interval [0, 1].
Furthermore, it must be subjected to normalization in the space
L.
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2) Rationing.

3) To ensure regularity, wavelets at their extreme points
should have the value of zero.

Apart from the basic requirements described above, it is
important for wavelet to have formalized representation, which
is necessary for computing CWT with the digital signal
processor, as it is important to have the possibility to calculate
the wavelet value for different scale values.
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IV. NEURAL NETWORK WAVELET MODELS

The procedure for obtaining neural network wavelet models
was described in detail in previous papers of the author [13].
This paper focuses on the main points without which further
explanation will be impossible.

Artificial neural networks can be regarded as a universal
system for approximating [15]. They can be used for obtaining
neural network wavelet models for CWT.

Studies have shown [13] that among the most common
types of neural networks for wavelet modeling, networks based
on radial basis functions (RBF networks) are the most suitable.
They allow us to get an accurate mathematical description of
the sample.

The procedure for obtaining neural network wavelet models
includes the following steps:

1) Selection of the sample: a fragment of the signal with a
feature that should be detected in other implementations of the
signal can be taken as a sample.

2) Setting the vector of the argument values over the
interval [0, 1].

3) Sample approximation by an artificial neural network
based on radial basis functions.

Fig. 1 shows an example of RBF network which was used
in the construction of neural network wavelet model based on
an eye artifact sample. It has 202 parameters. The fragment
length is 100 samples.

4) Calculation of the integral value of the resulting function.

5) Calculation of the deviation from the integral of zero
value.

6) Sample displacement on the y-axis by adding /
subtracting the error value to / from each reading.

7) Obtaining a function with zero integral value.
8) Rationing in the space L’.
9) Loading function in the bank of synthesized wavelets.

The advantages of neural network wavelet models are as
follows:

1) The relative simplicity. To construct such a model, the
2(N+1) parameter, where N is a number of sample readings, is
required.

2) The exact description of the sample at its short length
and complexity.

Layer

Layer

100 1

Fig. 1. Example of RBF network used in the wavelet synthesis based on an
eye artifact sample
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3) Formalized representation of the wavelet.

4) The model provides a wavelet adapted for the analysis of
a specific signal.

5) The possibility to reduce the complexity of the model
through the use of multi-layer perceptrons instead of RBF
networks. However, this may reduce the accuracy of the
sample description.

V. SPLINE WAVELET MODELS

Spline wavelet models for CWT, proposed by the author
have already been described [14].

The principal difference of the spline wavelet models lies in
the use of cubic spline in the mathematical description. The
application of interpolation instead of approximation makes a
positive effect on the accuracy of even the most complex
samples of great length.

The rest of the procedure for obtaining spline wavelet
model is similar to the procedure described for the neural
network.

The main advantages of spline wavelet models are as
follows:

1) Accuracy of sample representation.

2) Possibility to obtain a wavelet based on samples of
complex shape.

3) Formalized representation of the wavelet.

4) The model provides a wavelet adapted for the analysis of
a specific signal.

The disadvantages are the high complexity of such models.
It includes 4N parameters where N is a number of sample
readings.

VI. THE SYSTEM OF AUTOMATED EEG ANALYSIS

Fig. 2 is a bookkeeping scheme of the automated EEG
analysis proposed by the author. The main idea lies in the use
of two levels of continuous wavelet transform in the analysis of
the EEG. On the first level "rough" signal analysis is made, the
areas with special features are spotted and their initial
classification is made. This information is used on the second
level — a more "accurate" analysis of the selected areas with
CWT and synthesized using wavelets. Selecting synthesized
wavelet and scale according to primary data as well as
providing repeated CWT help to get a reasonably "accurate"
result for detecting special features in EEG.

Let us explain the principles of the system in more detail.

Electroencephalogram, represented as a matrix of discrete
values (wherein a column corresponds to a specific lead, and
the string corresponds to a set of samples from different
channels selected in particular discrete time), arrives at the
input of the channel division block. The procedure is reduced
to separation of the matrix into vector columns. The separation
of EEG into channels allows us to divide computational flows.
This approach can significantly accelerate the processing of the
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recording. It is relevant if there is the possibility of
parallelization of computational flows when using for example
FPGA or multicore DSP.

Then the signal from each channel of EEG is sent to the
input to the fragment separation block. At the block, the signal
is separated into fragments of fixed length. Fragment length is
determined by the computational power of the element base
used. The separation into fragments helps to reduce the
computational load. It is important because the analysis
algorithm uses two levels of continuous wavelet transform,
each of which requires high computational power.

In order to avoid the loss of important information on the
edges of the analyzed signal fragments, partial overlap is
required.

Next, each fragment is subjected to CWT using "general"
wavelet. This procedure is performed in the CWT block using
"general" wavelet. As a “general” wavelet one can use those
wavelets suitable for EEG signal analysis (in view of its
smoothness and other characteristics). According to the
conducted research [5] "Mexican Hat" (Fig. 3) refers to this
group of wavelets. Another advantage is that it has formalized
performance:

w(t) = (%ﬂm&)(] _xz)e,x2/2.

The use of "general" wavelet for the whole recording
provides a set of graphs for wavelet coefficients with localized
features on them. Wavelet coefficients are calculated for certain
values of the zoom ratio. The selection of scale is as follows.
Each feature of the EEG has the so-called fundamental
frequency. For example, for eye artifacts, this frequency is 5
Hz. Knowing the fundamental frequency, it is easy to
determine the scale, that corresponds to this frequency:

a=plo,
where a — scale,  — proportionality factor, @ — frequency.

The values of the wavelet coefficients, calculated for a
given scale, and their graphs will reflect the presence or
absence of particular feature in the selected signal realization.

Fig. 4 shows graph of the signal fragment with eye artifact
(Fig. 4, a), graph of wavelet coefficients for a given scale
(Fig. 4, b) and wavelet spectrogram (Fig. 4, ¢). Both graph of
wavelet coefficients and wavelet spectrogram are suitable for
detecting the presence of the features in the signal and
performing the primary classification. However, the
construction of the wavelet spectrogram based on the complete
set of scales leads to redundancy, which is the reason why it is
not used in the system.

To identify features based on the graph of wavelet
coefficients, it is enough to apply their thresholding which is
performed in wavelet coefficient processing block I.

The areas with special features are formed on the basis of
the position of the feature in the signal within the featured area
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Fig. 2. Block diagram of the automated EEG analysis
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Fig. 3. Wavelet "Mexican hat"
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Fig. 4. Graph of the wavelet coefficients, constructed to scale, corresponding
to eye artifact b) and wavelet spectrogram with a redundant set of scales c)

selection block. The procedure for their formation comprises
the following steps (Fig. 5):

1) Selection of the central wavelet coefficient out of the
wavelet coefficient group, which according to the results of the
first CWT level presumably corresponds to the features.

2) Detection of the sample point (channel number, fragment
number, its serial number in fragment) corresponding to a
given wavelet coefficient.

3) Loading k2—1 samples before and /2 samples after the
key sample, thus forming a length equal to & samples.

This approach can significantly reduce the amount of
processed data during the more accurate, or “fine” analysis.

Group of wavelet coefficients
corresponding to a feature
il B

-

A signal
| fragment

|

| | Central group wavelet

coefficient
I | Keyv countdown
k/2-1 i k2 \ |
-¢ | .
Area A signal
fragment

Fig 5. Formation of featured fragments
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Further, the selected areas undergo CWT using synthesized
wavelets in the corresponding block. Neither the first nor the
second stage of the CWT implies the necessity to build a
wavelet spectrogram for all scale values. It is enough to
calculate the values of wavelet coefficients for the scale and
with the use of the synthesized wavelet which corresponds to
the expected feature. Synthesized wavelets are loaded from the
synthesized wavelets bank.

The obtained wavelet coefficients (Fig. 6) are processed.
This procedure is performed in the wavelet coefficient
processing block II.

The studies have shown that to identify eye artifacts and a
number of pathological components thresholding of the
wavelet coefficients is sufficient. For more complex features, it
is necessary to use other methods, such as those based on the
use of artificial neural networks.

If the results of the processing of the wavelet coefficients
do not allow to confirm that the area contains the expected
feature, it undergoes CWT with the use of another synthesized
wavelet and another scale. For this purpose, there is extra
connection provided between the wavelet coefficient
processing block 1II, the block performing CWT, banks of
synthesized wavelets and scale values.

The bank of synthesized wavelets can contain wavelets
obtained by using neural network models or splines. The choice
of a specific model is based on the requirements of the analysis
accuracy and the element base power.

Neural network models have fewer parameters,
respectively, less complexity. Their use is preferable if it is
necessary to have high system performance (for example, in the
analysis of large EEG records) or in the absence of the
necessary computational power. They allow us to get wavelets,
quite accurately approximate to the sample.

Spline models allow us to get the wavelets with guaranteed
accuracy of approximation to the model of even the most
complex shapes. This is promising, but the greater complexity
of spline models may restrain their use in the development of
mobile version of the automated EEG analysis.

The information about all the features is collected in the
block of inter-channel dependence detection where comparison
and analysis of the relationships between the channels and
refinement of feature type take place. For example, if the eye
artifacts are present in the EEG, they will be most evident in
the frontal leads, but their presence will be found in other
channels. This comparison allows you to get more accurate

Fig. 6. Signal area with eye artifacts a) and its corresponding graph of
wavelet coefficients b), obtained with a synthesized wavelet
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results and localize the feature source. Additionally, the block
receives information about spectrum analysis result. This
makes it possible to assess not only the presence or absence of
a particular feature, but also to assess the main EEG rhythms.

Summarized information is sent to the block of clinical
conclusion. Clinical conclusion can be shown on the display of
the device or its monitor, it can also be sent as a message to an
expert (if necessary). Apart from sending a report, the system is
capable of sending EEG to an expert or displaying it on the
monitor of the device for an additional on-site analysis by an
expert.

VII. SOFTWARE PACKAGE

The author offers a software package for automated EEG
analysis (Fig. 7). Its code name is "Katyusha SAB-03". This
package has been developed on the basis of the proposed
system described above. It has been developed in MATLAB,
and has an interactive graphical user interface; it is designed to
be used on a desktop PC or a laptop. The package is capable of
detecting eye artifacts in EEG and some types of
graphoelements with pathological activity, including those
typical of absentia.

The graphical interface contains:
1) The information fields about the patient:

¢ Surname of the patient.
¢ First name.

Patronymic.

Date of birth.

Sex.

Address.

The date of the first treatment.

2) Setting the channel selection and the time range to
display EEG graphs. It helps, if necessary, to view the
fragments of recording which are of interest.

3) Indicator graph located below the EEG output field
allows us to graphically mark a featured area. If the indicator is
at zero, the fragment has no features if indicator shows one,
then the fragment has a feature (pathology or artifact).

4) In the clinical conclusion field clinical conclusion is
formed. In the figure it is also indicated as a report. The
package is being tested, so clinical conclusion is currently a
form of report. It is planned to improve the package to get full-
scale clinical conclusion in a form that a physiologist can read.

A. Sofiware package testing

During test trials, 119 EEG were analyzed. The selection of
recordings was performed randomly. In parallel with the
diagnostic work carried out by means of the software package,
visual analysis was performed by an expert. After completing
the analysis, the results were compared. The number of error-
free replies of the software package reached 81.5%. The
analysis took into account eye artifacts and some types of
pathological activity.
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Surname Upload signal = ' ' ; ' : ' ; '
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Name Channel selection
van S Al 20 L | L L L L L L L
. 0.2 04 0.6 0.8 1 1.2 14 16 1.8 2
Patronymic F8 @ Fp1 : ‘ : ' : ' : : :
] T4 @ 3
Ivanovich - T6 ©c3 0
Date of Birth ® Fp2 ) P3
@ F4 01
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Sex P4 BT3
02 B T5
Male 40 L | I I L 1 I I L
Time range, from 0.2 0.4 0.6 0.8 1 1.2 14 16 18 2
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Address [ 18]
0 &
St. Petersburg, Dostoevsky Str., building 5, Apt. 4.
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Date of first treatment Clinical conclusion (the report) e . ‘ . . . . . . .
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pathological components. ; Indicator
Found:
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0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 138 2

[

Fig 7. Graphical interface of the software package for automated EEG analysis
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B. Application area

Despite common, well-established principles of EEG
analysis which can be the basis for any new method or
approach to EEG analysis, one needs to clearly understand the
role of biomedical signal automated analysis systems. When
the results of examination are of critical importance, for
example, prior to surgery, such systems can only be used as an
auxiliary tool. In this regard, the author suggests the following
areas of application for the developed system and software
package:

1) Further development and refinement of the proposed
software package should allow for its use in environments
where there is no possibility to provide medical assistance by
specialized professionals or in the absence of medical
personnel.

2) The application for the express analysis of EEG in
terms of patient turnover during routine examinations of
company staff engaged in work that requires high level of
attention.

3) Application in the EEG analysis of long duration. For
example, EEG that take more than 24 hours to complete. This
will help to detect the position of artifacts and pathological
activity areas. Later the featured fragments may optionally be
subjected to further analysis by an expert.

4) Applications for medical staff training in the creation of
specialized simulators.

C. Further improvement

Further improvement of the system and the package
includes:

1) Improvement of the mathematical apparatus of wavelets
in order to improve the accuracy of the EEG analysis.

2) Development of methods for the wavelet coefficients
analysis with a view to the possibility of identifying and
classifying more complex EEG features.

3) Improving the interface and clinical conclusion

formation technology.

4) The development of a mobile version of the system as a
compact device. The author is currently engaged in relevant
work. The priorities are: low cost, simplicity, rapid
deployment, mobility.

VIII. CONCLUSION

Here are the main results obtained:

1) The possibility to use synthesized wavelets in the process
of electroencephalogram analysis automation.

2) Comparative analysis of neural network and spline
models has showed that both classes of models can be applied
for EEG analysis. However, the neural network models have
less complexity than the spline models. The advantage of spline
models is that they provide guaranteed accuracy of the sample.
Their use can be promising in detecting complex features, but
requires higher computational costs.
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3) After further development and refinement, the proposed
system of automated EEG analysis should be capable of
detecting features of the EEG without being controlled by a
physiologist.

4) The proposed software package is implemented on the
basis of the described system. In the future, it should allow
getting clinical conclusion based on the EEG without the
participation of a physician. Testing for detecting eye artifacts
and a series of pathological components resulted in 81.5%
accuracy which is acceptable for such systems, with the total of
119 EEG signals tested.

5) Further improvement of the system and the package will
be focused on:

° of the mathematical of

Improvement
wavelets;
Improvement of methods of CWT result analysis;
Expansion of the number of detected features;
Improving the performance and convenience of a
graphic interface;

The creation of mobile package in the form of an
independent device or on the basis of a smartphone or
tablet computer.

apparatus
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