PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Cross-Platform Programs Implementation
for Specialized Distributed
Embedded Systems

Vladimir Sharov, Oleg Bolshakov

Soloviev Rybinsk State Aviation Technical University
Rybinsk, Russia
sharov@rsatu.ru, bolshakov@nppsatek.ru

Abstract—Disadvantages of existing approaches of
cross-platform software development for specialized
distributed embedded systems are revealed, a new
approach to cross-platform programs development in
Embeddecy language is disclosed, the approach is based on
the generalized model of a microcontroller, an example of
the implementation of the analog-to-digital converter
control module of the microcontroller with division of
hardware-dependent and hardware-independent functions
is provided.

I. INTRODUCTION AND RELATED WORKS

Diversity of types of electronic components is one of the
modern trends in embedded systems, meaning both diversity
of types of these devices as well as diversity of models of
same microcontroller type. The high degree of heterogeneity is
one of the key features of specialized microcontroller based
embedded systems, which significantly affects the technology
of software development, making it more complicated,
increasing implementation time and negatively affecting the
software mobility. The using of low-level tools does also
compound the software mobility problem and has ultimately
led to the market state, where embedded systems
manufacturers to a large extent depend on the availability and
skills of software developers. When a move to a new range of
microcontrollers is needed a specialists retraining is required
and that leads to an increase in the appearance of additional
terms and costs of production. In this regard, the actual
problem is the development of cross-platform solutions that
would enable effective programming in a heterogeneous
computing environment, smoothing the transition from one
microcontroller family to another and reducing embedded
systems manufacturer’s dependence on a specific equipment
manufacturer.

The dependence of the code from the computation model is
not only connected with the instruction set properties of
microcontroller core, but also with its architecture - the
presence or absence of certain peripheral modules, as well as
their features within the same family of microcontrollers. In
practice, the development of specialized embedded systems
usually do not require full automatic code portability, which in
the "big computers" world is achieved, for example, by the

Alexander Petrov
NPP SATEK plus LTD
Rybinsk, Russia
petrov@nppsatek.ru

presence of additional runtime or JIT-compilation. This is
because of the specialization of considered embedded systems.

It should be noted that the cornerstone of cross-platform
software solutions are cross-platform library modules and
instrument’s architecture that contributes to the degree of
connection between the device-dependent and device-
independent modules.

Currently, the most common approach that provides some
degree of portability for embedded systems, often only within
a single family of MCUs, is using preprocessing tools: macros
and conditional compilation directives [1]. This enables
efficient code, but turns the program into a "patchwork quilt":
program logic is broken into multiple fragments, which
reduces the transparency of the program code and increases
development complexity. By itself, preprocessing is not an
extension of the language; it only allows you to represent the
code only as a set of character strings and to make
replacements in codes as a text without taking into account the
code structure.

Another approach is the use of virtual machines to
implement execution of a unified code [2]. This approach
provides the best solution in portability but involves the use of
a virtual machine with heavy resource consumption, which
makes it inefficient for specialized embedded systems based
on microcontrollers. For example, the implementation of a
virtual machine java-NanoVM for Atmel microcontrollers
allocate 8 Kbytes of program memory [3] which is a full
amount of onboard memory most microcontrollers of this
family have.

The study [4] proposes to use a unified assembly language
and cross-compiler for different types of systems. In this case,
the programmer is offered a low-level tool, which also
negatively affects the efficiency of software development for
target microcontroller devices.

The most effective of the known approaches to cross-
platform software libraries development is based on generic
programming paradigm. Under this paradigm developer
creates program modules and functions which are
parameterized (parametric polymorphism), wherein the
parameterization is static, i.e. is implemented at compile time.

ISSN 2305-7254



PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

This concept is present in some object-oriented programming
languages such as C ++ and is implemented as the template
mechanism (template classes and template functions).
However, for example, when declaring on C++ language a
type parameter of some template it is not possible to set any
limit on the list of possible types which may be specified. In
addition, problems arise in the implementation of flexible
control module, capable of working with some configurable
output of the microcontroller (pins): the developer either have
to use additional resources for storing register numbers
matching port addresses, or use preprocessing.

In [5], the class of specialized embedded systems based on
microcontrollers is considered, a three-level model of program
representation is described, allowing to increase development
efficiency through low-level synthesis of elements based on
high-level description. Embeddecy language is developed,
which is based on the model and can be considered as an
extension of C language.

This article considers the method of increasing cross-
platform properties of software for heterogeneous embedded
microcontroller systems by means of separating the platform-
specific software features from platform-independent ones, the
method is implemented in Embeddecy language.

II. GENERIC MCU MODEL

Code portability between different MCUs is implemented
in Embeddecy by abstracting from the details of MCUs
functioning and by defining the common features. Therefore,
one of the priorities in solving the problem of cross-platform is
to create a generalized model of a microcontroller.

Fig. 1 shows a generalized model of specialized
microcontrollers of most popular families: AVR, PIC18 and
STMS. The model describes a generalized architecture of these
families microcontrollers, which includes core modules, that
are present in some models of MCUs. Interface control
modules include UART, SPI, 12C, 1-Wire, USB, Bluetooth,
CAN, Ethernet; general settings module include, for example,
a watchdog timer, frequency control, microcontroller event
system and other functions, affecting the work of the whole
chip.

MCU Structure
Geqeral Input / owtput ports Timer / Counter / PWM
options control
‘ ADC ‘ ‘ DAC ‘ ‘ Comparator H EEPROM H Interfaces ‘

Fig. 1. Generalized model of a microcontroller

Presented in Fig. 1 unified control system modules can be
divided into hardware-dependent and hardware-independent,
and it should be pointed out that the hardware-independent
ones are located at higher levels of abstraction. Fig. 2 shows
the diagram of distribution of software modules for the control
system levels.

Software level Embeddecy program
Software abstraction level ﬁ F High Level generalized interface
(architecture)
Hardware-
independent OS services

modules

Hardware abstraction level ﬁ

Hardware-dependent
modules (drivers)

Low Level generalized interface
(architecture)

[
v

MCU

Hardware level

Fig. 2. Levels of control system, with hardware-dependent and hardware-
independent modules

Software modules in accordance with their purpose are
located on two levels - level software abstractions (SAL) and
the hardware abstraction layer (HAL). HAL-level modules are
implemented in hardware-specific code that interacts directly
with the hardware modules of the microcontroller. Working
with the modules at this level is done either through the
generic interface (and such instructions are portable), or
specific features of a particular module are used (such
instructions are unportable). SAL level includes a hardware-
independent modules: algorithmic modules or modules
emulates the missing hardware modules, such as the USB or
12C virtual control module, and operating system services.
Hardware-independent modules can interact with each other or
with the device-dependent modules by the generalized
interface. In terms of cross-platform, the greatest interest is the
interaction of HAL and SAL modules that is specified using
the generalized low-level interface. The mechanism of
creation of low-level generic interface implemented in a
language Embeddecy.

III. MULTIPLE LEVEL MODEL OF DISTRIBUTED PROGRAM FOR
EMBEDDED SYSTEMS

To solve the discussed problems arising in the
development of distributed software for embedded systems a
new multi-level model is offered (Fig. 3).

3 Modules templates level

Modules level

Level of modules’ distributed
interactions

Abstraction level
)

Level of modules’ local
interactions

1 Structural registers level

Fig. 3. Level of embedded systems distributed program model




PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

The lower level corresponds to the model of structured
programming and allows for compatibility with the above
model, the other levels are the superstructure, providing new
levels of abstraction.

On the lower level device firmware is described as
instructions for configuring peripheral registers’ bits - specific
memory of the microcontroller. Bit assignment of the
peripheral registers are interpreted by the electronic circuit
devices, and thus the program is implemented by the
microcontroller. According to the model of structured
programming, instructions for the registers described in series
and grouped into subprograms with parameters. In addition to
the instruction register can also read and write the values of
the variables.

The second level (the level of the modules on Fig. 3)
contains a new kind of abstractions - modules. The modules
are units of high-level program in the framework of the
proposed model. Developer can use two kinds of modules:
tasks and packages that combine all the basic elements of the
model. The packages in the model are identical to the concept
of packages in Ada or modules in the structural programming
languages, so the most interesting are the problem, which will
be considered further. Thus, the second level of model is given
us a set of tasks.

Tasks = {task},

where the element of the set is an ordered tuple, consisting
of the names of the task, a set of functions that can perform the
task, signature set of messages that a task can take, and a set of
events that can occur in the problem:

task
Events,,q>,

<nameg, Varsug, —Funcsgg, —MesSigSse

where name,,q. € ID — name of task (identifier),

Vars,.¢ — a set of internal variables of task
Funcs,,g — a set of task’s functions

MesSigs,. — a set of events’ signatures of task
Events, s — a set of events of task

The program in the proposed model has a static structure,
ie, the user in the design phase determines the number and
composition of the tasks to be implemented in each device of a
distributed system. This limitation is due to the peculiarities of
microcontrollers as the computation units and the specifics of
their tasks (task management systems from a static structure of
nodes). In addition, it avoids the costs associated with the
implementation of intensive algorithms required to support
dynamic structure of control systems.

If the package is a simple union of variables, functions, and
event structures, the task also includes the control flow is
executed in parallel with other tasks and contains a list of
signatures received parameterized messages and instructions
on how to adopt and send messages. Each task can receive
messages, send a message to another task and initiate the event
with parameters.

302

Interaction with the task is carried out only by messaging
her. Thus, the task is not only a module in terms of structure,
but also parallelism - all task’s functions can only be called
from task’s control flow. Importantly, the modules in the
proposed model are static because at the program start moment
it's already known the number and composition
of modules.

Another important difference between the tasks and the
known models is that the interaction between tasks can be
carried out not only in sync with the use of "rendezvous", as is
done in the models considered, but also asynchronously. In
this kind of interaction module does not wait for confirmation
of acceptance of its message to more effectively organize the
interaction tasks.

The second level of the model consists of two sub-levels:
the level of local modules and the level of distributed modules.
The level of local modules allows us to describe the program
in the form of interacting modules within a single device. The
level of distributed module allows to describe the program in
the form of interacting modules located on different devices.
In addition, at the distribution level it comes abstraction from
the properties of the passive / active equipment and
communication protocols: it can be assumed that each device
can be active, and any of its modules can initiate sending
messages to the module of other device and at the same time
for the implementation of communication protocols meet the
specific interface modules with a known set of signature
features that they can use.

At the third level of the model is a set of templates
Templs = {templ™}, m € {1..k}, k>0,

where m — the dimension of the template defined by a
limited number of its parameters, and the template is a tuple
consisting of the name of the template and the mapping
function of a fragment of the instructions and template settings
on multiple tasks.

templ” =<nameemy", Finst">
Finst” . C x Paramsempi” —> TaskS g
Tasksiny € Tasks
Params™ = Param; x ... x Param,,

Templates are static and have a set of parameters, at the
moment of setting specific values of which (a template
instantiation moment) template becomes a module. There are
three kinds of template parameters: text-substitution
parameter, device pin parameter and module parameter. Thus,
the templates allow you to create universal modules that can
work with different pin devices and access a number of third-
party modules. This flexibility built into the templates
provided by the static specifying parameters. Support systems
static structure allows you to specify a priori information about
the program, thereby reducing the amount of memory used by
the calculator and the number of actions required to maintain
the integrity of the dynamic structure and increase the level of




PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

abstraction in the of  distributed

programs.

development

IV. TEMPLATES IN EMBEDDECY PROGRAMMING
LANGUAGE

Embeddecy programming language can be considered as
an extension of the C language specialized for the
development of distributed embedded systems software. The
main motive of creating a new language was unsatisfactory
balance between efficiency and abstraction of existing
programming languages used in the development of embedded
systems software. Analysis of typical problems in this area, as
well as the emergence of alternative instruments, confirmed
the relevance of the development of the programming
language that combines the effectiveness of the code in C
language and high-level concepts of C# and Java languages.
One successful example of combining high level abstract
constructs and efficiency can be regarded as the language Ada,
which, however, in practice of the development of
microcontroller systems is rarely used, in particular, due to
limitations in the synchronization software processes means
and overly strong typing.

During requirements analysis model was developed by a
multi-level representation of the software for distributed
embedded systems ([6] and hereinabove). Language
Embeddecy includes support for all elements of the model
(task packages, templates), and the following language
constructs that complement the C language: constructs for
parallel programming (sending synchronous / asynchronous,
accept the message), namespace, anonymous functions, types,
delegates and variables delegates, events, developed tools for
describing static templates, keyword ‘“via” to transmit
messages between distributed modules, constructs, defining
the visibility scopes. The essential feature is the concept of
language patterns modules allow you to develop cross-
platform language Embeddecy library modules. Template
module - it is parameterized module, the parameters that are
set at the point in time of compilation. There are three kinds of
template parameters: text-substitution parameter, device pin
parameter and module parameter.

At the template module instantiation template parameters
are set and the template code is converted into a code module
by substituting actual values instead of the names of the
formal parameters. For example, if developer is using the pin-
parameter in the description of module template, then at the
moment of template instantiation the generation of code for
writing and reading data from mapped output device memory
bit occurs. The language also allowed partial template
specialization of such a mechanism similar to language C++.
In this case, based on the template with multiple parameters
create another pattern in which a part of the formal parameters
specialized actual values and part of parameters (at least one)
remains formal.

Format description of the template and its parameters is
shown below:

template <module type> <name>

303

<
macro <param_macro_name>,

type <param_type _name> is <typel > | <type2 >| ... | <typen
>

>

pin <param_pin_name>,

value <expr type name> <param_expr _name>,
module <inferface_name> <param_module _name>
>

{
}’

<...>// module template’s body

where module_type — type of module: package or task,
param_macro_name macro  parameter  name,
param_pin_name — pin parameter name, param_expr_name —
expression parameter name, expr type name — type of
expression parameter name, param_type name type
parameter name, param_module_name — module parameter
name, interface_name — name of interface, that template
should implement.

V. USING TEMPLATES OF MODULES’ INTERFACES FOR THE
EXPLICIT SEPARATION OF PORTABLE CODE

One of the goals of the interfaces introduction to the
Embeddecy language is the separation of hardware-dependent
code and hardware-independent. Using this mechanism allows
you to create a system library modules, using which the
developer will have a clear idea of which code is portable and
which is not portable.

Way of library modules development based on proposed
language is described below.

1) For each type of hardware-dependent module in the
model of generalized microcontroller it should be
developed a standardized template interface with a list
of common to all of these modules functions and data

types.

2) Hardware-specific modules templates are developed for
each model of microcontroller that implements a
generic interface. At this moment a partial specification
of template generic interface could be useful.

3) Application firmware developer instantiate in a code a
hardware-dependent module based on the desired
hardware-dependent pattern. To access the module
code in cross-platform way, you need to contact him
via the generic interface.

4) Then developer can declare a hardware-independent
modules and set as parameters value hardware-specific
modules, to work with it via a generic interface.

Below a mechanism of separation cross-platform code
from non cross-platform code is considered as the example of
ADC control module implementation for AVR and STM
microcontrollers.

In this example, cross-platform interface template
ADC GENERAL and template of hardware-dependent ADC




PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

control module (4DC_STM) are described on the Embeddecy
programming language. To ensure portability we create an
alias (adc_crossplatform) for all reference to hardware-
dependent modules. All reference to the data structures and
functions of the module via an alias adc_crossplatform are
cross-platform. If you want to use specific functions of the
equipment, then refer to these functions must be through
hardware-dependent alias (in this example - adc_hardware), ie
through the name of the module, instantiate directly on
hardware-dependent pattern. At the same time to a function
and data structures can become importable. Worth mentioning
that the introduction of the super types concept to language
Embedded, give us a possibility to limit the possible type that
can be passed as a parameter template. For example, when
describing a generalized interface module for ADC
(ADC_GENERAL) stated that as the ValueType type can be
selected either integer (inf) or umsigned byte type. This
approach greatly simplifies the use of templates for the
development of libraries of software
modules.

/* generic interface for ADC control module */
template interface ADC_GENERAL

<module MCU_ GeneralConfig generalConfig,
type ValueType is int | unsigned byte,
type BitsResolution_enum is
ADC_AVR BitsResolution_enum |
ADC_STM.BitsResolution_enum |
ADC_PIC BitsResolution_enum, ...> {

void Init();

<..>

ValueType ConvertGetSample (Channels_enum channel)
<.>

}

template package ADC_STM

<module MCU _ GeneralConfig generalConfig,
type ValueType is int | unsigned char>
ADC_GENERAL

implements

<module = MCU_GeneralConfig  generalConfig, type
ValueType is int | unsigned char, BitsResolution enum =
ADC_STM.BitsResolution_enum, ...>

{
public typedef enum BitsResolution {...};
<..>

// ADC_GENERAL function implementation
<..>

// functions below are importable
public bool getOverrunInterruptEnabled();
<..>
}
<...>
// Now we could instantiate package for work with STM ADC
module

#define_module stm81152c6¢fg =
STM8I152¢6_GeneralConfig<...>
#define_module adc_hardware =
<stm81152c6cfg,unsigned char> ;
#define_module adc_crossplatform = (ADC_GENERAL <
generalConfig,  ValueTYpe, BitsResolution enum =
ADC_STM.BitsResolution_enum>, ...) adc_hardware;

<..>

ADC_STM

/I cross-platform instraction
adc_crossplatform.Init();

/I not cross-platform instraction
adc_hardware.getOverrunInterruptEnabled();

VI. CONCLUSION

The problem of creating software for specialized
heterogeneous distributed embedded systems based on
microcontrollers is described in the paper. The relevance of
cross-platform software development technology is stated.
Analyze of existing approaches to the problem of software
portability is shown. A generalized model of microcontroller
underlying the proposed approach to the development of a
unified library of software modules in the Embeddecy
language, providing a higher level of code portability is
presented. Increasing the level of code portability is reached
by means of using Embeddecy language facilities such as
ability to describe on high level parallel behavior and
synchronization of distributed modules. An example of the
implementation of cross-platform template module developed
on Embeddecy language is considered.

The next stage of our project will be the implementation of
the language translator and low-level code generation to
realize parallel modules execution both between modules in
one microcontroller and between ones distributed between
devices. It’s evident that the code generation will lead to some
level of redundancy but the main idea that that redundancy
will be much less significant than known approaches may
suggest, leading to high increasing in development efficiency.
The results of the integrated development environment
including code generation tool are going to be published on
the project website (http://www.mcublocks.com) in near
future.

ACKNOWLEDGMENT

This work was supported by the Ministry of Education and
Science of the Russian Federation (No 14.607.21.0012
(RFMEFI60714X0012) agreement for a grant on 'Conducting
applied research for the development of intelligent technology
and software systems, navigation and control of mobile
technical equipment using machine vision techniques and
high-performance distributed computing')

REFERENCES

[1] 1. Paramonov, A. Vasilev, D. Laure, N. Kozhemyakin, “Preprocessor
Based Approach for Cross-Platform Development with Qt Quick
Components”, in Proc. of the 11th Conference of Open Innovations
Association FRUCT, St-Petersburg, 2012, Web:
https://fruct.org/publications/fructl 1/files/Par.pdf




PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

(2]

B3]

[4]

[3]

A. Platunov “Theoretical and methodological foundations of high-
level design of embedded computing systems”, abstract PhD:
05.13.12., CII6., 2010., 39 pp.

The NanoVM - Java for the
http://www.harbaum.org/till/nanovm/index.shtml

AVR Web:

A. Belih, “Unification single chip architecture and its application to
the development of embedded software”, abstract PhD: 05.13.15. ,
M., 2006., 20 pp.

O. Bolshakov, A. Petrov, “A model of distributed microcontroller
governmental systems software”, in Proc. Theory and practice of

305

[6]

[7
[8]

9]

systems analysis, Rubinsk, RSATU, 2014, 96 — 107 pp.

O. Bolshakov, V. Sharov, A. Petrov, “Model of software programs
for distributed embedded systems”, Herald of Rybinsk State Aviation
Technical University named after PA Solovyov, Rybinsk, 2015.

D. Cheremisinov, "Design and analysis of parallelism in processes
and programs", Minsk: Belarus, Nauka, 2011. — 300 pp.

E. Dijkstra, “Notes on Structured Programming”. — M.. Mir,
1975. — 7-97 pp.

Can I use C++ on the AVR?, Web: http://www.nongnu.org/avr-
libc/user-manual/FAQ.html




