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Abstract-The relevance and popularity of mixed-criticality
real-time systems precipitously increase in many industrial
domains. Today, mixed-criticality systems are increasingly being
implemented on multicore platforms. So, one of the most actual
and important problem in the field of mixed-criticality system is a
scheduling tasks with different criticality levels on
multiprocessors. In this paper, we will describe the main features
of mixed-criticality systems. These include basic methods of its
organization and main issues of mixed-criticality scheduling for
multicore platforms. Moreover, we will report kinds of
multiprocessors, types of multiprocessor scheduling, standards,
concepts and research projects, related to mixed-criticality
systems. At last, we will detail and compare several mixed-
criticality scheduling approaches for multiprocessors.

I. INTRODUCTION

An increasingly important trend in the design of real-time
and embedded systems is the integration of components with
different levels of criticality onto a common hardware
platform. At once, these platforms are migrating from single
cores to multicores architectures. Criticality is a designation of
the level of assurance against failure needed for a system
component. A mixed-criticality system is one that has two or
more distinct levels (for example safety critical, mission
critical and low-critical). Typical names for the levels are
ASILs (Automotive Safety and Integrity Levels), DALs
(Design Assurance Levels) and SILs (Safety Integrity Levels).
These levels express the required protection against failure
when designing a safety-critical system and hence, influence
all steps of the specification, design, development, testing, and
certification processes [1].

Most of the complex embedded systems found in, for
instance, the automotive and avionics industries are evolving
into mixed-criticality systems in order to meet stringent non-
functional requirements relating to weight, cost, space, heat
generation and power consumption (the latter being of
particular relevance to mobile systems). Indeed the software
standards in the European automotive industry (AUTOSAR)
and in the avionics domain (ARINC) address mixed-criticality
issues; in the sense that they recognise that mixed-criticality
systems must be supported on their platforms [2].

Many standards for different domains, such as electronic
systems (IEC 61508), airborne civil avionics (DO-178B) [3],
nuclear power plants (IEC 880), medical systems (IEC 601-4),
European railway (EN 50128]), European space (ECSS), etc
[4]. rely on the assignment of integrity or criticality levels to

the different components of the system. These levels represent
the likelihood of a safety related system for satisfactorily
performing the required safety functions under all the stated
conditions within a stated period of time. The integrity level
determines the development methods and validation and
verification techniques to be used.

In modern mixed-criticality systems, components with
different criticality levels coexist on the same execution
platform. In this scenario, certification authorities would
require the certification of the whole system, even the less
critical parts, which would likely result in the cost of
certification rising to prohibitive levels. To resolve this
problem can use virtualization in mixed-criticality systems.
Under this approach, a hypervisor implements partitions
(virtual machines) that are isolated from each other in the
temporal and spatial (i.e. storage) domains. Applications with
different criticality levels can be located in different partitions,
so that there are no undesirable interferences. In this way, only
the hypervisor and the critical partitions have to be certified to
the highest levels.

The fundamental research question underlying mixed-
criticality approaches and standards is: how to reconcile the
conflicting requirements of partitioning for (safety) assurance
and sharing for efficient resource usage. This question gives
rise to theoretical problems in modeling and verification, and
systems problems relating to the design and implementation of
the necessary hardware and software run-time controls.

Nowadays, mixed-criticality systems are increasingly
being implemented on multiprocessor platforms. As more
functionalities with different degrees of criticality are
implemented on a common multiprocessor platform, mixed-
criticality systems are becoming more complex, less uniform
and predictable, and show greater variation in their
performance [5].

In this way, one of the most actual and important problem
in the field of mixed-criticality system is a scheduling tasks
with different criticality levels on multicore platform. In this
paper we are produced a comparison of the most popular
approaches and algorithms for mixed-criticality scheduling in
multicore systems.

The aim of this paper is to provide a general view of
mixed-criticality systems, their technical challenges, some
research results and mixed-criticality scheduling. Section II
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introduces to mixed-criticality systems, the main research
challenges related to them and an overview of some relevant
research projects. Partitioned systems described in Section I11.
Section IV covers multiprocessor and mixed-criticality
scheduling issues. Description and compare of the main
scheduling approaches and algorithms of mixed-criticality
multicore systems is the content of Section V. Conclusions are
presented in Section VI.

II. MIXED-CRITICALITY SYSTEMS

A mixed-criticality system is a system in which tasks of
different criticality levels (critical and non-critical) run on the
same computing platform (processor).

System designers have an interest in scheduling tasks of
different criticality on the same processor to reduce costs, and
also to be able to better utilize the processor. But many
embedded systems, especially safety-critical systems, require
certification by certification authorities which usually set
different standards from the system designers.

When tasks of different criticality are put on the same
processor, the authorities will demand that all tasks will be
certified to the level of the task with the highest criticality.
This introduces pessimism which diminishes the utility of this
approach for the system designer. Much of the research work
on mixed-criticality systems has been done to try to reconcile
these two conflicting interests.

A key aspect of mixed-criticality systems is that system
parameters, such as tasks’ worst-case execution times
(WCETs), become dependent on the criticality level of the
tasks. So the same code will have a higher WCET if it is
defined to be safety-critical (as a higher level of assurance is
required) than it would if it is just considered to be mission
critical or indeed non-critical. This property of mixed-
criticality systems significantly modifies/undermines many of
the standard scheduling results [6].

The following features will be present in a number of next
generation embedded systems including mixed-criticality
systems:

e Coexistence of applications with different safety and
security levels: the requirement for integrating a
number of applications implies that they will be of
different nature. It is no longer advisable to isolate
applications with more demanding requirements on a
processor, due to the different type of associated costs.
They must coexist in the same computer with other

applications, while behaving as expected.

Requirements on size, weight and power (SWaP):
Many embedded systems have this kind of
requirements. A large number of them will be mobile,
while others will be embedded on other equipments.
Improvements on SWaP features will allow the
development of devices that are easier to carry or with
larger autonomy.

Functional complexity: processor performance makes it
possible to encapsulate a large number of functions
within one system, in order to produce competitive
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devices. This complexity poses a number of challenges
to consider

High computer performance: a large number of the
embedded applications will be multicore, which
provides high computing power to the users. As it has
been a common trend, systems developers will try to
take advantage of this feature for providing the most
advance applications.

Non-functional  requirements:  these type of
requirements are not directly associated with a specific
function or component of the system. They usually
apply to the system as a whole. Non-functional
requirements are usually defined as constraints on the
system functionality. Time, reliability, availability,
safety, or security, are examples of non-functional
requirements. Time requirements are of specific interest
in the development of control systems. The outcomes
of the application have to be produced within a given
time interval. Otherwise it is considered to be faulty.
System developers have to ensure that time
requirements are always met for safety critical
applications.

In order to fulfil these requirements a strong isolation of
applications (critical and non-critical) is needed. An
application is isolated from others if its execution is not
influenced by the behavior of the other applications. Different
kinds of isolation can be considered:

e Spatial isolation: applications must execute in
independent physical memory address spaces. The
system must control that applications cannot access any
memory areas that have not been specifically allocated

to them

e Temporal isolation: the real-time behavior of an
application must be correct independently of the
execution of other applications. The allocation of the
system resources to an application is not influenced by

others, and can be analyzed in a independent way.

Fault isolation: a fault in an application must not
propagate to other applications. Any fault must be
handled either by the failing application itself or by the
system.

A. Open issues in research

There are several open issues in research with respect to
the development of mixed-criticality embedded systems. Some
of them can be summarized as:

e Scheduling techniques for mixed-criticality systems:
Scheduling policies and scheduling techniques. The
scheduling problem is one of the most active research
area, resulting in proposals of different approaches to

deal with partitioned systems.

Support for multicore platforms: Shared hardware
resources in multicore systems have an impact on
temporal isolation. The use of shared resources (such as
L2/L3 cache, memory, bus, IO, etc.) by partitions
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running on different cores in parallel introduces an
interference in the overall execution.

System modelling: The development process should
start with a description or model of the system under
development. There is a need to define notations that
allow providing all the functional components. In
addition, it is required to find ways to describe other
types of information relevant for system partitioning
and deployment.

Methodology and development tools: The development
of mixed-criticality includes additional activities, such
as partitioning or system integration, that are not
common in previous systems.

In this paper and our future researches, we are focused on a
mixed-criticality scheduling in multiprocessor systems.

B. Research Projects

The great industrial interest of mixed-criticality systems
has motivated the definition of a research roadmap and
challenges. Scheduling of mixed-criticality applications is an
emerging research field, which has been attracting increasing
attention in recent years. Some of the most relevant projects
with research activities of direct interest in this field are:

IMA-SP (Integrated Modular Avionics for Space). The
European Space Agency (ESA) launched in 2011 this
project to study the applicability of IMA architectures
to space applications. The aim of the project was to
define the requirements for the use of temporal and
spatial partitioning systems (TSP) in the space domain,
using the specific hardware available [7].

ACROSS (ARTEMIS CROSS-Domain Architecture) is
a research project that aims to develop and implement
an ARTEMIS cross-domain reference architecture
exploiting (a cross-domain architecture for embedded
Multi-Processor  Systems-on-a-Chip (MPSoC) and
implementing a first version in an FPGA.), for
example, PikeOS, partitioning and time-triggered bus
access protocols, for embedded systems based on the
architecture blueprint developed in the EU FP7 project
GENESYS [8].

ARAMIS: (ARAMiIS: Automotive, Railway and
Avionics Multicore Systems) Its objective is to develop
support for the appropriate deployment of multicore
systems and virtualization in the domains of
automotive, avionics and railway, especially for safety
related systems. The target systems will be multicore
and relying on virtualization for providing safety
critical applications in mobility domains [9].

MCC (Mixed Criticality Embedded Systems on Many-
Core Platforms) is a UK funded (EPSRC) project
looking at the design, verification and implementation
of mixed-criticality systems. It has a specific focus on
developing NoC criticality-aware protocols [10].

MultiPARTES: (Multicores Partitioning for Trusted
Embedded Systems) This project is aimed at
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developing tools and solutions for building trusted
embedded systems with mixed-criticality components
on multicore platforms. The approach is based on
developing an innovative open-source multicore
platform virtualization layer based on the XtratuM
hypervisor [11].

virtical: (SW/HW extensions for heterogeneous
multicore platforms) The goal of this project is to
increase functionality, reliability and security of
embedded devices at sustainable cost, and power
consumption. The project relies on virtualization as the
basis for this aim. In particular, it tries to provide to the
virtualization concept in embedded devices, the same
maturity level as in the general-purpose computing
domain, in terms of flexibility and security.

PROXIMA is an EU FP7 IP Project. The PROXIMA
project provides industry ready software timing
analysis using probabilistic analysis for many-core and
multi-core critical real-time embedded systems and will
enable cost-effective verification of software timing
analysis including worst case execution time.
PROXIMA defines new hardware and software
architectural paradigms based on the concept of
randomization [12].

DREAMS (Distributed REal-time Architecture for
Mixed Criticality Systems) aims to produce a European
reference architecture for mixed-criticality systems.
The objective of DREAMS is to develop a cross-
domain architecture and design tools for networked
complex systems where application subsystems of
different criticality, executing on networked multi-core
chips, are supported [13].

parMERASA: (Multicore Execution of Parallelised
Hard Real-Time Applications Supporting
Analyzability) The goal of this project is to make it
easier to use multi-core processors in the development
of real-time systems. This project will provide technical
innovations for dealing with aspects such as
parallelization techniques for safety-critical
applications, timing analysable parallel design patterns,
operating system virtualization, and efficient
synchronisation mechanisms, or timing analysable
multi-core architecture with up to 64 cores [14].

The RECOMP (Reduced certification cost for trusted
multi-core platforms) research project aims to establish
methods, tools and platforms for enabling cost-efficient
certification and re-certification of safety-critical
systems and mixed-criticality systems, i.e. systems

containing  safety-critical and  nonsafety-critical
components [15].
CERTAINTY: (CErtification of Real Time

Applications desIgNed for mixed criticaliTY) It
addresses the certification process for mixed-critical
embedded systems featuring functions dependent on
information of varying confidence levels. The main
challenge is to increase the complexity of the systems,
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where time and safety critical solutions becomes even
more complex on multi-core platforms as time
disturbances, uncertainties, and unreliability are
emerging side effects that need to be efficiently
handled. Application domains include avionic,
automotive and automation, where real-time and safety-
critical requirements are of primary importance [16].

EMC? (Embedded multi-core systems for mixed-
criticality applications in dynamic and changeable real-
time environments) is an ARTEMIS project with 100
(approx) partners is looking at open and adaptive
systems [17].

CONTREX (Design of embedded mixed-criticality
CONTRol systems under consideration of EXtra-
functional properties) focusses on platforms and
addresses properties such as real-time, power,
temperature and reliability. It aims to develop meta-
models for design and analysis [18].

C. Mixed-criticality scheduling

The scheduling algorithms in real-time systems must
predictably assure a priori that all tasks are completed by their
deadlines, assuming that the tasks follow the specifications in
the workload model. Current hard real-time scheduling and
analysis techniques are unable to efficiently utilize the
computational bandwidth provided by multicore platforms.
This is due to the large gap between WCET predictions used
in schedulability analysis and actual execution times seen in
practice. Naturally, because tasks of higher criticality may
cause more severe damage when late, their analysis is taken
more seriously and results in more pessimistic WCET
estimates. In many papers this gap considers as “slack™ that
can be accounted for during schedulability analysis and
reclaimed for less critical work. This technique was used to
develop an architecture for scheduling mixed-criticality real-
time workloads on multiprocessor platforms. This architecture
provides temporal isolation among tasks of different
criticalities while allowing slack to be redistributed across
criticality levels [19].

The mixed-criticality scheduling problem meets two
separate goals: certification of the high criticality tasks under
more pessimistic assumptions and feasibility of all the tasks
(including the low criticality ones) under the designer’s, less
pessimistic, assumptions [5]. Therefore, while the traditional
real-time system scheduling favors only urgent jobs, mixed-
criticality systems must also prioritize high-criticality jobs so
that they are prepared for potentially long execution [20].

Many papers described two criticality levels; high (HI) and
low (LO) with HI > LO. These are referred to as dual-
criticality systems. Where modes are used, the system is either
in a LO-criticality mode or a HI-criticality mode [2].

D. Real-time task model

In most cases, real-time system is modelled as a number of
tasks which need to be scheduled on one or more processors
according to their timing properties and constraints. A task i
has the following timing properties:
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Relative deadline Di: The time by which this task needs
to be done.

Period 7i: The (minimum) inter-arrival time between
releases.

WCET Ci: The uninterrupted/undisturbed execution
time of this task in the worst case.

These can also be written as a tuple (Ci, Ti, Di). A job of
a task is an instance of the task. A task can spawn an infinite
number of jobs.

The periodicity of a task depends on the relation of the
period and the release time. A strictly periodic task is released
exactly every T time units, i.e. T specifies the exact inter-
arrival time. A sporadic task has an inter-arrival time of at
least T time units, but the release may happen later. Finally,
aperiodic tasks show no periodicity, they are released
randomly. All task systems in this thesis consist of sporadic
tasks.

If a task has a deadline which is lower or equal to its period
(D £ T), we call it a constrained deadline task system. If the
deadline is equal to the period (D = T), we call it an implicit
deadline task system. In any other case, we call it an arbitrary
deadline task system [6].

III. PARTITIONED SYSTEMS

Partitioned software architectures were defined to create
trusted systems. They have evolved to fulfil security and
avionics requirements, where predictability is extremely
important. A partition is an execution environment integrated
by an operating system and a set of applications. Partitions are
executed on top of a hardware platform, possibly virtual, in an
independent way.

In this way, the coexistence of mixed-criticality tasks with
different criticality level relies on hypervisors that provide
virtual machines or partitions, where tasks can run with space
and time isolation. Therefore it is possible to ensure that tasks
on different partitions can run independently.

The MILS (Multiple Independent Levels of Security and
Safety) initiative is a joint research effort between academia,
industry, and government to develop and implement a high-
assurance, real-time architecture for embedded systems. The
technical foundation adopted for the so-called MILS
architecture is a separation kernel. In addition, the ARINC-653
(AEEC, 1996) standard uses these principles to define a
baseline operating environment for application software used
within Integrated Modular Avionics (IMA), based on a
partitioned architecture [21].

Integrated Modular Avionics (IMA) was the solution that
allowed the aeronautic industry to integrate new
functionalities, while maintaining the level of complexity and
efficiency. Its main goal was to define an architecture that
captures and handles faults at the different levels and permits
the parallel application development. One of the main aspects
to cover fault management is the temporal and spatial isolation
of partitions.
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The major benefit of using a partitioning approach for
mixed-criticality systems is to reduce certification costs in
complex systems. In order to achieve this goal, it must be
possible to analyze each application in an independent way.
This requirement has some implications on the overall system:

e The hypervisor has to be certified at the same criticality

level as the most critical application.

System resources (CPU time, memory areas, 1/O ports
etc.) have to be allocated to partitions in a predefined
and static way. Static allocation is necessary to enable
independent analysis and certification of partitions.
This principle applies both to the applications running
in a partition and to the underlying operating system
that controls their execution within the partition.

Non-critical applications running in separate partitions
do not have to be certified, as long as it can be
guaranteed that they do not affect to the execution of
critical partitions.

Re-certification of a partition should not affect the
certification status of other certified partitions.

Incremental certification is a goal in order to achieve
independent certification. Static allocation of resources
is a major requirement for achieving the previous
described aims.

IV. MULTICORE SCHEDULING

The multiprocessor scheduling problem consists therefore
in finding a feasible schedule for » tasks running on m
processors. In the following we assume that » > m.
Multiprocessor real-time scheduling is intrinsically a much
more difficult problem than monoprocessor scheduling. The
main reason is that few of the results obtained for
monoprocessors can be directly applied to the multiprocessor
case [22].

From the perspective of scheduling,
systems can be classified into three categories:

multiprocessor

e Identical: processors are identical, i.e. all processors

have equal speed and capabilities.

e Uniform heterogeneous: each processor in a uniform
(or related) multiprocessor system is characterized by
its own computing capacity (speed), i.e. all processors

have equal capabilities, but different speeds.

e Unrelated heterogeneous: processors are different.

Multiprocessor scheduling has to solve two problems: the
allocation problem, that requires deciding on which processor
a task should execute, and the local scheduling problem, that
is, when a task should execute. Regarding allocation, there are
scheduling algorithms that permit migration (at task or job
level) and algorithms that do not permit it.

The most multiprocessor scheduling algorithms can be
classified as either partitioned or global. Scheduling
algorithms where no migration is permitted are referred to as
partitioned, whereas those where migration is permitted (either
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at task or at job level) are referred to as global. In addition
there is a hybrid approach to the scheduling task is to
generalization of global and partitioned scheduling. For
example cluster and semi-partitioned scheduling.

In this paper we will look at global and partitioned
scheduling.

A. Partitioned scheduling

Under partitioned scheduling, each task is assigned to a
single processor. Partitioned scheduling is illustrated in Fig.1,
where 7 is a task. This has the following advantages:

e Task overruns have only consequences in the same

processor.
There is no penalty in terms of migration cost.

The implementation uses a separate run queue per
processor, rather than a single global queue in the
global approach. This reduces overheads due to queue
management.

On the contrary, its main disadvantages are:

¢ Finding an optimal allocation of tasks to processors is a
bin-packing problem, that is NP-hard in the strong

sense.

There are task sets that are only schedulable if
migration is allowed.

Partitioned scheduling algorithms are not work
conserving, as a processor may become idle, but cannot
be used by ready tasks allocated to a different

processor.
Hﬂi"ﬂ
:'

Still, partitioning is widely used by system designers.
Typical memory allocators such as First-Fit (FF), Worst-Fit
(WF), and Best-Fit (BF) have been used to solve the problem
of finding good sub-optimal static allocation of tasks to
processors. These heuristics use the task period parameter as
the key for allocation. Others, such as FFDU (First Fit
Decreasing Utilization) [23], use the task utilization as a key
for choosing the next task to allocate. These allocators
combined with classical scheduling algorithms (FPPS or EDF)
gives rise to the most popular partitioned scheduling
algorithms, such as Rate Monotonic-First-Fit (RMFF), Earliest
Deadline First Best-Fit (EDFBF), Rate Monotonic-First-Fit-

[xe] [xe] [ [

Fig. 1. Partitioned scheduling
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Decreasing-Utilization (RMFFDU), etc. A comparison of
these allocation schemes can be found in [24].

B. Global scheduling

Global scheduling cannot be used to reduce the
multiprocessor scheduling problem to many monoprocessor
scheduling problems, contrary to partitioned scheduling. The
fact that tasks are allowed to migrate in the global approach
gives rise to many unexpected effects and disadvantages,
which complicate the design of scheduling and allocation
algorithms for the global scheme. Global scheduling is
illustrated in Fig.2, where t is a task. The most significant
problems are:

e Migration of tasks to processors introduce a high

overhead in the system.

Migration increases the information flow between
processors. This kind of communication may require
the use of shared memory or communication channels.

Predictability is much lower than that associated to the
partitioned scheme.

Some scheduling anomalies may occur, for example the
Dhall effect: tasks sets with very small utilization may
be unschedulable [25].

On the contrary, the main advantages of this approach are:

There are typically fewer context
switches/preemptions. This is because the scheduler
will only preempt a task when there are no idle
processors.

An advantage of the global scheme is its generality.
Since tasks can migrate from one processor to another,
the processor system “could be” better utilized.

Global scheduling is more appropriate for open
systems, as there is no need to run load balancing/task
allocation algorithms when the set of tasks changes.

O
{2
(=)

To classify global scheduling algorithms we use the
concepts of fixed job priorities or fixed task priorities. In the
former approach, the priority of a task can only change at job
boundaries, while in the latter all jobs generated by the same

Fig. 2. Global scheduling
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task have identical priorities. Some well-known global
scheduling methods are [26]:

e In fixed task priority (FTP) scheduling, each sporadic
task is assigned a unique priority, and each job inherits
the priority of the task that generated it. The rate-
monotonic  scheduling algorithm, which assigns
priorities to tasks according to their period parameters
— tasks with smaller period are assigned greater
priority (ties broken arbitrarily)—is an example of an

FTP scheduling algorithm.

In fixed job priority (FJP) scheduling, different jobs of
the same task may be assigned different priorities.
However, the priority of a job, once assigned, may not
change. The earliest deadline first (EDF) scheduling
algorithm in which the priority of a job depends upon
its deadline parameter—jobs with earlier deadlines are
assigned greater priority (ties broken arbitrarily)—is an
example of a FJP scheduling algorithm.

In dynamic priority (DP) algorithms, there are no
restrictions placed upon the manner in which priorities
are assigned to jobs—the priority of a job may change
arbitrarily often between its release time and its
completion. For example:

o The PFair scheduling algorithms;
o Earliest Deadline Zero Laxity (EDZL);
o Least Laxity algorithm.

V. MIXED-CRITICALITY MULTICORE SCHEDULING

Scheduling of mixed-criticality applications is an emerging
research field, which has been attracting increasing attention in
recent years. In this section we are reviewing different
approaches to mixed-criticality scheduling for multicore
systems. We consider three well known mixed-criticality
scheduling techniques: FTTS and multicore EDF-VD
algorithms, and a mixed-criticality scheduling framework for
multicore platforms, called MC”.

A. Flexible Time Triggered Scheduler

A global (flexible) time-triggered scheduling approach
with barrier synchronization (FTTS) considers periodic mixed-
criticality task sets executed on resource-sharing multicores.
FTTS enabled only tasks of the same criticality level to be
executed concurrently in order to guarantee their timing
properties at a particular level of assurance, a necessary
property for the certification of mixed-criticality systems.

Like a standard time triggered scheduler, the FTTS has a
cycle with a duration of the least common multiple of all task
periods. This cycle is divided into frames, which can be of
different lengths, but are also fixed during runtime.

FTTS tries to bridge the space between strict partitioning
mechanisms for timing isolation (industrial practice for safety-
critical applications) and efficient mixed-criticality scheduling
algorithms. Moreover, in multi-core environments there can be
access contentions for shared resources (e.g. synchronous
access to a shared memory), which means that an access from
one core can block tasks on other cores from continuing their
execution. The FTTS takes into account concurrent access to
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shared memory in its analysis and assures that no low critical
task can preempt a higher critical one [27].

As the experimental results show, FTTS can schedule task
sets  without over-provisioning resources (increased
schedulability compared to static partitioning approaches). At
the same time it does not affect its efficacy when compared to
more dynamic mixed-criticality —scheduling strategies.
Applicability has been validated with an industrial avionics
application. This confirms that FTTS is a potential solution to
the problem of mixed-criticality scheduling on multicores,
where resource (e. g., memory) sharing among several cores
cannot be eliminated. FTTS is currently being implemented in
an industrial setup for evaluating its runtime overhead [2].

B. Multicore EDF with Virtual Deadlines

Earliest Deadline First with Virtual Deadlines (EDF-VD)
is a singlecore mixed-criticality scheduling algorithm.
Nowadays, EDF-VD is extended to both global and partitioned
multicore scheduling.

Global mixed-criticality scheduling approach extends the
EDF-VD singlecore mixed-criticality scheduling algorithm to
multicore, by applying the multicore global scheduling
algorithm fpEDF for scheduling systems of non mixed-
criticality implicit-deadline sporadic tasks to mixed-criticality
systems [28], [29].

The partitioned EDF-VD scheduler (pEDF-VD) is an
extension of the singlecore EDF-VD scheduler to multicore
systems. It consists of one EDF-VD scheduler per processor
core and a partitioning algorithm to partition the tasks to
processing cores. The partitioning is done offline and assigns
each task to one of the singlecore schedulers on the different
processor cores. At runtime each of the singlecore scheduler
schedules its own task set independent of the other cores and
without any information exchange with them. The details of
the used singlecore EDF-VD scheduler and the partitioning
algorithm are discussed in the next two sections.

1) Singlecore EDF-VD

Singlecore EDF-VD scheduler is a central part of the
partitioned EDF-VD. This singlecore scheduler is already
implemented in the mixed-criticality extension for the HSF. It
supports two criticality levels. This scheduler starts by
scheduling the tasks in low criticality mode according to the
EDF scheduling algorithm, namely depending solely on their
deadlines and independent of the criticality level of the
different tasks. The only change that needs to be done for
scheduling in the low criticality mode is to adjust the deadlines
of the high critical tasks to guarantee their original deadline
when they need more time to execute. This is done by
multiplying their original relative deadline with a factor x < /
to obtain their virtual deadline. The factor x depends only on
the task set and is calculated offline before the task set is
handled by the scheduler.

The scheduler switches to high criticality mode as soon as
one of the high critical tasks has overrun its low critical
WCET. At this point the scheduler cancels all low critical
tasks that have not finished their execution. The EDF-VD
scheduler then continues scheduling only the high critical
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tasks according to EDF, this time according to their original,
unmodified deadlines. The high criticality mode is used until
no pending high critical tasks need to be scheduled. Then the
scheduler switches back to low criticality mode and continues
scheduling the low criticality tasks according to their original
deadlines and the high criticality tasks according to their
virtual deadlines [12].

2) Task Set Partitioning

Even if each core will have a fixed task set and its own
EDF-VD scheduler during runtime, the task set for the pEDF-
VD scheduler is given globally. This task set first needs to be
partitioned before starting the independent schedulers.

In a first step all the high critical tasks are distributed
across the cores such that the high critical utilization UHlof
the task sets on each core does not exceed Y. This is done
using a first fit bin packing algorithm and starts with highest
utilization task first. If one of the high critical task can not be
mapped to any core, the partitioning algorithm stops and
returns failure. After this first step the same is done using the
low critical utilization of each core (including low critical
utilizations of already partitioned high critical tasks). Each low
critical task is mapped onto the first core that matches the
criteria of having a low critical utilization of lower than or
equal %. Here the partitioning algorithm stops as well and
returns failure when a task could not be mapped to any core.

If both steps succeed, the partitioning algorithm returns
success.

C. MC’ framework

One of the main challenges in mixed-criticality system is
to devise mixed-criticality scheduling (and ultimately
synchronization) approaches for multicore platforms that are
amenable to certification. As a step towards addressing this
challenge, the researchers at University of North Carolina at
Chapel Hill, in collaboration with colleagues at Northrop
Grumman Corp. (NGC) proposed a mixed-criticality
scheduling approach for multicore platforms that uses a two-
level hierarchical scheduling framework in which containers
provide isolation for tasks of different criticality levels.
Partitioned EDF is used as the intra-container scheduler. This
approach named MC®. This framework provided
corresponding schedulability analysis results [19]. MC* also
proposed the use of slack re-allocation techniques to
redistribute unused processing capacity at higher criticality
levels to lower criticality levels.

MC? framework supports five criticality levels, denoted A
(highest) through E (lowest). The choice of five levels was
motivated by the five criticality levels found in the DO-
178B/C standard for avionics, which is used by the U.S.
Federal Aviation Administration (FAA) for the certification of
commercial airplanes. As explained in greater detail later,
level-A and -B tasks in MC” are subject to hard deadlines and
are scheduled via partitioning, while level-C and -D tasks are
subject to bounded deadline tardiness and are scheduled
globally. Level-A tasks are statically prioritized above all
other tasks in the system. They are scheduled according to a
precomputed dispatching table, following the cyclic executive
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(CE) scheduling model [19]. Level-E tasks are scheduled as
best-effort tasks because DO-178B merely specifies that a
failure at this level must not affect the operation of the aircraft.
The schedulability analysis provided for MC? can be applied
to validate the schedulability. of the level-l system, where |
ranges over A—D (as required in a mixed-criticality setting;
note that level E is best effort, so it requires no schedulability
analysis) [30]. In MC? different intracontainer schedulers are
used for tasks of different criticalities. MC®> framework is
illustrated in Fig.3.

D. Comparison

We compare three mixed-criticality scheduling techniques
discussed above by several capabilities and results of
implementation.

EDF-VD is more flexible with scheduling task jobs as they
arrive and can preempt them any time. FTTS can schedule task
sets  without over-provisioning resources (increased
schedulability compared to static partitioning approaches) [1].

CPU1  CPU2 CPU3 CPU4

A |CE| |CE| ICE| |CE|

B | EDF | | EDF | EDF | | EDF |

C | G- EDF |
T I T | I | T

D | G- EDF |
I I | | T | I

E | Best Effort |
[ 1 EEEEEER

Fig. 3. MC? framework

When comparing FTTS to pEDF-VD, we can state that the
pEDF-VD scheduler has a much lower overhead than the
FTTS. However, the FTTS also has its advantages, like
isolation among tasks of different criticality levels. The
overhead of the FTTS highly depends on the number of
subframes that need to be executed. The number of subframes
depends on the dimensioning of the FTTS cycle and frames,
which in turn depends on the task periods. pEDF-VD
scheduler has low overhead for longer task periods. On the
other hand the analysis of the scheduler is complicated,
because of its partitioned manner [27].

Looking at the task model, FTTS considers periodic
mixed-criticality task sets executed on resource-sharing
multicores. While the EDF-VD considers mixed-criticality
arbitrary-deadline sporadic task sets. MC” supports mixed-
criticality implicit-deadline sporadic tasks on multicore
platforms with shared resources.

Looking at the shared resources, FTTS supports concurrent
access to shared memory and assures that no low critical task
can preempt a higher critical one. In MC? are developed by
Ward et al. two cache-management techniques, called cache
locking and cache scheduling and presented experimental
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results on a multicore Tegra3 ARM machine. The usage of
such techniques can reduce WCETs in higher-criticality
tasks [31].

Summary of comparing results of approaches mixed-
criticality scheduling by shared resource, limit on the number
of criticality levels, type of multicore scheduling is shown in
Table 1.

Looking at the multiprocessor, FTTS offered for identical
cores, but it can be easily generalized to heterogeneous
platforms. Each core has access to a private local memory and
also to a shared (global) memory. Data and instructions are
fetched from the shared memory to the local during the access
phases of a task, and after each computation phase, the
modified data are written back to the shared memory during
subsequent access phases [1].

pEDF-VD scheduling offers only identical
multiprocessors. The issue of expansion of the algorithm to
heterogeneous multiprocessors remains open.

MC® supports identical, uniform heterogeneous and
unrelated heterogeneous multiprocessors.

Summary of comparing results of approaches mixed-
criticality scheduling by kinds of multiprocessors is shown in
Table II.

TABLE 1. COMPARISON OF SCHEDULING APPROACHES BY SHARED
RESOURCES, CRITICALITY LEVELS AND MULTICORE SCHEDULING

Scheduling Shared Criticality Multicore
approach resources levels scheduling
Concurrent Two and
FTTS access to shared Global
memory more
pEDF-VD No Twoand | b itioned

more
Two cache-
management Five (in
MC? techniques: first Global and
cache locking version), no | partitioned
and cache limits
scheduling

TABLE II. COMPARISON OF SCHEDULING APPROACHES BY KINDS OF
MULTIPROCESSORS

Kinds of multiprocessors
Scheduling
approach
. Uniform Unrelated
Identical
heterogeneous | heterogeneous
FTTS Yes Underway Underway
pEDF-VD Yes No No
MC? Yes Yes Yes
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VI. CONCLUSION

Mixed-criticality systems are the result of the evolution of
embedded systems, which is characterized by more complex
functionality, more powerful processors, requirements on size,
weight and power, and non-functional requirements.

In this paper, we described the main properties and
capabilities of mixed-criticality systems, methods of its
organization and features of mixed-criticality scheduling
algorithms for multicore systems. Also, we described kinds of
multiprocessors (identical, uniform heterogeneous and
unrelated heterogeneous), standards and concepts (ARINC-
653, DO178-B, MILS, IMA etc.), research projects (IMA-SP,
EMC? in ARTEMIS, ACROSS) related to mixed-criticality
systems.

Moreover, we considered types of multiprocessor
scheduling. Upon multiprocessor systems, current engineering
practice to a greater extent using partitioned scheduling (rather
than global and hybrid (clustered) scheduling). One of the
reasons for the better efficiency of partitioned algorithms in
mixed-criticality scheduling is that properties, often
pessimistic, that just characterize the behavior of a partitioning
algorithm may constitute the actual schedulability tests for
global scheduling. Also, the partitioning algorithm is better,
from the perspective of speedup bounds (metric for
quantifying deviation from optimal behavior of scheduling
algorithm), when compared to the global algorithm.

We detailed and compared several mixed-criticality
scheduling approaches (MC? FTTS, EDF-VD) for
multiprocessors. In MC?, tasks at each criticality level are
scheduled by different intra-container schedulers, so, they
according to different scheduling policies. This allows the
tasks of each criticality level to be scheduled in a way that is
appropriate for that level. FTTS approach with barrier
synchronization considers periodic mixed-criticality task sets
executed on resource-sharing multicores. FTTS enabled only
tasks of the same criticality level to be executed at the same
time in order to guarantee their timing properties at a
particular level of assurance. EDF-VD algorithm is good
scheduling algorithm for dual-criticality implicit-deadline
sporadic tasks.

This paper has the goal of serving as an initial starting
point for researchers interested on a topic with a great
potential in the near future. We formulate the expected range
of problems and tasks for personal solution in the future. Our
further research is required for the boundary of the
performance of multiprocessor mixed-criticality scheduling
algorithms for various task types (implicit-/arbitrary-deadline)
on various processor types (identical/heterogeneous/unrelated)
with various migration rules (unrestricted/job level/task level).
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