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Abstract—Nowadays, real-time embedded computing systems
are widely used in safety-critical environments such as avionics
and space systems. Microprocessor technology is rapidly
developing, therefore, multicore designs are becoming an
attractive solution to fulfill increasing performance demands.
Thereby, in the real-time systems community there has been a
growing interest in real-time multicore scheduling theories. One
of the multicore scheduling approach that provides predictable
timing and temporal isolation (two properties desirable in real-
time systems) is a hierarchical scheduling. In this paper, we will
review many aspects of hierarchical scheduling for multicore
systems. These include existing types of multiprocessor systems,
as well as the types of multiprocessor scheduling. Further will be
presented standards and specifications related to the time and
space partitioning whose problems can be decided by hierarchical
scheduling. In addition, we will conduct a description and
comparison of several multicore approaches of hierarchical
scheduling.

I. INTRODUCTION

Microprocessor technology is rapidly developing, therefore,
multiprocessor and multicore designs are becoming an
attractive solution to fulfill increasing performance demands. In
the real-time systems community, there has been a growing
interest in real-time multiprocessor scheduling theories.
Multicore architectures have received significant interest as
thermal and power consumption problems limit further increase
of speed in single-cores. In the multicore research community a
considerable amount of work has been done on real-time
multicore scheduling algorithms [1].

Embedded systems is an essential part of many modern
products including complex safety critical real-time systems.
Within the industrial domains of avionics and automotive, the
safe composition of several embedded features within the same
systems can be achieved through the use of hierarchical
scheduling. The separation between features is secured by
using time partition scheduling at the system level [2]. A trend
within embedded systems is to use multicore platforms in order
to increase performance and to be able to implement more
functionality within one embedded system [3].

The advent of multicore processors will guarantee a steady
improvement of the processors performance over time.
However, multicore processors also make application
development more difficult if the goal is to make use of all the
extra processors performance that multicore brings. For
example, shared resources [4] and cache memory [5] are two

challenges that the real-time community are faced with.
However, adapting to multicore is the only option if the
objective is to maximize the processors performance [6].

Hierarchical scheduling is a general term for composing
applications as well defined components. Software which is
structured in such a way is more robust than flat system since
defects will only affect a delimited part of the
system. Hierarchical real-time scheduling is the core
technology for realizing temporal partitioning. Hierarchical
scheduling is used to allow coexistence of hard, soft and non-
real-time tasks in applications. In the hierarchical scheduling,
the global scheduler (partition scheduler) assigns computation
resources across partitions according to their period and
execution time. In the second level, the local scheduler (task
scheduler) runs tasks of a partition during the time window
given by the partition scheduler. The isolation that comes with
hierarchical scheduling will also make software reuse more
simple.

In this paper we propose consumption of hierarchical
scheduling for multicore systems.

This powerful mechanism has been adopted by the avionics
industry in form of the ARINC-653 [7] software specification.
ARINC-653 isolates applications in terms of both the
processors and the memory. Hence, hierarchical scheduling can
be used in safety-critical systems to make them more safe.
Hierarchical scheduling is also used in mixed-criticality
systems — systems providing multiple functionalities who
differ in how critical they are for the overall welfare of the
system, and in the level of assurance of each one’s mandatory
certification.

This paper is organized as follows: in Section II we
describe kinds of multiprocessors and types of multiprocessor
scheduling. In Section III we present a features of real-time
scheduling, strategy of hierarchical scheduling, standards,
which requirements are satisfied by hierarchical scheduling.
Section IV have description and compare of existing
hierarchical multicore scheduling approaches. Finally, we
conclude this paper in Section V.

II. BACKGROUND

A. Types of real-time systems

Real-time systems are classified as hard or soft real-time
systems [8]:
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e Hard real-time (HRT) systems have very strict time

constraints, in which missing the specified deadline is
unacceptable. The system must be designed to
guarantee all time constraints. Every resource
management system (for example, the scheduler,
communications and input—output manager) must work
in the correct order to meet the specified time
constraints.

Soft real-time systems (SRT) also have time
constraints; however, missing some deadline may not
lead to catastrophic failure of the system. Thus, soft
real-time systems are similar to hard real-time systems
in their infrastructure requirements, but it is not
necessary that every time constraint be met. In other
words, some time constraints are not strict, but they are
nonetheless important. A soft real-time system is not
equivalent to non-real-time system, because the goal of
the system is still to meet as many deadlines as
possible.

Space missions and military applications and are typical
instances of hard real-time systems. Some applications with
real-time requirements include rocket and satellite control,
aircraft control and navigation, industrial automation and
control, telecom switching, car navigation, the medical
instruments with the critical time constraints, and robotics.

Some applications with soft real-time requirements include
web-services such as real-time query, call admittance in voice
over internet protocol and cell phone, digital TV transmissions,
cable and digital TV set-top-boxes, video conferencing, TV
broadcasting, games, and gaming equipment. Multimedia
systems in general are examples of soft real-time systems (e.g.,
dropping frames while displaying video).

B. Real-time scheduling

In real-time systems the temporal predictability which is
often in the form of guaranteeing every task’s response within
strict deadlines is as important as the performance (how fast an
individual task can complete) or the throughput (how many
tasks can be completed over a long period of time).

In real-time scheduling theory research, the scheduling
algorithms that switch tasks and allocate resources in real-time
systems are studied. These algorithms are constructed based on
real-time task models. These models extract the essential
information of the temporal behaviors of the tasks in a real-time
system.

The scheduling algorithms must predictably assure a priori
that all tasks are completed by their deadlines, assuming that the
tasks follow the specifications in the workload model. These
guarantees must be analytically proved before the actual
execution of the system, there are usually two types of
algorithms on scheduling: scheduling policies and schedulability
tests.

Scheduling policies, sometimes called schedulers, are the
algorithms that control the run-time schedule. The scheduling
policies will be executed along with real-time tasks, and make
scheduling decisions based on the time and/or the temporal
behavior of real-time tasks. Scheduling policies are generally
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required to be simple and fast because they compete with real-
time tasks and occupy computational resources.

Schedulability tests are the algorithms that check before run-
time if the deadlines are guaranteed to be met. Schedulability
tests can be complicated and time-consuming if they can bring
in better run-time performance and computational resource
efficiency. It is non-trivial to design schedulability tests,
especially for real-time tasks with a large variance of run-time
behaviors because the tests must guarantee that no deadline is
missed in all possible system runs [9].

A feasible schedule is one which fulfils all timing constraints
of a task system, and a task system is schedulable if at least one
scheduling algorithm exists which generates a feasible schedule.

C. Real-time task model

In many works, a real-time system is modelled as a number
of independent, recurrent tasks which need to be scheduled on
one or more processors according to their timing properties [10].
A task t; has the following timing properties:

Relative deadline D;: The time by which this task needs
to be done.

Period 7;: The (minimum) inter-arrival time between
releases.

Worst-case execution time Ci: The
uninterrupted/undisturbed execution time of this task in
the worst case.

These can also be written as a tuple (C;, T, D;). A job of a
task is an instance of the task. A task can spawn an infinite
number of jobs.

Very important property is the task utilization, i.e. the ratio of

Ui=Ci/Ti (1)

the worst-case execution time (WCET) and the period (1).

The utilization provides a very simple scheduling check for
any processor. Processor utilization can be defined as the sum of
the task utilizations of the tasks scheduled on that processor. If
the processor utilization is bigger than 1, the tasks cannot all be
scheduled successfully on that processor

The periodicity of a task depends on the relation of the period
and the release time. A strictly periodic task is released exactly
every T time units, i.e. T specifies the exact inter-arrival time. A
sporadic task has an inter-arrival time of at least 7" time units,
but the release may happen later. Aperiodic tasks show no
periodicity, they are released randomly.

If a task has a deadline which is lower or equal to its period
(D £ 1), we call it a constrained deadline task system. If the
deadline is equal to the period (D = T), we call it an implicit
deadline task system. In any other case, we call it an arbitrary
deadline task system.

D. Priority-driven real-time scheduling

A priority-driven scheduler does not pre-compute a schedule
of tasks/jobs: instead assigns priorities to jobs when released,
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places them on a run queue in priority order. When preemption
is allowed, a scheduling decision is made whenever a job is
released or completed. At each scheduling decision time, the
scheduler updates the run queues and executes the job at the
head of the queue.

Fixed-priority algorithm assigns the same priority all jobs in
each task. By contrast, dynamic-priority algorithm assigns
different priorities to the individual jobs in each task.

Best known fixed-priority algorithm is Rate Monotonic
(RM) [11]. It assigns priorities to tasks based on their periods by
rule “The shorter the period, the higher the priority”. The rate of
job releases is the inverse of the period, so jobs with shorter
period have higher priority. An example of a dynamic-priority
algorithm is Earliest deadline first (EDF), which assigns
priorities to jobs in the tasks according to their deadline. The
rate of job releases is the inverse of the deadline, so jobs with
nearer deadline have higher priority.

E. Kinds of multiprocessors

In multiprocessor computing platforms there are several
processors available upon which tasks may execute. Scheduling
theorists distinguish between at least three different kinds [12]
of multiprocessors:

o Identical: Processors are identical, in the sense that they

have the equal speed and capabilities.

Uniform heterogeneous: Processors have

capabilities, but different speeds.

equal

Unrelated heterogeneous: Processors have different
capabilities and speed. Tasks may not be able to
execute on all processors.

Kinds of multiprocessors are illustrated in Fig. 1.
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Fig. 1. Kinds of multiprocessors

F. Types of multiprocessor scheduling

Existing real-time scheduling approaches over several
processors can fall into three categories: partitioned, global and
hybrid scheduling.

1) Partitioned Scheduling

In partitioned scheduling, a task set allocate into multiple
non-intersected sets and each of this sets is assigned to a
dedicated processor. Each processor have scheduler with a
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separate run queue, where tasks or jobs cannot migrate. That is
allowed during run time. Practically, this type of scheduling
allows to apply existing real-time scheduling techniques and
schedulability analyses for uniprocessor systems, when
allocation of tasks to processor has been achieved. Also
partitioned scheduling have advantage in context of
multiprocessor systems, introduced by Dhall and Liu [13] where
some task set with total utilization close to 1, that are not
schedulable by global scheduling even in multiprocessor
platform, where more then one processor.

However, partitioned scheduling has the disadvantage to the
global scheduling in the sense that partitioned schedulers may
require more processors to schedule a task system. This is clear
from the fact that partitioned scheduling algorithms are not
work-conserving, as a processor may become idle, but cannot be
used by ready tasks allocated to a different processor.

Early research into partitioned multiprocessor scheduling
examined the use of common uniprocessor scheduling
algorithms such as EDF or RM on each processor, combined
with bin-packing heuristics such as First Fit (FF), Next Fit (NF),
Best Fit (BF), and Worst Fit (WF), and task orderings such as
Decreasing Utilization (DU) for task allocation. Later different
variants of EDF and fixed priority algorithms are proposed such
as EDF-Utilization Separation (EDF-US), EDF-First Fit
Increasing Deadline (EDF-FFID), etc. to improve utilization
bound of the partitioned scheduling [14].

2) Global Scheduling

In global scheduling, tasks are scheduled from a single
priority queue and may migrate among processors. The main
advantage of global scheduling is that it can overcome the
algorithmic complexity inherent in partitioned approach. As all
the processors use a single shared ready queue, this eliminates
the need to solve the task assignment problem, which is the
source of complexity under any partitioned scheduling. Another
key advantage of global scheduling is that it typically requires
fewer preemptions as the scheduler will only preempt a task if
there is no idle processor. Global scheduling is more suitable for
open systems where new tasks arrive dynamically, as a new task
can be added easily to existing schedule without assigning it to a
particular partition.

However, unlike partitioned scheduling, results from
uniprocessor scheduling does not fit easily for global scheduling
of multiprocessors. The problem of global scheduling of real-
time tasks in multiprocessors was first considered by Dhall and
Liu in the context of the periodic task model. Their result known
as Dhall’s effect shows that neither RM nor EDF retains its
respective optimality property in uniprocessor when the number
of processors m exceeds one. Given these early negative results
and the lack of widespread availability of shared-memory
multiprocessor platforms, interest in the global scheduling was
quite limited in the first two decades of research into real-time
systems.

3) Hybrid Scheduling

In global scheduling, the overhead of migrating tasks can be
very high depending on the architecture of the multiprocessor
platform. In fact delays related to cache miss and




PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

communication loads can potentially increase the worst case
execution time of a task which is undesirable in real-time
domain. On the other hand, fully partitioned algorithms suffer
from waste of resource capacity as fragmented resource in each
partition remains unused. To overcome this problem, hybrid
approaches are proposed which includes semi-partitioned and
clustering algorithm.

Semi-partitioned Scheduling

In semi-partitioned scheduling algorithm, most of the
tasks are executed on only one processor as in original
partitioned approach. However, a few tasks (or jobs)
are allowed to migrate between two or more processors.
The main idea of this technique is to improve the
utilization bound of partitioned scheduling by globally
scheduling the tasks that cannot be assigned to only one
processor due to the limitations of the bin-packing
heuristics. The tasks that cannot be completely assigned
to one processor will be split up and allocated to
different processors. The process of assigning tasks to
processors is done offline.

Semi-partitioning approach is also investigated for
fixed priority scheduling and sporadic tasks.
Lakshmanan et al. [15] developed a semi-partitioning
method based on fixed priority scheduling of sporadic
task sets with implicit or constrained deadlines. Their
method, called the Partitioned Deadline Monotonic
Scheduling with Highest Priority Task Split (PDMS
HPTS), splits only a single task on each processor: the
task with the highest priority. A split task may be
chosen again for splitting if it has the highest priority
on another processor. PDMS HPTS takes advantage of
the fact that, under fixed-priority preemptive
scheduling, the response time of the highest-priority
task on a processor is the same as its worst-case
execution time, leaving the maximum amount of the
original task deadline available for the part of the task
split on to another processor.

Although, semi-partitioned algorithms increases
utilization bound by using spare capacities left by
partitioning via global scheduling, it has a inherent
disadvantage of offline task splitting. It is ongoing state
of the art research to efficiently split the tasks with
maximum efficiency to reduce overhead related to
migration and preemptions.

Cluster Based Scheduling

Cluster based scheduling can be seen as a hybrid
approach combining benefits of both partitioned and
global scheduling. The main idea of the cluster based
scheduling is to divide m processors into ' m/c| sets of ¢
processors each [16]. Both partitioned and global
scheduling can be seen as extreme cases of clustering
with ¢ =1 and ¢ = m respectively.

Initially the notion of clustering is thought to be similar
to partitioning approach where the task set is assigned
to dedicated processors during an offline partitioning
phase. In case of clustering, this becomes assigning
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tasks to a particular cluster and give each cluster a set
of processors. It simplifies the bin-packing problem of
partitioning mentioned earlier as now tasks have to be
distributed into clusters. Different heuristics can be
applied to assign tasks to cluster to improve the
utilization, reduce overhead due to migration and
response time. Each cluster handles small number of
tasks on small number of dedicated processors and thus
removes problem of long task queue experienced by the
global scheduling algorithms. Clustering also gives
flexibility in the form of creating clusters for different
types of tasks such as low or high utilization tasks.
Another flexibility offered by clustering is that it is
possible to create clusters with different resource
capacity such as cluster with large or small number of
processors, having same second level cache, etc. Shin
et al. [17] further expanded this flexibility by analysing
cluster based multiprocessor scheduling for virtual
clustering. In contrast to the normal clustering approach
known as physical clustering where processors are
dedicated for a cluster, virtual clustering assigns
processors to cluster dynamically during runtime. Shin
et al. proposed the Multiprocessor Periodic Resource
(MPR) interface to represent virtual cluster and

presented hierarchical scheduling analysis and
algorithms for them on identical multiprocessor
platform. Easwaran et al. [18] extended this

hierarchical scheduling framework with optimal
algorithms for allocating tasks to clusters.

Generally, partitioned scheduling is preferable in HRT
systems, and global scheduling is preferable in SRT systems.
Partitioned approaches have lower run-time overheads, but
processing capacity may be wasted due to bin-packing
problems. In contrast, global approaches eliminate bin-packing
issues and are particularly effective in SRT systems. A
drawback of global scheduling is increased the system
overheads associated with contention of shared scheduler
state [19].

Hybrid approaches represent a “middle ground” between
partitioned and global scheduling algorithms. For example,
semi-partitioned algorithms require less processors than
partitioned algorithms to schedule certain task sets. At the same
time, these algorithms do not incur large memory overheads and
task migration and preemption overheads like global
algorithms [20].

II1. HIERARCHICAL SCHEDULING

A. Overview

Hierarchical scheduling (also referred to as resource
reservation) is a hot topic within the research of real-time
systems. The main idea is to partition resources (processors,
memory, etc.) into well defined slots. This technique is rarely
used in the most common real-time applications; however, it is
used in the avionics industry to isolate error propagation
between system parts, and to facilitate analysis of the
system [21].

Hierarchical scheduling has shown to be a useful mechanism
in supporting modularity of real-time software by providing
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temporal partitioning among applications. This approach has
been introduced to support processor multiplexing in
combination with different scheduling policies. One of the main
advantages of hierarchical scheduling is that it provides means
for decomposing a complex system into well-defined parts
(subsystems). According to this approach, a system can be
hierarchically divided into a number of subsystems that are
scheduled by a global scheduler. Each subsystem contains a set
of tasks that are scheduled by a local scheduler. Hierarchical
scheduling allows for a subsystem to be developed and analyzed
in isolation, with its own local scheduler, and then at a later
stage, using an arbitrary global scheduler, it allows for the
integration of multiple subsystems without violating the
temporal properties of the individual subsystems analyzed in
isolation. The integration involves a system level schedulability
test, verifying that all timing requirements are met. Hence,
hierarchical scheduling frameworks naturally  support
concurrent development of subsystems.

In essence, hierarchical scheduling gives rise to time-
predictable composition of coarse-grained subsystems.
Hierarchical scheduling has several advantages, besides
improving response time of event-triggered tasks. It enables
parallel development and testing of subsystems, simplifies
integration of subsystems (analysis), supports runtime temporal
partitioning and safe execution of tasks, can facilitate fault

isolation, structured analysis, legacy system
integration [22].  Hierarchical scheduling also facilitates
reusability of subsystems, since their computational

requirements are characterized by well defined interfaces.

Implemented schemes of hierarchical scheduling is called
Hierarchical Scheduling Framework (HSF).

B. Strategies of hierarchical scheduling

In order to achieve hierarchical several

strategies [23] can be used:

scheduling,

e server-based scheduling;

e compositional scheduling;

flat scheduling.
1) Server-based scheduling

The improvement in aperiodic servers, as well as a better
understanding of the isolation properties of these mechanisms,
refocused the application of such servers to what was called
“bandwidth servers” or “resource reservation protocols”.

The global scheduler is in charge of scheduling servers
according to own scheduling policy and the local scheduler
handles the scheduling of tasks. Servers enable real-time tasks
to execute in a dynamic environment under a temporal
protection mechanism, so that each server will never exceed a
predefined bandwidth, independently of its actual workload
requests. The scheduling algorithm at any level can be arbitrary.
Server based hierarchical scheduling is illustrated in
Fig. 2.

The server interface defines the amount of processors that
will be reserved for the particular server. It is usually a time
window (referred to as budget) that re-occurs at a specific

252

interval of time called period, i.e., similar to the periodic task
model.

The servers are re-started periodically. The order of the
execution of the servers is affected by the priorities. Servers can
have different priorities. Each server could potentially host more
than one task each.

In this way, servers act as application containers, providing
temporal isolation to applications.

The advantages of this technique include the great amount of
research available. However, its main drawback is the difficulty
to handle complex task models.

Global scheduler

Interface )

Local
scheduler

Local Local

Fig. 2. Server based hierarchical scheduling framework

2) Compositional hierarchical scheduling

The basic idea of this approach is to extend the classical and
widely used “divide and conquer” strategy to the temporal
requirements. This technique has been widely accepted as a
methodology for designing large complex systems through
systematic abstraction and composition. The complexity of each
component is hidden and abstracted through a clean and well-
defined interface.

This approach has the following main advantage:

e C(Clean isolation of scheduling concerns between
partition developers and system integrator. The
partition developers do not have to provide details
about its internal operation (task attributes), just the

temporal abstract interface of the partition.
On the other side, it has some drawbacks:

e The more partitions are in the system, the less

processor utilization can be granted.

Inter-partition resource sharing may be difficult to
implement and to take into account in the
schedulability analysis.
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e The algorithm is not optimal. Some feasible systems

cannot be scheduled with this approach.

The restriction imposed on the periods of the partitions
(they must be harmonic) is a limitation needed to
produce “efficient” schedules (as well as to be able to
use a deadline-monotonic policy at partition level).
Otherwise, the resulting schedule may be far from
optimal.

3) Flat hierarchical scheduling

In many cases, it is difficult to hide the internal task structure
of the partitions because of the need to specify execution flows
conducted by input/output operations that involve tasks in
different partitions. A flat model approach considers all tasks,
independently of the partition where they belong, as a global
system. A single global scheduler can then be in charge of
managing all the tasks, and a global schedulability analysis can
be carried out. The last step is to adapt the solution back to the
partitioned system by grouping (trying to put together) the tasks
of each partition in order to reduce the number of partition
context switches.

This approach has the following advantages:

¢ Dependencies between tasks of different partitions can

be analyzed and solved.
Mature theory support for this model.

The resulting schedule (or scheduling policy) can be
very efficient. Depending on the task model, it may be
possible to find the optimal solution.

It has also the following drawbacks:

e If an optimized solution is desired, a deep knowledge
of the timing attributes of all the tasks is needed in

order to carry out schedulability analysis.

There is no clean separation of concerns between
partition developers and system integrator, or even
among partition developers.

A change of an attribute of a task may require the
whole schedule to be reworked.

B. Standards and specifications

The computing infrastructures supporting onboard aerospace
systems, given the criticality of the mission being pursued, have
strict dependability and real-time requisites [24]. They also
require flexible resource reallocation, and reduced size, weight
and power consumption (SWaP). To cater to resource allocation
and SWaP requirements, there has been a trend in the aerospace
industry towards integrating the multiple hosted functions in the
same computing platform. As these functions may have
different degrees of criticality and predictability, and originate
from multiple providers or development teams, safety issues
might arise, which are mitigated by employing time and space
partitioning (TSP). In TSP, onboard applications are
functionally separated into logical containers — partitions.
Partitioning allows containing faults in the domain in which
they occur, and enables independent software verification and
validation (easing the overall certification process). The issues
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of this paper are more tightly bound to the aspect of temporal
partitioning, which ensures applications executing in one
partition will not disrupt the use of any shared resource (most
notably the processor) by applications in other partitions. This is
essential to ensure the fulfilment of real-time guarantees and
enable independent temporal analysis of the applications [25].

TSP concepts have been deployed in the civil aviation world,
through the Integrated Modular Avionics (IMA) [26] and
ARINC-653 specifications. The interest from space industry
partners in applying TSP concepts [27] originated the
international consortium, sponsored by the European Space
Agency (ESA), within which was developed the AIR (ARINC-
653 in Space RTOS) architecture [28].

AIR is designed to fulfil the requirements for robust TSP,
and foresees the use of different partition operating systems
(POS), either real-time or generic non-real-time ones. The AIR
Partition Management Kernel (PMK) ensures robust temporal
and spatial partitioning. Temporal partitioning is achieved
through a two-level hierarchical scheduling scheme. AIR
supports mode-based partition schedules, among which the
system can switch throughout its execution for (self-)adaptation
to mission changes [29]. The Application Executive (APEX)
provides a standard interface between applications and the
underlying core software layer.

The ARINC-653 specification (AEEC, 1997) prescribes a
two-level hierarchical scheduling framework to guarantee
temporal isolation between the applications, each hosted in a
logical containment unit — partition. On the first level, a cyclic
global level scheduler selects partitions according to a
predefined partition scheduling table. When each partition is
active according to such schedule, its tasks compete according
to a local-level scheduler, which is specified to be preemptive
and priority-based [30].

IV. MULTICORE HIERARCHICAL SCHEDULING

A. Overview

Nowadays, there are a lot of implementation of hierarchical
scheduling. We chose four well-known approaches of HSF for
real-time systems on multicore platform offered by
Shin et al.[16], Asberg etal. [31], Checconi et al. [32] and
Nemati et al [33].

1) Virtual Cluster HSF

The Virtual Cluster (VC) Hierarchical Scheduling
Framework (VC-HSF) developed by Shin is a generalization of
physical clustering with a new feature of sharing processors
between different clusters. Unlike physical clusters, where
processors are dedicated to a cluster offline, VC allows
allocation of physical processors to the clusters during run-time.
This dynamic allocation scheme requires an interface to capture
the execution and concurrency requirements within a cluster to
use hierarchical scheduling techniques. The interface proposed
by Shin et al. which is known as the MPR model.

In VC-HSF for each cluster a MPR interface is generated
using schedulability analysis presented in Shin et al. Then each
of this interface is transformed into a set of implicit deadline
periodic servers for inter cluster scheduling. The periodic
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servers idle their budget if there is no active task running inside
the server.

VC-HSF has two-level hierarchy of schedulers: inter-cluster
and intra-cluster. Inter-cluster level provide dynamic allocation
virtual clusters, i.e. assign physical processors to virtual cluster.
Inter (external/global) assign sub-set of cores to each subsystem
(group of tasks and server) and schedules on global EDF (G-
EDF) [34]. The same is true for the inter-cluster scheduler of
VC except that each cluster can have up to m active servers. All
the servers from all the clusters are queued according to the
global scheduling policy. Queue of tasks sorting by the shortest
deadline and tasks allocate to cores, until take their full.
However, tasks are not assigned to any particular server, rather
these only belong to a specific cluster. Intra-cluster level
provide scheduling on physical level within a cluster. All
clusters is non-intersect, therefore clusters cannot interrupt each
other. Intra (internal) schedules on G-EDF. The intra-cluster
executes tasks of the cluster by consuming the budgets of its
scheduled servers. Unlike regular hierarchical scheduling, the
local or intra-cluster scheduler also has to use a multiprocessor
global scheduling algorithm as there can be multiple active
servers of a cluster. Architecture of VC-HSF is illustrated in
Fig. 3.

As aresult, VC can be described as global scheduling in two
level. Easwaran et al. mentioned different global scheduling
algorithms like G-EDF and McNaughton’s algorithm [35] that
can be used in VC.

Server 3

Server 0 Server 1 Server 2

Cluster Cluster Cluster Cluster

Inter-

Virtual Cluster 1

Virtual Cluster 0

Intra-

Intra-cluster scheduler

T

Fig. 3. VC-HSF

2) Checconi HSF

Checconi was proposed own approach of HSF that consists
of two-level hierarchy schedulers: local and global. On local
level tasks schedule with global multicore fixed priority. On
global level each core have own Hard Constant Bandwidth
Server (H-CBS) scheduler that scheduling a single server in
each subsystem. Each subsystem have number of servers which
equal number of cores. Each subsystem have access to all cores.
Global scheduling runs parallel by H-CBS schedulers. H-CBS
hard assigned on the core. Tasks within the server can migrate
to another server that resides on a different core. The server has
a share of each core at its disposal.

3) Nemati HSF

Another approach of HSF was implemented by Nemati et al.
Their hierarchical scheduling has a scheme where the servers
are scheduled with a global multicore scheduling scheme (fixed
or dynamic priority), and locally, each subsystem is scheduled
with partitioned multicore (fixed or dynamic priority)
scheduling, i.e., each subsystem has maximum one server (that
may run on any core), so tasks always execute on the same core.

4) Sequential HSF

Last implementation of hierarchical scheduling in our review
is the Sequential HSF offered by Asberg et al. This approach
provide scheduling servers in sequence, thereby scheduling
tasks, within each subsystem, with global multicore on all cores.
Also proposed scheme will execute the subsystems in sequential
order, occupying each core with one server.

B. Comparison

VC-HSF, Checconi HSF, Nemati HSF and Sequential HSF
were implemented for identical multiprocessors platform. The
implementation complexity of these approaches differ in both
the local and the global levels.

VC-HSF has the most complex server scheduler (global
level), since the maximum number of cores that may be utilized,
and the occupied cores must be checked when scheduling a
server. Checconi HSF is more simple since all servers are
assigned to a core statically offline. In fact, one (H-CBS) global
scheduler could be sufficient to handle all servers (which would
make it similar to our sequential approach). Nemati HSF is quite
simple since there is maximum one server per subsystem, but
the availability of cores need to always be checked since servers
are not statically assigned to cores. Sequential HSF is simple
since servers are statically assigned to cores.

Looking at the local scheduling, VC-HSF and Checconi HSF
have similar local scheduling schemes. Both of them schedules
global multicore scheduling, on a subset of cores. Nemati HSF
uses simple partitioned scheduling (unicore scheduling), while
Sequential HSF schedules global multicore scheduling on all
cores. To summarize, VC-HSF and Checconi HSF have slightly
more complex scheduling than the sequential approach, while
Nemati HSF is the most simple.

Looking at shared resources, due to that Nemati HSF uses
partitioned scheduling, shared resources within a subsystem
becomes less complex with this approach, compared to the other
three schemes.

Summary of comparing results of four HSF schemes by
types of multicore scheduling and parallelism of servers is
shown in Table L.

TABLE I. MULTICORE HIERARCHICAL SCHEDULING SCHEMES

Strategy Multicffre Serve.r Assigning servers
scheduling parallelism to core
VC-HSF Cluster Yes Online
Checconi HSF Global Yes Offline
Nemati HSF Partitioned Yes Online
Sequential HSF Global No Offline
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V. CONCLUSION

In this paper, we reviewed many aspects of hierarchical
scheduling for multicore systems that provides predictable
timing and temporal isolation. We described main features of
hierarchical scheduling, kinds of multiprocessors (identical,
uniform heterogeneous and unrelated heterogeneous), types of
multiprocessor scheduling (partitioned, global and hybrid),
strategies of hierarchical scheduling (its features, advantages
and backwards), standards and concepts (ARINC-653, TSP,
IMA etc.). Also we described and compared several hierarchical
scheduling approaches (VC-HSF, Checconi HSF, Nemati HSF,
Sequential HSF) for identical multiprocessors, defined it’s
features, which may be important for a field of its use.

This theme is very important for many industry domains and
have a great potential. Our further research is required for the
boundary of the performance of hierarchical multiprocessor
scheduling for various task types (implicit-/arbitrary-deadline)
on various processor types (identical/heterogeneous/unrelated).
Finally, the hierarchical scheduling theory with dependency
constraints  (task dependency/resource sharing) is bad
developed. We would like to work on these problems and
complete the hierarchical scheduling theory.
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